/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "malloc_elem.h" #include "malloc_heap.h" #define MIN_DATA_SIZE (RTE_CACHE_LINE_SIZE) /* * initialise a general malloc_elem header structure */ void malloc_elem_init(struct malloc_elem *elem, struct malloc_heap *heap, const struct rte_memseg *ms, size_t size) { elem->heap = heap; elem->ms = ms; elem->prev = NULL; memset(&elem->free_list, 0, sizeof(elem->free_list)); elem->state = ELEM_FREE; elem->size = size; elem->pad = 0; set_header(elem); set_trailer(elem); } /* * initialise a dummy malloc_elem header for the end-of-memseg marker */ void malloc_elem_mkend(struct malloc_elem *elem, struct malloc_elem *prev) { malloc_elem_init(elem, prev->heap, prev->ms, 0); elem->prev = prev; elem->state = ELEM_BUSY; /* mark busy so its never merged */ } /* * calculate the starting point of where data of the requested size * and alignment would fit in the current element. If the data doesn't * fit, return NULL. */ static void * elem_start_pt(struct malloc_elem *elem, size_t size, unsigned align, size_t bound) { const size_t bmask = ~(bound - 1); uintptr_t end_pt = (uintptr_t)elem + elem->size - MALLOC_ELEM_TRAILER_LEN; uintptr_t new_data_start = RTE_ALIGN_FLOOR((end_pt - size), align); uintptr_t new_elem_start; /* check boundary */ if ((new_data_start & bmask) != ((end_pt - 1) & bmask)) { end_pt = RTE_ALIGN_FLOOR(end_pt, bound); new_data_start = RTE_ALIGN_FLOOR((end_pt - size), align); if (((end_pt - 1) & bmask) != (new_data_start & bmask)) return NULL; } new_elem_start = new_data_start - MALLOC_ELEM_HEADER_LEN; /* if the new start point is before the exist start, it won't fit */ return (new_elem_start < (uintptr_t)elem) ? NULL : (void *)new_elem_start; } /* * use elem_start_pt to determine if we get meet the size and * alignment request from the current element */ int malloc_elem_can_hold(struct malloc_elem *elem, size_t size, unsigned align, size_t bound) { return elem_start_pt(elem, size, align, bound) != NULL; } /* * split an existing element into two smaller elements at the given * split_pt parameter. */ static void split_elem(struct malloc_elem *elem, struct malloc_elem *split_pt) { struct malloc_elem *next_elem = RTE_PTR_ADD(elem, elem->size); const size_t old_elem_size = (uintptr_t)split_pt - (uintptr_t)elem; const size_t new_elem_size = elem->size - old_elem_size; malloc_elem_init(split_pt, elem->heap, elem->ms, new_elem_size); split_pt->prev = elem; next_elem->prev = split_pt; elem->size = old_elem_size; set_trailer(elem); } /* * Given an element size, compute its freelist index. * We free an element into the freelist containing similarly-sized elements. * We try to allocate elements starting with the freelist containing * similarly-sized elements, and if necessary, we search freelists * containing larger elements. * * Example element size ranges for a heap with five free lists: * heap->free_head[0] - (0 , 2^8] * heap->free_head[1] - (2^8 , 2^10] * heap->free_head[2] - (2^10 ,2^12] * heap->free_head[3] - (2^12, 2^14] * heap->free_head[4] - (2^14, MAX_SIZE] */ size_t malloc_elem_free_list_index(size_t size) { #define MALLOC_MINSIZE_LOG2 8 #define MALLOC_LOG2_INCREMENT 2 size_t log2; size_t index; if (size <= (1UL << MALLOC_MINSIZE_LOG2)) return 0; /* Find next power of 2 >= size. */ log2 = sizeof(size) * 8 - __builtin_clzl(size-1); /* Compute freelist index, based on log2(size). */ index = (log2 - MALLOC_MINSIZE_LOG2 + MALLOC_LOG2_INCREMENT - 1) / MALLOC_LOG2_INCREMENT; return index <= RTE_HEAP_NUM_FREELISTS-1? index: RTE_HEAP_NUM_FREELISTS-1; } /* * Add the specified element to its heap's free list. */ void malloc_elem_free_list_insert(struct malloc_elem *elem) { size_t idx; idx = malloc_elem_free_list_index(elem->size - MALLOC_ELEM_HEADER_LEN); elem->state = ELEM_FREE; LIST_INSERT_HEAD(&elem->heap->free_head[idx], elem, free_list); } /* * Remove the specified element from its heap's free list. */ static void elem_free_list_remove(struct malloc_elem *elem) { LIST_REMOVE(elem, free_list); } /* * reserve a block of data in an existing malloc_elem. If the malloc_elem * is much larger than the data block requested, we split the element in two. * This function is only called from malloc_heap_alloc so parameter checking * is not done here, as it's done there previously. */ struct malloc_elem * malloc_elem_alloc(struct malloc_elem *elem, size_t size, unsigned align, size_t bound) { struct malloc_elem *new_elem = elem_start_pt(elem, size, align, bound); const size_t old_elem_size = (uintptr_t)new_elem - (uintptr_t)elem; const size_t trailer_size = elem->size - old_elem_size - size - MALLOC_ELEM_OVERHEAD; elem_free_list_remove(elem); if (trailer_size > MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) { /* split it, too much free space after elem */ struct malloc_elem *new_free_elem = RTE_PTR_ADD(new_elem, size + MALLOC_ELEM_OVERHEAD); split_elem(elem, new_free_elem); malloc_elem_free_list_insert(new_free_elem); } if (old_elem_size < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) { /* don't split it, pad the element instead */ elem->state = ELEM_BUSY; elem->pad = old_elem_size; /* put a dummy header in padding, to point to real element header */ if (elem->pad > 0){ /* pad will be at least 64-bytes, as everything * is cache-line aligned */ new_elem->pad = elem->pad; new_elem->state = ELEM_PAD; new_elem->size = elem->size - elem->pad; set_header(new_elem); } return new_elem; } /* we are going to split the element in two. The original element * remains free, and the new element is the one allocated. * Re-insert original element, in case its new size makes it * belong on a different list. */ split_elem(elem, new_elem); new_elem->state = ELEM_BUSY; malloc_elem_free_list_insert(elem); return new_elem; } /* * joing two struct malloc_elem together. elem1 and elem2 must * be contiguous in memory. */ static inline void join_elem(struct malloc_elem *elem1, struct malloc_elem *elem2) { struct malloc_elem *next = RTE_PTR_ADD(elem2, elem2->size); elem1->size += elem2->size; next->prev = elem1; } /* * free a malloc_elem block by adding it to the free list. If the * blocks either immediately before or immediately after newly freed block * are also free, the blocks are merged together. */ int malloc_elem_free(struct malloc_elem *elem) { if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY) return -1; rte_spinlock_lock(&(elem->heap->lock)); size_t sz = elem->size - sizeof(*elem); uint8_t *ptr = (uint8_t *)&elem[1]; struct malloc_elem *next = RTE_PTR_ADD(elem, elem->size); if (next->state == ELEM_FREE){ /* remove from free list, join to this one */ elem_free_list_remove(next); join_elem(elem, next); sz += sizeof(*elem); } /* check if previous element is free, if so join with it and return, * need to re-insert in free list, as that element's size is changing */ if (elem->prev != NULL && elem->prev->state == ELEM_FREE) { elem_free_list_remove(elem->prev); join_elem(elem->prev, elem); sz += sizeof(*elem); ptr -= sizeof(*elem); elem = elem->prev; } malloc_elem_free_list_insert(elem); /* decrease heap's count of allocated elements */ elem->heap->alloc_count--; memset(ptr, 0, sz); rte_spinlock_unlock(&(elem->heap->lock)); return 0; } /* * attempt to resize a malloc_elem by expanding into any free space * immediately after it in memory. */ int malloc_elem_resize(struct malloc_elem *elem, size_t size) { const size_t new_size = size + elem->pad + MALLOC_ELEM_OVERHEAD; /* if we request a smaller size, then always return ok */ if (elem->size >= new_size) return 0; struct malloc_elem *next = RTE_PTR_ADD(elem, elem->size); rte_spinlock_lock(&elem->heap->lock); if (next ->state != ELEM_FREE) goto err_return; if (elem->size + next->size < new_size) goto err_return; /* we now know the element fits, so remove from free list, * join the two */ elem_free_list_remove(next); join_elem(elem, next); if (elem->size - new_size >= MIN_DATA_SIZE + MALLOC_ELEM_OVERHEAD) { /* now we have a big block together. Lets cut it down a bit, by splitting */ struct malloc_elem *split_pt = RTE_PTR_ADD(elem, new_size); split_pt = RTE_PTR_ALIGN_CEIL(split_pt, RTE_CACHE_LINE_SIZE); split_elem(elem, split_pt); malloc_elem_free_list_insert(split_pt); } rte_spinlock_unlock(&elem->heap->lock); return 0; err_return: rte_spinlock_unlock(&elem->heap->lock); return -1; }