/* SPDX-License-Identifier: BSD-3-Clause * Copyright(c) 2010-2014 Intel Corporation */ #include #include #include #include #include #include #include #define PRINT_USAGE_START "%s [EAL options]\n" #define RTE_LOGTYPE_TESTACL RTE_LOGTYPE_USER1 #define APP_NAME "TESTACL" #define GET_CB_FIELD(in, fd, base, lim, dlm) do { \ unsigned long val; \ char *end_fld; \ errno = 0; \ val = strtoul((in), &end_fld, (base)); \ if (errno != 0 || end_fld[0] != (dlm) || val > (lim)) \ return -EINVAL; \ (fd) = (typeof(fd))val; \ (in) = end_fld + 1; \ } while (0) #define OPT_RULE_FILE "rulesf" #define OPT_TRACE_FILE "tracef" #define OPT_RULE_NUM "rulenum" #define OPT_TRACE_NUM "tracenum" #define OPT_TRACE_STEP "tracestep" #define OPT_SEARCH_ALG "alg" #define OPT_BLD_CATEGORIES "bldcat" #define OPT_RUN_CATEGORIES "runcat" #define OPT_MAX_SIZE "maxsize" #define OPT_ITER_NUM "iter" #define OPT_VERBOSE "verbose" #define OPT_IPV6 "ipv6" #define TRACE_DEFAULT_NUM 0x10000 #define TRACE_STEP_MAX 0x1000 #define TRACE_STEP_DEF 0x100 #define RULE_NUM 0x10000 enum { DUMP_NONE, DUMP_SEARCH, DUMP_PKT, DUMP_MAX }; struct acl_alg { const char *name; enum rte_acl_classify_alg alg; }; static const struct acl_alg acl_alg[] = { { .name = "scalar", .alg = RTE_ACL_CLASSIFY_SCALAR, }, { .name = "sse", .alg = RTE_ACL_CLASSIFY_SSE, }, { .name = "avx2", .alg = RTE_ACL_CLASSIFY_AVX2, }, { .name = "neon", .alg = RTE_ACL_CLASSIFY_NEON, }, { .name = "altivec", .alg = RTE_ACL_CLASSIFY_ALTIVEC, }, }; static struct { const char *prgname; const char *rule_file; const char *trace_file; size_t max_size; uint32_t bld_categories; uint32_t run_categories; uint32_t nb_rules; uint32_t nb_traces; uint32_t trace_step; uint32_t trace_sz; uint32_t iter_num; uint32_t verbose; uint32_t ipv6; struct acl_alg alg; uint32_t used_traces; void *traces; struct rte_acl_ctx *acx; } config = { .bld_categories = 3, .run_categories = 1, .nb_rules = RULE_NUM, .nb_traces = TRACE_DEFAULT_NUM, .trace_step = TRACE_STEP_DEF, .iter_num = 1, .verbose = DUMP_MAX, .alg = { .name = "default", .alg = RTE_ACL_CLASSIFY_DEFAULT, }, .ipv6 = 0 }; static struct rte_acl_param prm = { .name = APP_NAME, .socket_id = SOCKET_ID_ANY, }; /* * Rule and trace formats definitions. */ struct ipv4_5tuple { uint8_t proto; uint32_t ip_src; uint32_t ip_dst; uint16_t port_src; uint16_t port_dst; }; enum { PROTO_FIELD_IPV4, SRC_FIELD_IPV4, DST_FIELD_IPV4, SRCP_FIELD_IPV4, DSTP_FIELD_IPV4, NUM_FIELDS_IPV4 }; /* * That effectively defines order of IPV4VLAN classifications: * - PROTO * - VLAN (TAG and DOMAIN) * - SRC IP ADDRESS * - DST IP ADDRESS * - PORTS (SRC and DST) */ enum { RTE_ACL_IPV4VLAN_PROTO, RTE_ACL_IPV4VLAN_VLAN, RTE_ACL_IPV4VLAN_SRC, RTE_ACL_IPV4VLAN_DST, RTE_ACL_IPV4VLAN_PORTS, RTE_ACL_IPV4VLAN_NUM }; struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = { { .type = RTE_ACL_FIELD_TYPE_BITMASK, .size = sizeof(uint8_t), .field_index = PROTO_FIELD_IPV4, .input_index = RTE_ACL_IPV4VLAN_PROTO, .offset = offsetof(struct ipv4_5tuple, proto), }, { .type = RTE_ACL_FIELD_TYPE_MASK, .size = sizeof(uint32_t), .field_index = SRC_FIELD_IPV4, .input_index = RTE_ACL_IPV4VLAN_SRC, .offset = offsetof(struct ipv4_5tuple, ip_src), }, { .type = RTE_ACL_FIELD_TYPE_MASK, .size = sizeof(uint32_t), .field_index = DST_FIELD_IPV4, .input_index = RTE_ACL_IPV4VLAN_DST, .offset = offsetof(struct ipv4_5tuple, ip_dst), }, { .type = RTE_ACL_FIELD_TYPE_RANGE, .size = sizeof(uint16_t), .field_index = SRCP_FIELD_IPV4, .input_index = RTE_ACL_IPV4VLAN_PORTS, .offset = offsetof(struct ipv4_5tuple, port_src), }, { .type = RTE_ACL_FIELD_TYPE_RANGE, .size = sizeof(uint16_t), .field_index = DSTP_FIELD_IPV4, .input_index = RTE_ACL_IPV4VLAN_PORTS, .offset = offsetof(struct ipv4_5tuple, port_dst), }, }; #define IPV6_ADDR_LEN 16 #define IPV6_ADDR_U16 (IPV6_ADDR_LEN / sizeof(uint16_t)) #define IPV6_ADDR_U32 (IPV6_ADDR_LEN / sizeof(uint32_t)) struct ipv6_5tuple { uint8_t proto; uint32_t ip_src[IPV6_ADDR_U32]; uint32_t ip_dst[IPV6_ADDR_U32]; uint16_t port_src; uint16_t port_dst; }; enum { PROTO_FIELD_IPV6, SRC1_FIELD_IPV6, SRC2_FIELD_IPV6, SRC3_FIELD_IPV6, SRC4_FIELD_IPV6, DST1_FIELD_IPV6, DST2_FIELD_IPV6, DST3_FIELD_IPV6, DST4_FIELD_IPV6, SRCP_FIELD_IPV6, DSTP_FIELD_IPV6, NUM_FIELDS_IPV6 }; struct rte_acl_field_def ipv6_defs[NUM_FIELDS_IPV6] = { { .type = RTE_ACL_FIELD_TYPE_BITMASK, .size = sizeof(uint8_t), .field_index = PROTO_FIELD_IPV6, .input_index = PROTO_FIELD_IPV6, .offset = offsetof(struct ipv6_5tuple, proto), }, { .type = RTE_ACL_FIELD_TYPE_MASK, .size = sizeof(uint32_t), .field_index = SRC1_FIELD_IPV6, .input_index = SRC1_FIELD_IPV6, .offset = offsetof(struct ipv6_5tuple, ip_src[0]), }, { .type = RTE_ACL_FIELD_TYPE_MASK, .size = sizeof(uint32_t), .field_index = SRC2_FIELD_IPV6, .input_index = SRC2_FIELD_IPV6, .offset = offsetof(struct ipv6_5tuple, ip_src[1]), }, { .type = RTE_ACL_FIELD_TYPE_MASK, .size = sizeof(uint32_t), .field_index = SRC3_FIELD_IPV6, .input_index = SRC3_FIELD_IPV6, .offset = offsetof(struct ipv6_5tuple, ip_src[2]), }, { .type = RTE_ACL_FIELD_TYPE_MASK, .size = sizeof(uint32_t), .field_index = SRC4_FIELD_IPV6, .input_index = SRC4_FIELD_IPV6, .offset = offsetof(struct ipv6_5tuple, ip_src[3]), }, { .type = RTE_ACL_FIELD_TYPE_MASK, .size = sizeof(uint32_t), .field_index = DST1_FIELD_IPV6, .input_index = DST1_FIELD_IPV6, .offset = offsetof(struct ipv6_5tuple, ip_dst[0]), }, { .type = RTE_ACL_FIELD_TYPE_MASK, .size = sizeof(uint32_t), .field_index = DST2_FIELD_IPV6, .input_index = DST2_FIELD_IPV6, .offset = offsetof(struct ipv6_5tuple, ip_dst[1]), }, { .type = RTE_ACL_FIELD_TYPE_MASK, .size = sizeof(uint32_t), .field_index = DST3_FIELD_IPV6, .input_index = DST3_FIELD_IPV6, .offset = offsetof(struct ipv6_5tuple, ip_dst[2]), }, { .type = RTE_ACL_FIELD_TYPE_MASK, .size = sizeof(uint32_t), .field_index = DST4_FIELD_IPV6, .input_index = DST4_FIELD_IPV6, .offset = offsetof(struct ipv6_5tuple, ip_dst[3]), }, { .type = RTE_ACL_FIELD_TYPE_RANGE, .size = sizeof(uint16_t), .field_index = SRCP_FIELD_IPV6, .input_index = SRCP_FIELD_IPV6, .offset = offsetof(struct ipv6_5tuple, port_src), }, { .type = RTE_ACL_FIELD_TYPE_RANGE, .size = sizeof(uint16_t), .field_index = DSTP_FIELD_IPV6, .input_index = SRCP_FIELD_IPV6, .offset = offsetof(struct ipv6_5tuple, port_dst), }, }; enum { CB_FLD_SRC_ADDR, CB_FLD_DST_ADDR, CB_FLD_SRC_PORT_LOW, CB_FLD_SRC_PORT_DLM, CB_FLD_SRC_PORT_HIGH, CB_FLD_DST_PORT_LOW, CB_FLD_DST_PORT_DLM, CB_FLD_DST_PORT_HIGH, CB_FLD_PROTO, CB_FLD_NUM, }; enum { CB_TRC_SRC_ADDR, CB_TRC_DST_ADDR, CB_TRC_SRC_PORT, CB_TRC_DST_PORT, CB_TRC_PROTO, CB_TRC_NUM, }; RTE_ACL_RULE_DEF(acl_rule, RTE_ACL_MAX_FIELDS); static const char cb_port_delim[] = ":"; static char line[LINE_MAX]; #define dump_verbose(lvl, fh, fmt, args...) do { \ if ((lvl) <= (int32_t)config.verbose) \ fprintf(fh, fmt, ##args); \ } while (0) /* * Parse ClassBench input trace (test vectors and expected results) file. * Expected format: * \ * */ static int parse_cb_ipv4_trace(char *str, struct ipv4_5tuple *v) { int i; char *s, *sp, *in[CB_TRC_NUM]; static const char *dlm = " \t\n"; s = str; for (i = 0; i != RTE_DIM(in); i++) { in[i] = strtok_r(s, dlm, &sp); if (in[i] == NULL) return -EINVAL; s = NULL; } GET_CB_FIELD(in[CB_TRC_SRC_ADDR], v->ip_src, 0, UINT32_MAX, 0); GET_CB_FIELD(in[CB_TRC_DST_ADDR], v->ip_dst, 0, UINT32_MAX, 0); GET_CB_FIELD(in[CB_TRC_SRC_PORT], v->port_src, 0, UINT16_MAX, 0); GET_CB_FIELD(in[CB_TRC_DST_PORT], v->port_dst, 0, UINT16_MAX, 0); GET_CB_FIELD(in[CB_TRC_PROTO], v->proto, 0, UINT8_MAX, 0); /* convert to network byte order. */ v->ip_src = rte_cpu_to_be_32(v->ip_src); v->ip_dst = rte_cpu_to_be_32(v->ip_dst); v->port_src = rte_cpu_to_be_16(v->port_src); v->port_dst = rte_cpu_to_be_16(v->port_dst); return 0; } /* * Parses IPV6 address, exepcts the following format: * XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX:XXXX (where X - is a hexedecimal digit). */ static int parse_ipv6_addr(const char *in, const char **end, uint32_t v[IPV6_ADDR_U32], char dlm) { uint32_t addr[IPV6_ADDR_U16]; GET_CB_FIELD(in, addr[0], 16, UINT16_MAX, ':'); GET_CB_FIELD(in, addr[1], 16, UINT16_MAX, ':'); GET_CB_FIELD(in, addr[2], 16, UINT16_MAX, ':'); GET_CB_FIELD(in, addr[3], 16, UINT16_MAX, ':'); GET_CB_FIELD(in, addr[4], 16, UINT16_MAX, ':'); GET_CB_FIELD(in, addr[5], 16, UINT16_MAX, ':'); GET_CB_FIELD(in, addr[6], 16, UINT16_MAX, ':'); GET_CB_FIELD(in, addr[7], 16, UINT16_MAX, dlm); *end = in; v[0] = (addr[0] << 16) + addr[1]; v[1] = (addr[2] << 16) + addr[3]; v[2] = (addr[4] << 16) + addr[5]; v[3] = (addr[6] << 16) + addr[7]; return 0; } static int parse_cb_ipv6_addr_trace(const char *in, uint32_t v[IPV6_ADDR_U32]) { int32_t rc; const char *end; rc = parse_ipv6_addr(in, &end, v, 0); if (rc != 0) return rc; v[0] = rte_cpu_to_be_32(v[0]); v[1] = rte_cpu_to_be_32(v[1]); v[2] = rte_cpu_to_be_32(v[2]); v[3] = rte_cpu_to_be_32(v[3]); return 0; } /* * Parse ClassBench input trace (test vectors and expected results) file. * Expected format: * \ * */ static int parse_cb_ipv6_trace(char *str, struct ipv6_5tuple *v) { int32_t i, rc; char *s, *sp, *in[CB_TRC_NUM]; static const char *dlm = " \t\n"; s = str; for (i = 0; i != RTE_DIM(in); i++) { in[i] = strtok_r(s, dlm, &sp); if (in[i] == NULL) return -EINVAL; s = NULL; } /* get ip6 src address. */ rc = parse_cb_ipv6_addr_trace(in[CB_TRC_SRC_ADDR], v->ip_src); if (rc != 0) return rc; /* get ip6 dst address. */ rc = parse_cb_ipv6_addr_trace(in[CB_TRC_DST_ADDR], v->ip_dst); if (rc != 0) return rc; GET_CB_FIELD(in[CB_TRC_SRC_PORT], v->port_src, 0, UINT16_MAX, 0); GET_CB_FIELD(in[CB_TRC_DST_PORT], v->port_dst, 0, UINT16_MAX, 0); GET_CB_FIELD(in[CB_TRC_PROTO], v->proto, 0, UINT8_MAX, 0); /* convert to network byte order. */ v->port_src = rte_cpu_to_be_16(v->port_src); v->port_dst = rte_cpu_to_be_16(v->port_dst); return 0; } static void tracef_init(void) { static const char name[] = APP_NAME; FILE *f; size_t sz; uint32_t n; struct ipv4_5tuple *v; struct ipv6_5tuple *w; sz = config.nb_traces * (config.ipv6 ? sizeof(*w) : sizeof(*v)); config.traces = rte_zmalloc_socket(name, sz, RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY); if (config.traces == NULL) rte_exit(EXIT_FAILURE, "Cannot allocate %zu bytes for " "requested %u number of trace records\n", sz, config.nb_traces); f = fopen(config.trace_file, "r"); if (f == NULL) rte_exit(-EINVAL, "failed to open file: %s\n", config.trace_file); v = config.traces; w = config.traces; for (n = 0; n != config.nb_traces; n++) { if (fgets(line, sizeof(line), f) == NULL) break; if (config.ipv6) { if (parse_cb_ipv6_trace(line, w + n) != 0) rte_exit(EXIT_FAILURE, "%s: failed to parse ipv6 trace " "record at line %u\n", config.trace_file, n + 1); } else { if (parse_cb_ipv4_trace(line, v + n) != 0) rte_exit(EXIT_FAILURE, "%s: failed to parse ipv4 trace " "record at line %u\n", config.trace_file, n + 1); } } config.used_traces = n; fclose(f); } static int parse_ipv6_net(const char *in, struct rte_acl_field field[4]) { int32_t rc; const char *mp; uint32_t i, m, v[4]; const uint32_t nbu32 = sizeof(uint32_t) * CHAR_BIT; /* get address. */ rc = parse_ipv6_addr(in, &mp, v, '/'); if (rc != 0) return rc; /* get mask. */ GET_CB_FIELD(mp, m, 0, CHAR_BIT * sizeof(v), 0); /* put all together. */ for (i = 0; i != RTE_DIM(v); i++) { if (m >= (i + 1) * nbu32) field[i].mask_range.u32 = nbu32; else field[i].mask_range.u32 = m > (i * nbu32) ? m - (i * 32) : 0; field[i].value.u32 = v[i]; } return 0; } static int parse_cb_ipv6_rule(char *str, struct acl_rule *v) { int i, rc; char *s, *sp, *in[CB_FLD_NUM]; static const char *dlm = " \t\n"; /* * Skip leading '@' */ if (strchr(str, '@') != str) return -EINVAL; s = str + 1; for (i = 0; i != RTE_DIM(in); i++) { in[i] = strtok_r(s, dlm, &sp); if (in[i] == NULL) return -EINVAL; s = NULL; } rc = parse_ipv6_net(in[CB_FLD_SRC_ADDR], v->field + SRC1_FIELD_IPV6); if (rc != 0) { RTE_LOG(ERR, TESTACL, "failed to read source address/mask: %s\n", in[CB_FLD_SRC_ADDR]); return rc; } rc = parse_ipv6_net(in[CB_FLD_DST_ADDR], v->field + DST1_FIELD_IPV6); if (rc != 0) { RTE_LOG(ERR, TESTACL, "failed to read destination address/mask: %s\n", in[CB_FLD_DST_ADDR]); return rc; } /* source port. */ GET_CB_FIELD(in[CB_FLD_SRC_PORT_LOW], v->field[SRCP_FIELD_IPV6].value.u16, 0, UINT16_MAX, 0); GET_CB_FIELD(in[CB_FLD_SRC_PORT_HIGH], v->field[SRCP_FIELD_IPV6].mask_range.u16, 0, UINT16_MAX, 0); if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim, sizeof(cb_port_delim)) != 0) return -EINVAL; /* destination port. */ GET_CB_FIELD(in[CB_FLD_DST_PORT_LOW], v->field[DSTP_FIELD_IPV6].value.u16, 0, UINT16_MAX, 0); GET_CB_FIELD(in[CB_FLD_DST_PORT_HIGH], v->field[DSTP_FIELD_IPV6].mask_range.u16, 0, UINT16_MAX, 0); if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim, sizeof(cb_port_delim)) != 0) return -EINVAL; GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV6].value.u8, 0, UINT8_MAX, '/'); GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV6].mask_range.u8, 0, UINT8_MAX, 0); return 0; } static int parse_ipv4_net(const char *in, uint32_t *addr, uint32_t *mask_len) { uint8_t a, b, c, d, m; GET_CB_FIELD(in, a, 0, UINT8_MAX, '.'); GET_CB_FIELD(in, b, 0, UINT8_MAX, '.'); GET_CB_FIELD(in, c, 0, UINT8_MAX, '.'); GET_CB_FIELD(in, d, 0, UINT8_MAX, '/'); GET_CB_FIELD(in, m, 0, sizeof(uint32_t) * CHAR_BIT, 0); addr[0] = IPv4(a, b, c, d); mask_len[0] = m; return 0; } /* * Parse ClassBench rules file. * Expected format: * '@''/' \ * '/' \ * ":" \ * ":" \ * '/' */ static int parse_cb_ipv4_rule(char *str, struct acl_rule *v) { int i, rc; char *s, *sp, *in[CB_FLD_NUM]; static const char *dlm = " \t\n"; /* * Skip leading '@' */ if (strchr(str, '@') != str) return -EINVAL; s = str + 1; for (i = 0; i != RTE_DIM(in); i++) { in[i] = strtok_r(s, dlm, &sp); if (in[i] == NULL) return -EINVAL; s = NULL; } rc = parse_ipv4_net(in[CB_FLD_SRC_ADDR], &v->field[SRC_FIELD_IPV4].value.u32, &v->field[SRC_FIELD_IPV4].mask_range.u32); if (rc != 0) { RTE_LOG(ERR, TESTACL, "failed to read source address/mask: %s\n", in[CB_FLD_SRC_ADDR]); return rc; } rc = parse_ipv4_net(in[CB_FLD_DST_ADDR], &v->field[DST_FIELD_IPV4].value.u32, &v->field[DST_FIELD_IPV4].mask_range.u32); if (rc != 0) { RTE_LOG(ERR, TESTACL, "failed to read destination address/mask: %s\n", in[CB_FLD_DST_ADDR]); return rc; } /* source port. */ GET_CB_FIELD(in[CB_FLD_SRC_PORT_LOW], v->field[SRCP_FIELD_IPV4].value.u16, 0, UINT16_MAX, 0); GET_CB_FIELD(in[CB_FLD_SRC_PORT_HIGH], v->field[SRCP_FIELD_IPV4].mask_range.u16, 0, UINT16_MAX, 0); if (strncmp(in[CB_FLD_SRC_PORT_DLM], cb_port_delim, sizeof(cb_port_delim)) != 0) return -EINVAL; /* destination port. */ GET_CB_FIELD(in[CB_FLD_DST_PORT_LOW], v->field[DSTP_FIELD_IPV4].value.u16, 0, UINT16_MAX, 0); GET_CB_FIELD(in[CB_FLD_DST_PORT_HIGH], v->field[DSTP_FIELD_IPV4].mask_range.u16, 0, UINT16_MAX, 0); if (strncmp(in[CB_FLD_DST_PORT_DLM], cb_port_delim, sizeof(cb_port_delim)) != 0) return -EINVAL; GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV4].value.u8, 0, UINT8_MAX, '/'); GET_CB_FIELD(in[CB_FLD_PROTO], v->field[PROTO_FIELD_IPV4].mask_range.u8, 0, UINT8_MAX, 0); return 0; } typedef int (*parse_5tuple)(char *text, struct acl_rule *rule); static int add_cb_rules(FILE *f, struct rte_acl_ctx *ctx) { int rc; uint32_t n; struct acl_rule v; parse_5tuple parser; memset(&v, 0, sizeof(v)); parser = (config.ipv6 != 0) ? parse_cb_ipv6_rule : parse_cb_ipv4_rule; for (n = 1; fgets(line, sizeof(line), f) != NULL; n++) { rc = parser(line, &v); if (rc != 0) { RTE_LOG(ERR, TESTACL, "line %u: parse_cb_ipv4vlan_rule" " failed, error code: %d (%s)\n", n, rc, strerror(-rc)); return rc; } v.data.category_mask = RTE_LEN2MASK(RTE_ACL_MAX_CATEGORIES, typeof(v.data.category_mask)); v.data.priority = RTE_ACL_MAX_PRIORITY - n; v.data.userdata = n; rc = rte_acl_add_rules(ctx, (struct rte_acl_rule *)&v, 1); if (rc != 0) { RTE_LOG(ERR, TESTACL, "line %u: failed to add rules " "into ACL context, error code: %d (%s)\n", n, rc, strerror(-rc)); return rc; } } return 0; } static void acx_init(void) { int ret; FILE *f; struct rte_acl_config cfg; memset(&cfg, 0, sizeof(cfg)); /* setup ACL build config. */ if (config.ipv6) { cfg.num_fields = RTE_DIM(ipv6_defs); memcpy(&cfg.defs, ipv6_defs, sizeof(ipv6_defs)); } else { cfg.num_fields = RTE_DIM(ipv4_defs); memcpy(&cfg.defs, ipv4_defs, sizeof(ipv4_defs)); } cfg.num_categories = config.bld_categories; cfg.max_size = config.max_size; /* setup ACL creation parameters. */ prm.rule_size = RTE_ACL_RULE_SZ(cfg.num_fields); prm.max_rule_num = config.nb_rules; config.acx = rte_acl_create(&prm); if (config.acx == NULL) rte_exit(rte_errno, "failed to create ACL context\n"); /* set default classify method for this context. */ if (config.alg.alg != RTE_ACL_CLASSIFY_DEFAULT) { ret = rte_acl_set_ctx_classify(config.acx, config.alg.alg); if (ret != 0) rte_exit(ret, "failed to setup %s method " "for ACL context\n", config.alg.name); } /* add ACL rules. */ f = fopen(config.rule_file, "r"); if (f == NULL) rte_exit(-EINVAL, "failed to open file %s\n", config.rule_file); ret = add_cb_rules(f, config.acx); if (ret != 0) rte_exit(ret, "failed to add rules into ACL context\n"); fclose(f); /* perform build. */ ret = rte_acl_build(config.acx, &cfg); dump_verbose(DUMP_NONE, stdout, "rte_acl_build(%u) finished with %d\n", config.bld_categories, ret); rte_acl_dump(config.acx); if (ret != 0) rte_exit(ret, "failed to build search context\n"); } static uint32_t search_ip5tuples_once(uint32_t categories, uint32_t step, const char *alg) { int ret; uint32_t i, j, k, n, r; const uint8_t *data[step], *v; uint32_t results[step * categories]; v = config.traces; for (i = 0; i != config.used_traces; i += n) { n = RTE_MIN(step, config.used_traces - i); for (j = 0; j != n; j++) { data[j] = v; v += config.trace_sz; } ret = rte_acl_classify(config.acx, data, results, n, categories); if (ret != 0) rte_exit(ret, "classify for ipv%c_5tuples returns %d\n", config.ipv6 ? '6' : '4', ret); for (r = 0, j = 0; j != n; j++) { for (k = 0; k != categories; k++, r++) { dump_verbose(DUMP_PKT, stdout, "ipv%c_5tuple: %u, category: %u, " "result: %u\n", config.ipv6 ? '6' : '4', i + j + 1, k, results[r] - 1); } } } dump_verbose(DUMP_SEARCH, stdout, "%s(%u, %u, %s) returns %u\n", __func__, categories, step, alg, i); return i; } static int search_ip5tuples(__attribute__((unused)) void *arg) { uint64_t pkt, start, tm; uint32_t i, lcore; lcore = rte_lcore_id(); start = rte_rdtsc(); pkt = 0; for (i = 0; i != config.iter_num; i++) { pkt += search_ip5tuples_once(config.run_categories, config.trace_step, config.alg.name); } tm = rte_rdtsc() - start; dump_verbose(DUMP_NONE, stdout, "%s @lcore %u: %" PRIu32 " iterations, %" PRIu64 " pkts, %" PRIu32 " categories, %" PRIu64 " cycles, %#Lf cycles/pkt\n", __func__, lcore, i, pkt, config.run_categories, tm, (pkt == 0) ? 0 : (long double)tm / pkt); return 0; } static unsigned long get_ulong_opt(const char *opt, const char *name, size_t min, size_t max) { unsigned long val; char *end; errno = 0; val = strtoul(opt, &end, 0); if (errno != 0 || end[0] != 0 || val > max || val < min) rte_exit(-EINVAL, "invalid value: \"%s\" for option: %s\n", opt, name); return val; } static void get_alg_opt(const char *opt, const char *name) { uint32_t i; for (i = 0; i != RTE_DIM(acl_alg); i++) { if (strcmp(opt, acl_alg[i].name) == 0) { config.alg = acl_alg[i]; return; } } rte_exit(-EINVAL, "invalid value: \"%s\" for option: %s\n", opt, name); } static void print_usage(const char *prgname) { uint32_t i, n, rc; char buf[PATH_MAX]; n = 0; buf[0] = 0; for (i = 0; i < RTE_DIM(acl_alg) - 1; i++) { rc = snprintf(buf + n, sizeof(buf) - n, "%s|", acl_alg[i].name); if (rc > sizeof(buf) - n) break; n += rc; } snprintf(buf + n, sizeof(buf) - n, "%s", acl_alg[i].name); fprintf(stdout, PRINT_USAGE_START "--" OPT_RULE_FILE "=\n" "[--" OPT_TRACE_FILE "=]\n" "[--" OPT_RULE_NUM "=]\n" "[--" OPT_TRACE_NUM "=]\n" "[--" OPT_TRACE_STEP "=]\n" "[--" OPT_BLD_CATEGORIES "=]\n" "[--" OPT_RUN_CATEGORIES "= " "should be either 1 or multiple of %zu, " "but not greater then %u]\n" "[--" OPT_MAX_SIZE "= " "leave 0 for default behaviour]\n" "[--" OPT_ITER_NUM "=]\n" "[--" OPT_VERBOSE "=]\n" "[--" OPT_SEARCH_ALG "=%s]\n" "[--" OPT_IPV6 "=]\n", prgname, RTE_ACL_RESULTS_MULTIPLIER, (uint32_t)RTE_ACL_MAX_CATEGORIES, buf); } static void dump_config(FILE *f) { fprintf(f, "%s:\n", __func__); fprintf(f, "%s:%s\n", OPT_RULE_FILE, config.rule_file); fprintf(f, "%s:%s\n", OPT_TRACE_FILE, config.trace_file); fprintf(f, "%s:%u\n", OPT_RULE_NUM, config.nb_rules); fprintf(f, "%s:%u\n", OPT_TRACE_NUM, config.nb_traces); fprintf(f, "%s:%u\n", OPT_TRACE_STEP, config.trace_step); fprintf(f, "%s:%u\n", OPT_BLD_CATEGORIES, config.bld_categories); fprintf(f, "%s:%u\n", OPT_RUN_CATEGORIES, config.run_categories); fprintf(f, "%s:%zu\n", OPT_MAX_SIZE, config.max_size); fprintf(f, "%s:%u\n", OPT_ITER_NUM, config.iter_num); fprintf(f, "%s:%u\n", OPT_VERBOSE, config.verbose); fprintf(f, "%s:%u(%s)\n", OPT_SEARCH_ALG, config.alg.alg, config.alg.name); fprintf(f, "%s:%u\n", OPT_IPV6, config.ipv6); } static void check_config(void) { if (config.rule_file == NULL) { print_usage(config.prgname); rte_exit(-EINVAL, "mandatory option %s is not specified\n", OPT_RULE_FILE); } } static void get_input_opts(int argc, char **argv) { static struct option lgopts[] = { {OPT_RULE_FILE, 1, 0, 0}, {OPT_TRACE_FILE, 1, 0, 0}, {OPT_TRACE_NUM, 1, 0, 0}, {OPT_RULE_NUM, 1, 0, 0}, {OPT_MAX_SIZE, 1, 0, 0}, {OPT_TRACE_STEP, 1, 0, 0}, {OPT_BLD_CATEGORIES, 1, 0, 0}, {OPT_RUN_CATEGORIES, 1, 0, 0}, {OPT_ITER_NUM, 1, 0, 0}, {OPT_VERBOSE, 1, 0, 0}, {OPT_SEARCH_ALG, 1, 0, 0}, {OPT_IPV6, 0, 0, 0}, {NULL, 0, 0, 0} }; int opt, opt_idx; while ((opt = getopt_long(argc, argv, "", lgopts, &opt_idx)) != EOF) { if (opt != 0) { print_usage(config.prgname); rte_exit(-EINVAL, "unknown option: %c", opt); } if (strcmp(lgopts[opt_idx].name, OPT_RULE_FILE) == 0) { config.rule_file = optarg; } else if (strcmp(lgopts[opt_idx].name, OPT_TRACE_FILE) == 0) { config.trace_file = optarg; } else if (strcmp(lgopts[opt_idx].name, OPT_RULE_NUM) == 0) { config.nb_rules = get_ulong_opt(optarg, lgopts[opt_idx].name, 1, RTE_ACL_MAX_INDEX + 1); } else if (strcmp(lgopts[opt_idx].name, OPT_MAX_SIZE) == 0) { config.max_size = get_ulong_opt(optarg, lgopts[opt_idx].name, 0, SIZE_MAX); } else if (strcmp(lgopts[opt_idx].name, OPT_TRACE_NUM) == 0) { config.nb_traces = get_ulong_opt(optarg, lgopts[opt_idx].name, 1, UINT32_MAX); } else if (strcmp(lgopts[opt_idx].name, OPT_TRACE_STEP) == 0) { config.trace_step = get_ulong_opt(optarg, lgopts[opt_idx].name, 1, TRACE_STEP_MAX); } else if (strcmp(lgopts[opt_idx].name, OPT_BLD_CATEGORIES) == 0) { config.bld_categories = get_ulong_opt(optarg, lgopts[opt_idx].name, 1, RTE_ACL_MAX_CATEGORIES); } else if (strcmp(lgopts[opt_idx].name, OPT_RUN_CATEGORIES) == 0) { config.run_categories = get_ulong_opt(optarg, lgopts[opt_idx].name, 1, RTE_ACL_MAX_CATEGORIES); } else if (strcmp(lgopts[opt_idx].name, OPT_ITER_NUM) == 0) { config.iter_num = get_ulong_opt(optarg, lgopts[opt_idx].name, 1, INT32_MAX); } else if (strcmp(lgopts[opt_idx].name, OPT_VERBOSE) == 0) { config.verbose = get_ulong_opt(optarg, lgopts[opt_idx].name, DUMP_NONE, DUMP_MAX); } else if (strcmp(lgopts[opt_idx].name, OPT_SEARCH_ALG) == 0) { get_alg_opt(optarg, lgopts[opt_idx].name); } else if (strcmp(lgopts[opt_idx].name, OPT_IPV6) == 0) { config.ipv6 = 1; } } config.trace_sz = config.ipv6 ? sizeof(struct ipv6_5tuple) : sizeof(struct ipv4_5tuple); } int main(int argc, char **argv) { int ret; uint32_t lcore; ret = rte_eal_init(argc, argv); if (ret < 0) rte_panic("Cannot init EAL\n"); argc -= ret; argv += ret; config.prgname = argv[0]; get_input_opts(argc, argv); dump_config(stdout); check_config(); acx_init(); if (config.trace_file != NULL) tracef_init(); RTE_LCORE_FOREACH_SLAVE(lcore) rte_eal_remote_launch(search_ip5tuples, NULL, lcore); search_ip5tuples(NULL); rte_eal_mp_wait_lcore(); rte_acl_free(config.acx); return 0; }