/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #include #include #include /* for definition of RTE_CACHE_LINE_SIZE */ #include #include #include #include #include #include #include #include #include "rte_lpm.h" TAILQ_HEAD(rte_lpm_list, rte_tailq_entry); static struct rte_tailq_elem rte_lpm_tailq = { .name = "RTE_LPM", }; EAL_REGISTER_TAILQ(rte_lpm_tailq) #define MAX_DEPTH_TBL24 24 enum valid_flag { INVALID = 0, VALID }; /* Macro to enable/disable run-time checks. */ #if defined(RTE_LIBRTE_LPM_DEBUG) #include #define VERIFY_DEPTH(depth) do { \ if ((depth == 0) || (depth > RTE_LPM_MAX_DEPTH)) \ rte_panic("LPM: Invalid depth (%u) at line %d", \ (unsigned)(depth), __LINE__); \ } while (0) #else #define VERIFY_DEPTH(depth) #endif /* * Converts a given depth value to its corresponding mask value. * * depth (IN) : range = 1 - 32 * mask (OUT) : 32bit mask */ static uint32_t __attribute__((pure)) depth_to_mask(uint8_t depth) { VERIFY_DEPTH(depth); /* To calculate a mask start with a 1 on the left hand side and right * shift while populating the left hand side with 1's */ return (int)0x80000000 >> (depth - 1); } /* * Converts given depth value to its corresponding range value. */ static inline uint32_t __attribute__((pure)) depth_to_range(uint8_t depth) { VERIFY_DEPTH(depth); /* * Calculate tbl24 range. (Note: 2^depth = 1 << depth) */ if (depth <= MAX_DEPTH_TBL24) return 1 << (MAX_DEPTH_TBL24 - depth); /* Else if depth is greater than 24 */ return 1 << (RTE_LPM_MAX_DEPTH - depth); } /* * Find an existing lpm table and return a pointer to it. */ struct rte_lpm_v20 * rte_lpm_find_existing_v20(const char *name) { struct rte_lpm_v20 *l = NULL; struct rte_tailq_entry *te; struct rte_lpm_list *lpm_list; lpm_list = RTE_TAILQ_CAST(rte_lpm_tailq.head, rte_lpm_list); rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK); TAILQ_FOREACH(te, lpm_list, next) { l = te->data; if (strncmp(name, l->name, RTE_LPM_NAMESIZE) == 0) break; } rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK); if (te == NULL) { rte_errno = ENOENT; return NULL; } return l; } VERSION_SYMBOL(rte_lpm_find_existing, _v20, 2.0); struct rte_lpm * rte_lpm_find_existing_v1604(const char *name) { struct rte_lpm *l = NULL; struct rte_tailq_entry *te; struct rte_lpm_list *lpm_list; lpm_list = RTE_TAILQ_CAST(rte_lpm_tailq.head, rte_lpm_list); rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK); TAILQ_FOREACH(te, lpm_list, next) { l = te->data; if (strncmp(name, l->name, RTE_LPM_NAMESIZE) == 0) break; } rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK); if (te == NULL) { rte_errno = ENOENT; return NULL; } return l; } BIND_DEFAULT_SYMBOL(rte_lpm_find_existing, _v1604, 16.04); MAP_STATIC_SYMBOL(struct rte_lpm *rte_lpm_find_existing(const char *name), rte_lpm_find_existing_v1604); /* * Allocates memory for LPM object */ struct rte_lpm_v20 * rte_lpm_create_v20(const char *name, int socket_id, int max_rules, __rte_unused int flags) { char mem_name[RTE_LPM_NAMESIZE]; struct rte_lpm_v20 *lpm = NULL; struct rte_tailq_entry *te; uint32_t mem_size; struct rte_lpm_list *lpm_list; lpm_list = RTE_TAILQ_CAST(rte_lpm_tailq.head, rte_lpm_list); RTE_BUILD_BUG_ON(sizeof(struct rte_lpm_tbl_entry_v20) != 2); /* Check user arguments. */ if ((name == NULL) || (socket_id < -1) || (max_rules == 0)) { rte_errno = EINVAL; return NULL; } snprintf(mem_name, sizeof(mem_name), "LPM_%s", name); /* Determine the amount of memory to allocate. */ mem_size = sizeof(*lpm) + (sizeof(lpm->rules_tbl[0]) * max_rules); rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK); /* guarantee there's no existing */ TAILQ_FOREACH(te, lpm_list, next) { lpm = te->data; if (strncmp(name, lpm->name, RTE_LPM_NAMESIZE) == 0) break; } if (te != NULL) { lpm = NULL; rte_errno = EEXIST; goto exit; } /* allocate tailq entry */ te = rte_zmalloc("LPM_TAILQ_ENTRY", sizeof(*te), 0); if (te == NULL) { RTE_LOG(ERR, LPM, "Failed to allocate tailq entry\n"); rte_errno = ENOMEM; goto exit; } /* Allocate memory to store the LPM data structures. */ lpm = rte_zmalloc_socket(mem_name, mem_size, RTE_CACHE_LINE_SIZE, socket_id); if (lpm == NULL) { RTE_LOG(ERR, LPM, "LPM memory allocation failed\n"); rte_free(te); rte_errno = ENOMEM; goto exit; } /* Save user arguments. */ lpm->max_rules = max_rules; snprintf(lpm->name, sizeof(lpm->name), "%s", name); te->data = lpm; TAILQ_INSERT_TAIL(lpm_list, te, next); exit: rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); return lpm; } VERSION_SYMBOL(rte_lpm_create, _v20, 2.0); struct rte_lpm * rte_lpm_create_v1604(const char *name, int socket_id, const struct rte_lpm_config *config) { char mem_name[RTE_LPM_NAMESIZE]; struct rte_lpm *lpm = NULL; struct rte_tailq_entry *te; uint32_t mem_size, rules_size, tbl8s_size; struct rte_lpm_list *lpm_list; lpm_list = RTE_TAILQ_CAST(rte_lpm_tailq.head, rte_lpm_list); RTE_BUILD_BUG_ON(sizeof(struct rte_lpm_tbl_entry) != 4); /* Check user arguments. */ if ((name == NULL) || (socket_id < -1) || (config->max_rules == 0) || config->number_tbl8s > RTE_LPM_MAX_TBL8_NUM_GROUPS) { rte_errno = EINVAL; return NULL; } snprintf(mem_name, sizeof(mem_name), "LPM_%s", name); /* Determine the amount of memory to allocate. */ mem_size = sizeof(*lpm); rules_size = sizeof(struct rte_lpm_rule) * config->max_rules; tbl8s_size = (sizeof(struct rte_lpm_tbl_entry) * RTE_LPM_TBL8_GROUP_NUM_ENTRIES * config->number_tbl8s); rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK); /* guarantee there's no existing */ TAILQ_FOREACH(te, lpm_list, next) { lpm = te->data; if (strncmp(name, lpm->name, RTE_LPM_NAMESIZE) == 0) break; } if (te != NULL) { lpm = NULL; rte_errno = EEXIST; goto exit; } /* allocate tailq entry */ te = rte_zmalloc("LPM_TAILQ_ENTRY", sizeof(*te), 0); if (te == NULL) { RTE_LOG(ERR, LPM, "Failed to allocate tailq entry\n"); rte_errno = ENOMEM; goto exit; } /* Allocate memory to store the LPM data structures. */ lpm = rte_zmalloc_socket(mem_name, mem_size, RTE_CACHE_LINE_SIZE, socket_id); if (lpm == NULL) { RTE_LOG(ERR, LPM, "LPM memory allocation failed\n"); rte_free(te); rte_errno = ENOMEM; goto exit; } lpm->rules_tbl = rte_zmalloc_socket(NULL, (size_t)rules_size, RTE_CACHE_LINE_SIZE, socket_id); if (lpm->rules_tbl == NULL) { RTE_LOG(ERR, LPM, "LPM rules_tbl memory allocation failed\n"); rte_free(lpm); lpm = NULL; rte_free(te); rte_errno = ENOMEM; goto exit; } lpm->tbl8 = rte_zmalloc_socket(NULL, (size_t)tbl8s_size, RTE_CACHE_LINE_SIZE, socket_id); if (lpm->tbl8 == NULL) { RTE_LOG(ERR, LPM, "LPM tbl8 memory allocation failed\n"); rte_free(lpm->rules_tbl); rte_free(lpm); lpm = NULL; rte_free(te); rte_errno = ENOMEM; goto exit; } /* Save user arguments. */ lpm->max_rules = config->max_rules; lpm->number_tbl8s = config->number_tbl8s; snprintf(lpm->name, sizeof(lpm->name), "%s", name); te->data = lpm; TAILQ_INSERT_TAIL(lpm_list, te, next); exit: rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); return lpm; } BIND_DEFAULT_SYMBOL(rte_lpm_create, _v1604, 16.04); MAP_STATIC_SYMBOL( struct rte_lpm *rte_lpm_create(const char *name, int socket_id, const struct rte_lpm_config *config), rte_lpm_create_v1604); /* * Deallocates memory for given LPM table. */ void rte_lpm_free_v20(struct rte_lpm_v20 *lpm) { struct rte_lpm_list *lpm_list; struct rte_tailq_entry *te; /* Check user arguments. */ if (lpm == NULL) return; lpm_list = RTE_TAILQ_CAST(rte_lpm_tailq.head, rte_lpm_list); rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK); /* find our tailq entry */ TAILQ_FOREACH(te, lpm_list, next) { if (te->data == (void *) lpm) break; } if (te != NULL) TAILQ_REMOVE(lpm_list, te, next); rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); rte_free(lpm); rte_free(te); } VERSION_SYMBOL(rte_lpm_free, _v20, 2.0); void rte_lpm_free_v1604(struct rte_lpm *lpm) { struct rte_lpm_list *lpm_list; struct rte_tailq_entry *te; /* Check user arguments. */ if (lpm == NULL) return; lpm_list = RTE_TAILQ_CAST(rte_lpm_tailq.head, rte_lpm_list); rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK); /* find our tailq entry */ TAILQ_FOREACH(te, lpm_list, next) { if (te->data == (void *) lpm) break; } if (te != NULL) TAILQ_REMOVE(lpm_list, te, next); rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK); rte_free(lpm->tbl8); rte_free(lpm->rules_tbl); rte_free(lpm); rte_free(te); } BIND_DEFAULT_SYMBOL(rte_lpm_free, _v1604, 16.04); MAP_STATIC_SYMBOL(void rte_lpm_free(struct rte_lpm *lpm), rte_lpm_free_v1604); /* * Adds a rule to the rule table. * * NOTE: The rule table is split into 32 groups. Each group contains rules that * apply to a specific prefix depth (i.e. group 1 contains rules that apply to * prefixes with a depth of 1 etc.). In the following code (depth - 1) is used * to refer to depth 1 because even though the depth range is 1 - 32, depths * are stored in the rule table from 0 - 31. * NOTE: Valid range for depth parameter is 1 .. 32 inclusive. */ static inline int32_t rule_add_v20(struct rte_lpm_v20 *lpm, uint32_t ip_masked, uint8_t depth, uint8_t next_hop) { uint32_t rule_gindex, rule_index, last_rule; int i; VERIFY_DEPTH(depth); /* Scan through rule group to see if rule already exists. */ if (lpm->rule_info[depth - 1].used_rules > 0) { /* rule_gindex stands for rule group index. */ rule_gindex = lpm->rule_info[depth - 1].first_rule; /* Initialise rule_index to point to start of rule group. */ rule_index = rule_gindex; /* Last rule = Last used rule in this rule group. */ last_rule = rule_gindex + lpm->rule_info[depth - 1].used_rules; for (; rule_index < last_rule; rule_index++) { /* If rule already exists update its next_hop and return. */ if (lpm->rules_tbl[rule_index].ip == ip_masked) { lpm->rules_tbl[rule_index].next_hop = next_hop; return rule_index; } } if (rule_index == lpm->max_rules) return -ENOSPC; } else { /* Calculate the position in which the rule will be stored. */ rule_index = 0; for (i = depth - 1; i > 0; i--) { if (lpm->rule_info[i - 1].used_rules > 0) { rule_index = lpm->rule_info[i - 1].first_rule + lpm->rule_info[i - 1].used_rules; break; } } if (rule_index == lpm->max_rules) return -ENOSPC; lpm->rule_info[depth - 1].first_rule = rule_index; } /* Make room for the new rule in the array. */ for (i = RTE_LPM_MAX_DEPTH; i > depth; i--) { if (lpm->rule_info[i - 1].first_rule + lpm->rule_info[i - 1].used_rules == lpm->max_rules) return -ENOSPC; if (lpm->rule_info[i - 1].used_rules > 0) { lpm->rules_tbl[lpm->rule_info[i - 1].first_rule + lpm->rule_info[i - 1].used_rules] = lpm->rules_tbl[lpm->rule_info[i - 1].first_rule]; lpm->rule_info[i - 1].first_rule++; } } /* Add the new rule. */ lpm->rules_tbl[rule_index].ip = ip_masked; lpm->rules_tbl[rule_index].next_hop = next_hop; /* Increment the used rules counter for this rule group. */ lpm->rule_info[depth - 1].used_rules++; return rule_index; } static inline int32_t rule_add_v1604(struct rte_lpm *lpm, uint32_t ip_masked, uint8_t depth, uint32_t next_hop) { uint32_t rule_gindex, rule_index, last_rule; int i; VERIFY_DEPTH(depth); /* Scan through rule group to see if rule already exists. */ if (lpm->rule_info[depth - 1].used_rules > 0) { /* rule_gindex stands for rule group index. */ rule_gindex = lpm->rule_info[depth - 1].first_rule; /* Initialise rule_index to point to start of rule group. */ rule_index = rule_gindex; /* Last rule = Last used rule in this rule group. */ last_rule = rule_gindex + lpm->rule_info[depth - 1].used_rules; for (; rule_index < last_rule; rule_index++) { /* If rule already exists update its next_hop and return. */ if (lpm->rules_tbl[rule_index].ip == ip_masked) { lpm->rules_tbl[rule_index].next_hop = next_hop; return rule_index; } } if (rule_index == lpm->max_rules) return -ENOSPC; } else { /* Calculate the position in which the rule will be stored. */ rule_index = 0; for (i = depth - 1; i > 0; i--) { if (lpm->rule_info[i - 1].used_rules > 0) { rule_index = lpm->rule_info[i - 1].first_rule + lpm->rule_info[i - 1].used_rules; break; } } if (rule_index == lpm->max_rules) return -ENOSPC; lpm->rule_info[depth - 1].first_rule = rule_index; } /* Make room for the new rule in the array. */ for (i = RTE_LPM_MAX_DEPTH; i > depth; i--) { if (lpm->rule_info[i - 1].first_rule + lpm->rule_info[i - 1].used_rules == lpm->max_rules) return -ENOSPC; if (lpm->rule_info[i - 1].used_rules > 0) { lpm->rules_tbl[lpm->rule_info[i - 1].first_rule + lpm->rule_info[i - 1].used_rules] = lpm->rules_tbl[lpm->rule_info[i - 1].first_rule]; lpm->rule_info[i - 1].first_rule++; } } /* Add the new rule. */ lpm->rules_tbl[rule_index].ip = ip_masked; lpm->rules_tbl[rule_index].next_hop = next_hop; /* Increment the used rules counter for this rule group. */ lpm->rule_info[depth - 1].used_rules++; return rule_index; } /* * Delete a rule from the rule table. * NOTE: Valid range for depth parameter is 1 .. 32 inclusive. */ static inline void rule_delete_v20(struct rte_lpm_v20 *lpm, int32_t rule_index, uint8_t depth) { int i; VERIFY_DEPTH(depth); lpm->rules_tbl[rule_index] = lpm->rules_tbl[lpm->rule_info[depth - 1].first_rule + lpm->rule_info[depth - 1].used_rules - 1]; for (i = depth; i < RTE_LPM_MAX_DEPTH; i++) { if (lpm->rule_info[i].used_rules > 0) { lpm->rules_tbl[lpm->rule_info[i].first_rule - 1] = lpm->rules_tbl[lpm->rule_info[i].first_rule + lpm->rule_info[i].used_rules - 1]; lpm->rule_info[i].first_rule--; } } lpm->rule_info[depth - 1].used_rules--; } static inline void rule_delete_v1604(struct rte_lpm *lpm, int32_t rule_index, uint8_t depth) { int i; VERIFY_DEPTH(depth); lpm->rules_tbl[rule_index] = lpm->rules_tbl[lpm->rule_info[depth - 1].first_rule + lpm->rule_info[depth - 1].used_rules - 1]; for (i = depth; i < RTE_LPM_MAX_DEPTH; i++) { if (lpm->rule_info[i].used_rules > 0) { lpm->rules_tbl[lpm->rule_info[i].first_rule - 1] = lpm->rules_tbl[lpm->rule_info[i].first_rule + lpm->rule_info[i].used_rules - 1]; lpm->rule_info[i].first_rule--; } } lpm->rule_info[depth - 1].used_rules--; } /* * Finds a rule in rule table. * NOTE: Valid range for depth parameter is 1 .. 32 inclusive. */ static inline int32_t rule_find_v20(struct rte_lpm_v20 *lpm, uint32_t ip_masked, uint8_t depth) { uint32_t rule_gindex, last_rule, rule_index; VERIFY_DEPTH(depth); rule_gindex = lpm->rule_info[depth - 1].first_rule; last_rule = rule_gindex + lpm->rule_info[depth - 1].used_rules; /* Scan used rules at given depth to find rule. */ for (rule_index = rule_gindex; rule_index < last_rule; rule_index++) { /* If rule is found return the rule index. */ if (lpm->rules_tbl[rule_index].ip == ip_masked) return rule_index; } /* If rule is not found return -EINVAL. */ return -EINVAL; } static inline int32_t rule_find_v1604(struct rte_lpm *lpm, uint32_t ip_masked, uint8_t depth) { uint32_t rule_gindex, last_rule, rule_index; VERIFY_DEPTH(depth); rule_gindex = lpm->rule_info[depth - 1].first_rule; last_rule = rule_gindex + lpm->rule_info[depth - 1].used_rules; /* Scan used rules at given depth to find rule. */ for (rule_index = rule_gindex; rule_index < last_rule; rule_index++) { /* If rule is found return the rule index. */ if (lpm->rules_tbl[rule_index].ip == ip_masked) return rule_index; } /* If rule is not found return -EINVAL. */ return -EINVAL; } /* * Find, clean and allocate a tbl8. */ static inline int32_t tbl8_alloc_v20(struct rte_lpm_tbl_entry_v20 *tbl8) { uint32_t group_idx; /* tbl8 group index. */ struct rte_lpm_tbl_entry_v20 *tbl8_entry; /* Scan through tbl8 to find a free (i.e. INVALID) tbl8 group. */ for (group_idx = 0; group_idx < RTE_LPM_TBL8_NUM_GROUPS; group_idx++) { tbl8_entry = &tbl8[group_idx * RTE_LPM_TBL8_GROUP_NUM_ENTRIES]; /* If a free tbl8 group is found clean it and set as VALID. */ if (!tbl8_entry->valid_group) { memset(&tbl8_entry[0], 0, RTE_LPM_TBL8_GROUP_NUM_ENTRIES * sizeof(tbl8_entry[0])); tbl8_entry->valid_group = VALID; /* Return group index for allocated tbl8 group. */ return group_idx; } } /* If there are no tbl8 groups free then return error. */ return -ENOSPC; } static inline int32_t tbl8_alloc_v1604(struct rte_lpm_tbl_entry *tbl8, uint32_t number_tbl8s) { uint32_t group_idx; /* tbl8 group index. */ struct rte_lpm_tbl_entry *tbl8_entry; /* Scan through tbl8 to find a free (i.e. INVALID) tbl8 group. */ for (group_idx = 0; group_idx < number_tbl8s; group_idx++) { tbl8_entry = &tbl8[group_idx * RTE_LPM_TBL8_GROUP_NUM_ENTRIES]; /* If a free tbl8 group is found clean it and set as VALID. */ if (!tbl8_entry->valid_group) { memset(&tbl8_entry[0], 0, RTE_LPM_TBL8_GROUP_NUM_ENTRIES * sizeof(tbl8_entry[0])); tbl8_entry->valid_group = VALID; /* Return group index for allocated tbl8 group. */ return group_idx; } } /* If there are no tbl8 groups free then return error. */ return -ENOSPC; } static inline void tbl8_free_v20(struct rte_lpm_tbl_entry_v20 *tbl8, uint32_t tbl8_group_start) { /* Set tbl8 group invalid*/ tbl8[tbl8_group_start].valid_group = INVALID; } static inline void tbl8_free_v1604(struct rte_lpm_tbl_entry *tbl8, uint32_t tbl8_group_start) { /* Set tbl8 group invalid*/ tbl8[tbl8_group_start].valid_group = INVALID; } static inline int32_t add_depth_small_v20(struct rte_lpm_v20 *lpm, uint32_t ip, uint8_t depth, uint8_t next_hop) { uint32_t tbl24_index, tbl24_range, tbl8_index, tbl8_group_end, i, j; /* Calculate the index into Table24. */ tbl24_index = ip >> 8; tbl24_range = depth_to_range(depth); for (i = tbl24_index; i < (tbl24_index + tbl24_range); i++) { /* * For invalid OR valid and non-extended tbl 24 entries set * entry. */ if (!lpm->tbl24[i].valid || (lpm->tbl24[i].valid_group == 0 && lpm->tbl24[i].depth <= depth)) { struct rte_lpm_tbl_entry_v20 new_tbl24_entry = { .valid = VALID, .valid_group = 0, .depth = depth, }; new_tbl24_entry.next_hop = next_hop; /* Setting tbl24 entry in one go to avoid race * conditions */ lpm->tbl24[i] = new_tbl24_entry; continue; } if (lpm->tbl24[i].valid_group == 1) { /* If tbl24 entry is valid and extended calculate the * index into tbl8. */ tbl8_index = lpm->tbl24[i].group_idx * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_group_end = tbl8_index + RTE_LPM_TBL8_GROUP_NUM_ENTRIES; for (j = tbl8_index; j < tbl8_group_end; j++) { if (!lpm->tbl8[j].valid || lpm->tbl8[j].depth <= depth) { struct rte_lpm_tbl_entry_v20 new_tbl8_entry = { .valid = VALID, .valid_group = VALID, .depth = depth, }; new_tbl8_entry.next_hop = next_hop; /* * Setting tbl8 entry in one go to avoid * race conditions */ lpm->tbl8[j] = new_tbl8_entry; continue; } } } } return 0; } static inline int32_t add_depth_small_v1604(struct rte_lpm *lpm, uint32_t ip, uint8_t depth, uint32_t next_hop) { #define group_idx next_hop uint32_t tbl24_index, tbl24_range, tbl8_index, tbl8_group_end, i, j; /* Calculate the index into Table24. */ tbl24_index = ip >> 8; tbl24_range = depth_to_range(depth); for (i = tbl24_index; i < (tbl24_index + tbl24_range); i++) { /* * For invalid OR valid and non-extended tbl 24 entries set * entry. */ if (!lpm->tbl24[i].valid || (lpm->tbl24[i].valid_group == 0 && lpm->tbl24[i].depth <= depth)) { struct rte_lpm_tbl_entry new_tbl24_entry = { .next_hop = next_hop, .valid = VALID, .valid_group = 0, .depth = depth, }; /* Setting tbl24 entry in one go to avoid race * conditions */ lpm->tbl24[i] = new_tbl24_entry; continue; } if (lpm->tbl24[i].valid_group == 1) { /* If tbl24 entry is valid and extended calculate the * index into tbl8. */ tbl8_index = lpm->tbl24[i].group_idx * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_group_end = tbl8_index + RTE_LPM_TBL8_GROUP_NUM_ENTRIES; for (j = tbl8_index; j < tbl8_group_end; j++) { if (!lpm->tbl8[j].valid || lpm->tbl8[j].depth <= depth) { struct rte_lpm_tbl_entry new_tbl8_entry = { .valid = VALID, .valid_group = VALID, .depth = depth, .next_hop = next_hop, }; /* * Setting tbl8 entry in one go to avoid * race conditions */ lpm->tbl8[j] = new_tbl8_entry; continue; } } } } #undef group_idx return 0; } static inline int32_t add_depth_big_v20(struct rte_lpm_v20 *lpm, uint32_t ip_masked, uint8_t depth, uint8_t next_hop) { uint32_t tbl24_index; int32_t tbl8_group_index, tbl8_group_start, tbl8_group_end, tbl8_index, tbl8_range, i; tbl24_index = (ip_masked >> 8); tbl8_range = depth_to_range(depth); if (!lpm->tbl24[tbl24_index].valid) { /* Search for a free tbl8 group. */ tbl8_group_index = tbl8_alloc_v20(lpm->tbl8); /* Check tbl8 allocation was successful. */ if (tbl8_group_index < 0) { return tbl8_group_index; } /* Find index into tbl8 and range. */ tbl8_index = (tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES) + (ip_masked & 0xFF); /* Set tbl8 entry. */ for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { lpm->tbl8[i].depth = depth; lpm->tbl8[i].next_hop = next_hop; lpm->tbl8[i].valid = VALID; } /* * Update tbl24 entry to point to new tbl8 entry. Note: The * ext_flag and tbl8_index need to be updated simultaneously, * so assign whole structure in one go */ struct rte_lpm_tbl_entry_v20 new_tbl24_entry = { .group_idx = (uint8_t)tbl8_group_index, .valid = VALID, .valid_group = 1, .depth = 0, }; lpm->tbl24[tbl24_index] = new_tbl24_entry; } /* If valid entry but not extended calculate the index into Table8. */ else if (lpm->tbl24[tbl24_index].valid_group == 0) { /* Search for free tbl8 group. */ tbl8_group_index = tbl8_alloc_v20(lpm->tbl8); if (tbl8_group_index < 0) { return tbl8_group_index; } tbl8_group_start = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_group_end = tbl8_group_start + RTE_LPM_TBL8_GROUP_NUM_ENTRIES; /* Populate new tbl8 with tbl24 value. */ for (i = tbl8_group_start; i < tbl8_group_end; i++) { lpm->tbl8[i].valid = VALID; lpm->tbl8[i].depth = lpm->tbl24[tbl24_index].depth; lpm->tbl8[i].next_hop = lpm->tbl24[tbl24_index].next_hop; } tbl8_index = tbl8_group_start + (ip_masked & 0xFF); /* Insert new rule into the tbl8 entry. */ for (i = tbl8_index; i < tbl8_index + tbl8_range; i++) { lpm->tbl8[i].valid = VALID; lpm->tbl8[i].depth = depth; lpm->tbl8[i].next_hop = next_hop; } /* * Update tbl24 entry to point to new tbl8 entry. Note: The * ext_flag and tbl8_index need to be updated simultaneously, * so assign whole structure in one go. */ struct rte_lpm_tbl_entry_v20 new_tbl24_entry = { .group_idx = (uint8_t)tbl8_group_index, .valid = VALID, .valid_group = 1, .depth = 0, }; lpm->tbl24[tbl24_index] = new_tbl24_entry; } else { /* * If it is valid, extended entry calculate the index into tbl8. */ tbl8_group_index = lpm->tbl24[tbl24_index].group_idx; tbl8_group_start = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_index = tbl8_group_start + (ip_masked & 0xFF); for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { if (!lpm->tbl8[i].valid || lpm->tbl8[i].depth <= depth) { struct rte_lpm_tbl_entry_v20 new_tbl8_entry = { .valid = VALID, .depth = depth, .valid_group = lpm->tbl8[i].valid_group, }; new_tbl8_entry.next_hop = next_hop; /* * Setting tbl8 entry in one go to avoid race * condition */ lpm->tbl8[i] = new_tbl8_entry; continue; } } } return 0; } static inline int32_t add_depth_big_v1604(struct rte_lpm *lpm, uint32_t ip_masked, uint8_t depth, uint32_t next_hop) { #define group_idx next_hop uint32_t tbl24_index; int32_t tbl8_group_index, tbl8_group_start, tbl8_group_end, tbl8_index, tbl8_range, i; tbl24_index = (ip_masked >> 8); tbl8_range = depth_to_range(depth); if (!lpm->tbl24[tbl24_index].valid) { /* Search for a free tbl8 group. */ tbl8_group_index = tbl8_alloc_v1604(lpm->tbl8, lpm->number_tbl8s); /* Check tbl8 allocation was successful. */ if (tbl8_group_index < 0) { return tbl8_group_index; } /* Find index into tbl8 and range. */ tbl8_index = (tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES) + (ip_masked & 0xFF); /* Set tbl8 entry. */ for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { lpm->tbl8[i].depth = depth; lpm->tbl8[i].next_hop = next_hop; lpm->tbl8[i].valid = VALID; } /* * Update tbl24 entry to point to new tbl8 entry. Note: The * ext_flag and tbl8_index need to be updated simultaneously, * so assign whole structure in one go */ struct rte_lpm_tbl_entry new_tbl24_entry = { .group_idx = tbl8_group_index, .valid = VALID, .valid_group = 1, .depth = 0, }; lpm->tbl24[tbl24_index] = new_tbl24_entry; } /* If valid entry but not extended calculate the index into Table8. */ else if (lpm->tbl24[tbl24_index].valid_group == 0) { /* Search for free tbl8 group. */ tbl8_group_index = tbl8_alloc_v1604(lpm->tbl8, lpm->number_tbl8s); if (tbl8_group_index < 0) { return tbl8_group_index; } tbl8_group_start = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_group_end = tbl8_group_start + RTE_LPM_TBL8_GROUP_NUM_ENTRIES; /* Populate new tbl8 with tbl24 value. */ for (i = tbl8_group_start; i < tbl8_group_end; i++) { lpm->tbl8[i].valid = VALID; lpm->tbl8[i].depth = lpm->tbl24[tbl24_index].depth; lpm->tbl8[i].next_hop = lpm->tbl24[tbl24_index].next_hop; } tbl8_index = tbl8_group_start + (ip_masked & 0xFF); /* Insert new rule into the tbl8 entry. */ for (i = tbl8_index; i < tbl8_index + tbl8_range; i++) { lpm->tbl8[i].valid = VALID; lpm->tbl8[i].depth = depth; lpm->tbl8[i].next_hop = next_hop; } /* * Update tbl24 entry to point to new tbl8 entry. Note: The * ext_flag and tbl8_index need to be updated simultaneously, * so assign whole structure in one go. */ struct rte_lpm_tbl_entry new_tbl24_entry = { .group_idx = tbl8_group_index, .valid = VALID, .valid_group = 1, .depth = 0, }; lpm->tbl24[tbl24_index] = new_tbl24_entry; } else { /* * If it is valid, extended entry calculate the index into tbl8. */ tbl8_group_index = lpm->tbl24[tbl24_index].group_idx; tbl8_group_start = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_index = tbl8_group_start + (ip_masked & 0xFF); for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { if (!lpm->tbl8[i].valid || lpm->tbl8[i].depth <= depth) { struct rte_lpm_tbl_entry new_tbl8_entry = { .valid = VALID, .depth = depth, .next_hop = next_hop, .valid_group = lpm->tbl8[i].valid_group, }; /* * Setting tbl8 entry in one go to avoid race * condition */ lpm->tbl8[i] = new_tbl8_entry; continue; } } } #undef group_idx return 0; } /* * Add a route */ int rte_lpm_add_v20(struct rte_lpm_v20 *lpm, uint32_t ip, uint8_t depth, uint8_t next_hop) { int32_t rule_index, status = 0; uint32_t ip_masked; /* Check user arguments. */ if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM_MAX_DEPTH)) return -EINVAL; ip_masked = ip & depth_to_mask(depth); /* Add the rule to the rule table. */ rule_index = rule_add_v20(lpm, ip_masked, depth, next_hop); /* If the is no space available for new rule return error. */ if (rule_index < 0) { return rule_index; } if (depth <= MAX_DEPTH_TBL24) { status = add_depth_small_v20(lpm, ip_masked, depth, next_hop); } else { /* If depth > RTE_LPM_MAX_DEPTH_TBL24 */ status = add_depth_big_v20(lpm, ip_masked, depth, next_hop); /* * If add fails due to exhaustion of tbl8 extensions delete * rule that was added to rule table. */ if (status < 0) { rule_delete_v20(lpm, rule_index, depth); return status; } } return 0; } VERSION_SYMBOL(rte_lpm_add, _v20, 2.0); int rte_lpm_add_v1604(struct rte_lpm *lpm, uint32_t ip, uint8_t depth, uint32_t next_hop) { int32_t rule_index, status = 0; uint32_t ip_masked; /* Check user arguments. */ if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM_MAX_DEPTH)) return -EINVAL; ip_masked = ip & depth_to_mask(depth); /* Add the rule to the rule table. */ rule_index = rule_add_v1604(lpm, ip_masked, depth, next_hop); /* If the is no space available for new rule return error. */ if (rule_index < 0) { return rule_index; } if (depth <= MAX_DEPTH_TBL24) { status = add_depth_small_v1604(lpm, ip_masked, depth, next_hop); } else { /* If depth > RTE_LPM_MAX_DEPTH_TBL24 */ status = add_depth_big_v1604(lpm, ip_masked, depth, next_hop); /* * If add fails due to exhaustion of tbl8 extensions delete * rule that was added to rule table. */ if (status < 0) { rule_delete_v1604(lpm, rule_index, depth); return status; } } return 0; } BIND_DEFAULT_SYMBOL(rte_lpm_add, _v1604, 16.04); MAP_STATIC_SYMBOL(int rte_lpm_add(struct rte_lpm *lpm, uint32_t ip, uint8_t depth, uint32_t next_hop), rte_lpm_add_v1604); /* * Look for a rule in the high-level rules table */ int rte_lpm_is_rule_present_v20(struct rte_lpm_v20 *lpm, uint32_t ip, uint8_t depth, uint8_t *next_hop) { uint32_t ip_masked; int32_t rule_index; /* Check user arguments. */ if ((lpm == NULL) || (next_hop == NULL) || (depth < 1) || (depth > RTE_LPM_MAX_DEPTH)) return -EINVAL; /* Look for the rule using rule_find. */ ip_masked = ip & depth_to_mask(depth); rule_index = rule_find_v20(lpm, ip_masked, depth); if (rule_index >= 0) { *next_hop = lpm->rules_tbl[rule_index].next_hop; return 1; } /* If rule is not found return 0. */ return 0; } VERSION_SYMBOL(rte_lpm_is_rule_present, _v20, 2.0); int rte_lpm_is_rule_present_v1604(struct rte_lpm *lpm, uint32_t ip, uint8_t depth, uint32_t *next_hop) { uint32_t ip_masked; int32_t rule_index; /* Check user arguments. */ if ((lpm == NULL) || (next_hop == NULL) || (depth < 1) || (depth > RTE_LPM_MAX_DEPTH)) return -EINVAL; /* Look for the rule using rule_find. */ ip_masked = ip & depth_to_mask(depth); rule_index = rule_find_v1604(lpm, ip_masked, depth); if (rule_index >= 0) { *next_hop = lpm->rules_tbl[rule_index].next_hop; return 1; } /* If rule is not found return 0. */ return 0; } BIND_DEFAULT_SYMBOL(rte_lpm_is_rule_present, _v1604, 16.04); MAP_STATIC_SYMBOL(int rte_lpm_is_rule_present(struct rte_lpm *lpm, uint32_t ip, uint8_t depth, uint32_t *next_hop), rte_lpm_is_rule_present_v1604); static inline int32_t find_previous_rule_v20(struct rte_lpm_v20 *lpm, uint32_t ip, uint8_t depth, uint8_t *sub_rule_depth) { int32_t rule_index; uint32_t ip_masked; uint8_t prev_depth; for (prev_depth = (uint8_t)(depth - 1); prev_depth > 0; prev_depth--) { ip_masked = ip & depth_to_mask(prev_depth); rule_index = rule_find_v20(lpm, ip_masked, prev_depth); if (rule_index >= 0) { *sub_rule_depth = prev_depth; return rule_index; } } return -1; } static inline int32_t find_previous_rule_v1604(struct rte_lpm *lpm, uint32_t ip, uint8_t depth, uint8_t *sub_rule_depth) { int32_t rule_index; uint32_t ip_masked; uint8_t prev_depth; for (prev_depth = (uint8_t)(depth - 1); prev_depth > 0; prev_depth--) { ip_masked = ip & depth_to_mask(prev_depth); rule_index = rule_find_v1604(lpm, ip_masked, prev_depth); if (rule_index >= 0) { *sub_rule_depth = prev_depth; return rule_index; } } return -1; } static inline int32_t delete_depth_small_v20(struct rte_lpm_v20 *lpm, uint32_t ip_masked, uint8_t depth, int32_t sub_rule_index, uint8_t sub_rule_depth) { uint32_t tbl24_range, tbl24_index, tbl8_group_index, tbl8_index, i, j; /* Calculate the range and index into Table24. */ tbl24_range = depth_to_range(depth); tbl24_index = (ip_masked >> 8); /* * Firstly check the sub_rule_index. A -1 indicates no replacement rule * and a positive number indicates a sub_rule_index. */ if (sub_rule_index < 0) { /* * If no replacement rule exists then invalidate entries * associated with this rule. */ for (i = tbl24_index; i < (tbl24_index + tbl24_range); i++) { if (lpm->tbl24[i].valid_group == 0 && lpm->tbl24[i].depth <= depth) { lpm->tbl24[i].valid = INVALID; } else if (lpm->tbl24[i].valid_group == 1) { /* * If TBL24 entry is extended, then there has * to be a rule with depth >= 25 in the * associated TBL8 group. */ tbl8_group_index = lpm->tbl24[i].group_idx; tbl8_index = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; for (j = tbl8_index; j < (tbl8_index + RTE_LPM_TBL8_GROUP_NUM_ENTRIES); j++) { if (lpm->tbl8[j].depth <= depth) lpm->tbl8[j].valid = INVALID; } } } } else { /* * If a replacement rule exists then modify entries * associated with this rule. */ struct rte_lpm_tbl_entry_v20 new_tbl24_entry = { .next_hop = lpm->rules_tbl[sub_rule_index].next_hop, .valid = VALID, .valid_group = 0, .depth = sub_rule_depth, }; struct rte_lpm_tbl_entry_v20 new_tbl8_entry = { .valid = VALID, .valid_group = VALID, .depth = sub_rule_depth, }; new_tbl8_entry.next_hop = lpm->rules_tbl[sub_rule_index].next_hop; for (i = tbl24_index; i < (tbl24_index + tbl24_range); i++) { if (lpm->tbl24[i].valid_group == 0 && lpm->tbl24[i].depth <= depth) { lpm->tbl24[i] = new_tbl24_entry; } else if (lpm->tbl24[i].valid_group == 1) { /* * If TBL24 entry is extended, then there has * to be a rule with depth >= 25 in the * associated TBL8 group. */ tbl8_group_index = lpm->tbl24[i].group_idx; tbl8_index = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; for (j = tbl8_index; j < (tbl8_index + RTE_LPM_TBL8_GROUP_NUM_ENTRIES); j++) { if (lpm->tbl8[j].depth <= depth) lpm->tbl8[j] = new_tbl8_entry; } } } } return 0; } static inline int32_t delete_depth_small_v1604(struct rte_lpm *lpm, uint32_t ip_masked, uint8_t depth, int32_t sub_rule_index, uint8_t sub_rule_depth) { #define group_idx next_hop uint32_t tbl24_range, tbl24_index, tbl8_group_index, tbl8_index, i, j; /* Calculate the range and index into Table24. */ tbl24_range = depth_to_range(depth); tbl24_index = (ip_masked >> 8); /* * Firstly check the sub_rule_index. A -1 indicates no replacement rule * and a positive number indicates a sub_rule_index. */ if (sub_rule_index < 0) { /* * If no replacement rule exists then invalidate entries * associated with this rule. */ for (i = tbl24_index; i < (tbl24_index + tbl24_range); i++) { if (lpm->tbl24[i].valid_group == 0 && lpm->tbl24[i].depth <= depth) { lpm->tbl24[i].valid = INVALID; } else if (lpm->tbl24[i].valid_group == 1) { /* * If TBL24 entry is extended, then there has * to be a rule with depth >= 25 in the * associated TBL8 group. */ tbl8_group_index = lpm->tbl24[i].group_idx; tbl8_index = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; for (j = tbl8_index; j < (tbl8_index + RTE_LPM_TBL8_GROUP_NUM_ENTRIES); j++) { if (lpm->tbl8[j].depth <= depth) lpm->tbl8[j].valid = INVALID; } } } } else { /* * If a replacement rule exists then modify entries * associated with this rule. */ struct rte_lpm_tbl_entry new_tbl24_entry = { .next_hop = lpm->rules_tbl[sub_rule_index].next_hop, .valid = VALID, .valid_group = 0, .depth = sub_rule_depth, }; struct rte_lpm_tbl_entry new_tbl8_entry = { .valid = VALID, .valid_group = VALID, .depth = sub_rule_depth, .next_hop = lpm->rules_tbl [sub_rule_index].next_hop, }; for (i = tbl24_index; i < (tbl24_index + tbl24_range); i++) { if (lpm->tbl24[i].valid_group == 0 && lpm->tbl24[i].depth <= depth) { lpm->tbl24[i] = new_tbl24_entry; } else if (lpm->tbl24[i].valid_group == 1) { /* * If TBL24 entry is extended, then there has * to be a rule with depth >= 25 in the * associated TBL8 group. */ tbl8_group_index = lpm->tbl24[i].group_idx; tbl8_index = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; for (j = tbl8_index; j < (tbl8_index + RTE_LPM_TBL8_GROUP_NUM_ENTRIES); j++) { if (lpm->tbl8[j].depth <= depth) lpm->tbl8[j] = new_tbl8_entry; } } } } #undef group_idx return 0; } /* * Checks if table 8 group can be recycled. * * Return of -EEXIST means tbl8 is in use and thus can not be recycled. * Return of -EINVAL means tbl8 is empty and thus can be recycled * Return of value > -1 means tbl8 is in use but has all the same values and * thus can be recycled */ static inline int32_t tbl8_recycle_check_v20(struct rte_lpm_tbl_entry_v20 *tbl8, uint32_t tbl8_group_start) { uint32_t tbl8_group_end, i; tbl8_group_end = tbl8_group_start + RTE_LPM_TBL8_GROUP_NUM_ENTRIES; /* * Check the first entry of the given tbl8. If it is invalid we know * this tbl8 does not contain any rule with a depth < RTE_LPM_MAX_DEPTH * (As they would affect all entries in a tbl8) and thus this table * can not be recycled. */ if (tbl8[tbl8_group_start].valid) { /* * If first entry is valid check if the depth is less than 24 * and if so check the rest of the entries to verify that they * are all of this depth. */ if (tbl8[tbl8_group_start].depth <= MAX_DEPTH_TBL24) { for (i = (tbl8_group_start + 1); i < tbl8_group_end; i++) { if (tbl8[i].depth != tbl8[tbl8_group_start].depth) { return -EEXIST; } } /* If all entries are the same return the tb8 index */ return tbl8_group_start; } return -EEXIST; } /* * If the first entry is invalid check if the rest of the entries in * the tbl8 are invalid. */ for (i = (tbl8_group_start + 1); i < tbl8_group_end; i++) { if (tbl8[i].valid) return -EEXIST; } /* If no valid entries are found then return -EINVAL. */ return -EINVAL; } static inline int32_t tbl8_recycle_check_v1604(struct rte_lpm_tbl_entry *tbl8, uint32_t tbl8_group_start) { uint32_t tbl8_group_end, i; tbl8_group_end = tbl8_group_start + RTE_LPM_TBL8_GROUP_NUM_ENTRIES; /* * Check the first entry of the given tbl8. If it is invalid we know * this tbl8 does not contain any rule with a depth < RTE_LPM_MAX_DEPTH * (As they would affect all entries in a tbl8) and thus this table * can not be recycled. */ if (tbl8[tbl8_group_start].valid) { /* * If first entry is valid check if the depth is less than 24 * and if so check the rest of the entries to verify that they * are all of this depth. */ if (tbl8[tbl8_group_start].depth <= MAX_DEPTH_TBL24) { for (i = (tbl8_group_start + 1); i < tbl8_group_end; i++) { if (tbl8[i].depth != tbl8[tbl8_group_start].depth) { return -EEXIST; } } /* If all entries are the same return the tb8 index */ return tbl8_group_start; } return -EEXIST; } /* * If the first entry is invalid check if the rest of the entries in * the tbl8 are invalid. */ for (i = (tbl8_group_start + 1); i < tbl8_group_end; i++) { if (tbl8[i].valid) return -EEXIST; } /* If no valid entries are found then return -EINVAL. */ return -EINVAL; } static inline int32_t delete_depth_big_v20(struct rte_lpm_v20 *lpm, uint32_t ip_masked, uint8_t depth, int32_t sub_rule_index, uint8_t sub_rule_depth) { uint32_t tbl24_index, tbl8_group_index, tbl8_group_start, tbl8_index, tbl8_range, i; int32_t tbl8_recycle_index; /* * Calculate the index into tbl24 and range. Note: All depths larger * than MAX_DEPTH_TBL24 are associated with only one tbl24 entry. */ tbl24_index = ip_masked >> 8; /* Calculate the index into tbl8 and range. */ tbl8_group_index = lpm->tbl24[tbl24_index].group_idx; tbl8_group_start = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_index = tbl8_group_start + (ip_masked & 0xFF); tbl8_range = depth_to_range(depth); if (sub_rule_index < 0) { /* * Loop through the range of entries on tbl8 for which the * rule_to_delete must be removed or modified. */ for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { if (lpm->tbl8[i].depth <= depth) lpm->tbl8[i].valid = INVALID; } } else { /* Set new tbl8 entry. */ struct rte_lpm_tbl_entry_v20 new_tbl8_entry = { .valid = VALID, .depth = sub_rule_depth, .valid_group = lpm->tbl8[tbl8_group_start].valid_group, }; new_tbl8_entry.next_hop = lpm->rules_tbl[sub_rule_index].next_hop; /* * Loop through the range of entries on tbl8 for which the * rule_to_delete must be modified. */ for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { if (lpm->tbl8[i].depth <= depth) lpm->tbl8[i] = new_tbl8_entry; } } /* * Check if there are any valid entries in this tbl8 group. If all * tbl8 entries are invalid we can free the tbl8 and invalidate the * associated tbl24 entry. */ tbl8_recycle_index = tbl8_recycle_check_v20(lpm->tbl8, tbl8_group_start); if (tbl8_recycle_index == -EINVAL) { /* Set tbl24 before freeing tbl8 to avoid race condition. */ lpm->tbl24[tbl24_index].valid = 0; tbl8_free_v20(lpm->tbl8, tbl8_group_start); } else if (tbl8_recycle_index > -1) { /* Update tbl24 entry. */ struct rte_lpm_tbl_entry_v20 new_tbl24_entry = { .next_hop = lpm->tbl8[tbl8_recycle_index].next_hop, .valid = VALID, .valid_group = 0, .depth = lpm->tbl8[tbl8_recycle_index].depth, }; /* Set tbl24 before freeing tbl8 to avoid race condition. */ lpm->tbl24[tbl24_index] = new_tbl24_entry; tbl8_free_v20(lpm->tbl8, tbl8_group_start); } return 0; } static inline int32_t delete_depth_big_v1604(struct rte_lpm *lpm, uint32_t ip_masked, uint8_t depth, int32_t sub_rule_index, uint8_t sub_rule_depth) { #define group_idx next_hop uint32_t tbl24_index, tbl8_group_index, tbl8_group_start, tbl8_index, tbl8_range, i; int32_t tbl8_recycle_index; /* * Calculate the index into tbl24 and range. Note: All depths larger * than MAX_DEPTH_TBL24 are associated with only one tbl24 entry. */ tbl24_index = ip_masked >> 8; /* Calculate the index into tbl8 and range. */ tbl8_group_index = lpm->tbl24[tbl24_index].group_idx; tbl8_group_start = tbl8_group_index * RTE_LPM_TBL8_GROUP_NUM_ENTRIES; tbl8_index = tbl8_group_start + (ip_masked & 0xFF); tbl8_range = depth_to_range(depth); if (sub_rule_index < 0) { /* * Loop through the range of entries on tbl8 for which the * rule_to_delete must be removed or modified. */ for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { if (lpm->tbl8[i].depth <= depth) lpm->tbl8[i].valid = INVALID; } } else { /* Set new tbl8 entry. */ struct rte_lpm_tbl_entry new_tbl8_entry = { .valid = VALID, .depth = sub_rule_depth, .valid_group = lpm->tbl8[tbl8_group_start].valid_group, .next_hop = lpm->rules_tbl[sub_rule_index].next_hop, }; /* * Loop through the range of entries on tbl8 for which the * rule_to_delete must be modified. */ for (i = tbl8_index; i < (tbl8_index + tbl8_range); i++) { if (lpm->tbl8[i].depth <= depth) lpm->tbl8[i] = new_tbl8_entry; } } /* * Check if there are any valid entries in this tbl8 group. If all * tbl8 entries are invalid we can free the tbl8 and invalidate the * associated tbl24 entry. */ tbl8_recycle_index = tbl8_recycle_check_v1604(lpm->tbl8, tbl8_group_start); if (tbl8_recycle_index == -EINVAL) { /* Set tbl24 before freeing tbl8 to avoid race condition. */ lpm->tbl24[tbl24_index].valid = 0; tbl8_free_v1604(lpm->tbl8, tbl8_group_start); } else if (tbl8_recycle_index > -1) { /* Update tbl24 entry. */ struct rte_lpm_tbl_entry new_tbl24_entry = { .next_hop = lpm->tbl8[tbl8_recycle_index].next_hop, .valid = VALID, .valid_group = 0, .depth = lpm->tbl8[tbl8_recycle_index].depth, }; /* Set tbl24 before freeing tbl8 to avoid race condition. */ lpm->tbl24[tbl24_index] = new_tbl24_entry; tbl8_free_v1604(lpm->tbl8, tbl8_group_start); } #undef group_idx return 0; } /* * Deletes a rule */ int rte_lpm_delete_v20(struct rte_lpm_v20 *lpm, uint32_t ip, uint8_t depth) { int32_t rule_to_delete_index, sub_rule_index; uint32_t ip_masked; uint8_t sub_rule_depth; /* * Check input arguments. Note: IP must be a positive integer of 32 * bits in length therefore it need not be checked. */ if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM_MAX_DEPTH)) { return -EINVAL; } ip_masked = ip & depth_to_mask(depth); /* * Find the index of the input rule, that needs to be deleted, in the * rule table. */ rule_to_delete_index = rule_find_v20(lpm, ip_masked, depth); /* * Check if rule_to_delete_index was found. If no rule was found the * function rule_find returns -EINVAL. */ if (rule_to_delete_index < 0) return -EINVAL; /* Delete the rule from the rule table. */ rule_delete_v20(lpm, rule_to_delete_index, depth); /* * Find rule to replace the rule_to_delete. If there is no rule to * replace the rule_to_delete we return -1 and invalidate the table * entries associated with this rule. */ sub_rule_depth = 0; sub_rule_index = find_previous_rule_v20(lpm, ip, depth, &sub_rule_depth); /* * If the input depth value is less than 25 use function * delete_depth_small otherwise use delete_depth_big. */ if (depth <= MAX_DEPTH_TBL24) { return delete_depth_small_v20(lpm, ip_masked, depth, sub_rule_index, sub_rule_depth); } else { /* If depth > MAX_DEPTH_TBL24 */ return delete_depth_big_v20(lpm, ip_masked, depth, sub_rule_index, sub_rule_depth); } } VERSION_SYMBOL(rte_lpm_delete, _v20, 2.0); int rte_lpm_delete_v1604(struct rte_lpm *lpm, uint32_t ip, uint8_t depth) { int32_t rule_to_delete_index, sub_rule_index; uint32_t ip_masked; uint8_t sub_rule_depth; /* * Check input arguments. Note: IP must be a positive integer of 32 * bits in length therefore it need not be checked. */ if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM_MAX_DEPTH)) { return -EINVAL; } ip_masked = ip & depth_to_mask(depth); /* * Find the index of the input rule, that needs to be deleted, in the * rule table. */ rule_to_delete_index = rule_find_v1604(lpm, ip_masked, depth); /* * Check if rule_to_delete_index was found. If no rule was found the * function rule_find returns -EINVAL. */ if (rule_to_delete_index < 0) return -EINVAL; /* Delete the rule from the rule table. */ rule_delete_v1604(lpm, rule_to_delete_index, depth); /* * Find rule to replace the rule_to_delete. If there is no rule to * replace the rule_to_delete we return -1 and invalidate the table * entries associated with this rule. */ sub_rule_depth = 0; sub_rule_index = find_previous_rule_v1604(lpm, ip, depth, &sub_rule_depth); /* * If the input depth value is less than 25 use function * delete_depth_small otherwise use delete_depth_big. */ if (depth <= MAX_DEPTH_TBL24) { return delete_depth_small_v1604(lpm, ip_masked, depth, sub_rule_index, sub_rule_depth); } else { /* If depth > MAX_DEPTH_TBL24 */ return delete_depth_big_v1604(lpm, ip_masked, depth, sub_rule_index, sub_rule_depth); } } BIND_DEFAULT_SYMBOL(rte_lpm_delete, _v1604, 16.04); MAP_STATIC_SYMBOL(int rte_lpm_delete(struct rte_lpm *lpm, uint32_t ip, uint8_t depth), rte_lpm_delete_v1604); /* * Delete all rules from the LPM table. */ void rte_lpm_delete_all_v20(struct rte_lpm_v20 *lpm) { /* Zero rule information. */ memset(lpm->rule_info, 0, sizeof(lpm->rule_info)); /* Zero tbl24. */ memset(lpm->tbl24, 0, sizeof(lpm->tbl24)); /* Zero tbl8. */ memset(lpm->tbl8, 0, sizeof(lpm->tbl8)); /* Delete all rules form the rules table. */ memset(lpm->rules_tbl, 0, sizeof(lpm->rules_tbl[0]) * lpm->max_rules); } VERSION_SYMBOL(rte_lpm_delete_all, _v20, 2.0); void rte_lpm_delete_all_v1604(struct rte_lpm *lpm) { /* Zero rule information. */ memset(lpm->rule_info, 0, sizeof(lpm->rule_info)); /* Zero tbl24. */ memset(lpm->tbl24, 0, sizeof(lpm->tbl24)); /* Zero tbl8. */ memset(lpm->tbl8, 0, sizeof(lpm->tbl8[0]) * RTE_LPM_TBL8_GROUP_NUM_ENTRIES * lpm->number_tbl8s); /* Delete all rules form the rules table. */ memset(lpm->rules_tbl, 0, sizeof(lpm->rules_tbl[0]) * lpm->max_rules); } BIND_DEFAULT_SYMBOL(rte_lpm_delete_all, _v1604, 16.04); MAP_STATIC_SYMBOL(void rte_lpm_delete_all(struct rte_lpm *lpm), rte_lpm_delete_all_v1604);