/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "acl_run.h" /* * Resolve priority for multiple results (scalar version). * This consists comparing the priority of the current traversal with the * running set of results for the packet. * For each result, keep a running array of the result (rule number) and * its priority for each category. */ static inline void resolve_priority_scalar(uint64_t transition, int n, const struct rte_acl_ctx *ctx, struct parms *parms, const struct rte_acl_match_results *p, uint32_t categories) { uint32_t i; int32_t *saved_priority; uint32_t *saved_results; const int32_t *priority; const uint32_t *results; saved_results = parms[n].cmplt->results; saved_priority = parms[n].cmplt->priority; /* results and priorities for completed trie */ results = p[transition].results; priority = p[transition].priority; /* if this is not the first completed trie */ if (parms[n].cmplt->count != ctx->num_tries) { for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) { if (saved_priority[i] <= priority[i]) { saved_priority[i] = priority[i]; saved_results[i] = results[i]; } if (saved_priority[i + 1] <= priority[i + 1]) { saved_priority[i + 1] = priority[i + 1]; saved_results[i + 1] = results[i + 1]; } if (saved_priority[i + 2] <= priority[i + 2]) { saved_priority[i + 2] = priority[i + 2]; saved_results[i + 2] = results[i + 2]; } if (saved_priority[i + 3] <= priority[i + 3]) { saved_priority[i + 3] = priority[i + 3]; saved_results[i + 3] = results[i + 3]; } } } else { for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) { saved_priority[i] = priority[i]; saved_priority[i + 1] = priority[i + 1]; saved_priority[i + 2] = priority[i + 2]; saved_priority[i + 3] = priority[i + 3]; saved_results[i] = results[i]; saved_results[i + 1] = results[i + 1]; saved_results[i + 2] = results[i + 2]; saved_results[i + 3] = results[i + 3]; } } } static inline uint32_t scan_forward(uint32_t input, uint32_t max) { return (input == 0) ? max : rte_bsf32(input); } static inline uint64_t scalar_transition(const uint64_t *trans_table, uint64_t transition, uint8_t input) { uint32_t addr, index, ranges, x, a, b, c; /* break transition into component parts */ ranges = transition >> (sizeof(index) * CHAR_BIT); index = transition & ~RTE_ACL_NODE_INDEX; addr = transition ^ index; if (index != RTE_ACL_NODE_DFA) { /* calc address for a QRANGE/SINGLE node */ c = (uint32_t)input * SCALAR_QRANGE_MULT; a = ranges | SCALAR_QRANGE_MIN; a -= (c & SCALAR_QRANGE_MASK); b = c & SCALAR_QRANGE_MIN; a &= SCALAR_QRANGE_MIN; a ^= (ranges ^ b) & (a ^ b); x = scan_forward(a, 32) >> 3; } else { /* calc address for a DFA node */ x = ranges >> (input / RTE_ACL_DFA_GR64_SIZE * RTE_ACL_DFA_GR64_BIT); x &= UINT8_MAX; x = input - x; } addr += x; /* pickup next transition */ transition = *(trans_table + addr); return transition; } int rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data, uint32_t *results, uint32_t num, uint32_t categories) { int n; uint64_t transition0, transition1; uint32_t input0, input1; struct acl_flow_data flows; uint64_t index_array[MAX_SEARCHES_SCALAR]; struct completion cmplt[MAX_SEARCHES_SCALAR]; struct parms parms[MAX_SEARCHES_SCALAR]; acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, num, categories, ctx->trans_table); for (n = 0; n < MAX_SEARCHES_SCALAR; n++) { cmplt[n].count = 0; index_array[n] = acl_start_next_trie(&flows, parms, n, ctx); } transition0 = index_array[0]; transition1 = index_array[1]; while ((transition0 | transition1) & RTE_ACL_NODE_MATCH) { transition0 = acl_match_check(transition0, 0, ctx, parms, &flows, resolve_priority_scalar); transition1 = acl_match_check(transition1, 1, ctx, parms, &flows, resolve_priority_scalar); } while (flows.started > 0) { input0 = GET_NEXT_4BYTES(parms, 0); input1 = GET_NEXT_4BYTES(parms, 1); for (n = 0; n < 4; n++) { transition0 = scalar_transition(flows.trans, transition0, (uint8_t)input0); input0 >>= CHAR_BIT; transition1 = scalar_transition(flows.trans, transition1, (uint8_t)input1); input1 >>= CHAR_BIT; } while ((transition0 | transition1) & RTE_ACL_NODE_MATCH) { transition0 = acl_match_check(transition0, 0, ctx, parms, &flows, resolve_priority_scalar); transition1 = acl_match_check(transition1, 1, ctx, parms, &flows, resolve_priority_scalar); } } return 0; }