/*- * BSD LICENSE * * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "test.h" #define MBUF_DATA_SIZE 2048 #define NB_MBUF 128 #define MBUF_TEST_DATA_LEN 1464 #define MBUF_TEST_DATA_LEN2 50 #define MBUF_TEST_HDR1_LEN 20 #define MBUF_TEST_HDR2_LEN 30 #define MBUF_TEST_ALL_HDRS_LEN (MBUF_TEST_HDR1_LEN+MBUF_TEST_HDR2_LEN) /* size of private data for mbuf in pktmbuf_pool2 */ #define MBUF2_PRIV_SIZE 128 #define REFCNT_MAX_ITER 64 #define REFCNT_MAX_TIMEOUT 10 #define REFCNT_MAX_REF (RTE_MAX_LCORE) #define REFCNT_MBUF_NUM 64 #define REFCNT_RING_SIZE (REFCNT_MBUF_NUM * REFCNT_MAX_REF) #define MAGIC_DATA 0x42424242 #define MAKE_STRING(x) # x #ifdef RTE_MBUF_REFCNT_ATOMIC static volatile uint32_t refcnt_stop_slaves; static unsigned refcnt_lcore[RTE_MAX_LCORE]; #endif /* * MBUF * ==== * * #. Allocate a mbuf pool. * * - The pool contains NB_MBUF elements, where each mbuf is MBUF_SIZE * bytes long. * * #. Test multiple allocations of mbufs from this pool. * * - Allocate NB_MBUF and store pointers in a table. * - If an allocation fails, return an error. * - Free all these mbufs. * - Repeat the same test to check that mbufs were freed correctly. * * #. Test data manipulation in pktmbuf. * * - Alloc an mbuf. * - Append data using rte_pktmbuf_append(). * - Test for error in rte_pktmbuf_append() when len is too large. * - Trim data at the end of mbuf using rte_pktmbuf_trim(). * - Test for error in rte_pktmbuf_trim() when len is too large. * - Prepend a header using rte_pktmbuf_prepend(). * - Test for error in rte_pktmbuf_prepend() when len is too large. * - Remove data at the beginning of mbuf using rte_pktmbuf_adj(). * - Test for error in rte_pktmbuf_adj() when len is too large. * - Check that appended data is not corrupt. * - Free the mbuf. * - Between all these tests, check data_len and pkt_len, and * that the mbuf is contiguous. * - Repeat the test to check that allocation operations * reinitialize the mbuf correctly. * * #. Test packet cloning * - Clone a mbuf and verify the data * - Clone the cloned mbuf and verify the data * - Attach a mbuf to another that does not have the same priv_size. */ #define GOTO_FAIL(str, ...) do { \ printf("mbuf test FAILED (l.%d): <" str ">\n", \ __LINE__, ##__VA_ARGS__); \ goto fail; \ } while(0) /* * test data manipulation in mbuf with non-ascii data */ static int test_pktmbuf_with_non_ascii_data(struct rte_mempool *pktmbuf_pool) { struct rte_mbuf *m = NULL; char *data; m = rte_pktmbuf_alloc(pktmbuf_pool); if (m == NULL) GOTO_FAIL("Cannot allocate mbuf"); if (rte_pktmbuf_pkt_len(m) != 0) GOTO_FAIL("Bad length"); data = rte_pktmbuf_append(m, MBUF_TEST_DATA_LEN); if (data == NULL) GOTO_FAIL("Cannot append data"); if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN) GOTO_FAIL("Bad pkt length"); if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN) GOTO_FAIL("Bad data length"); memset(data, 0xff, rte_pktmbuf_pkt_len(m)); if (!rte_pktmbuf_is_contiguous(m)) GOTO_FAIL("Buffer should be continuous"); rte_pktmbuf_dump(stdout, m, MBUF_TEST_DATA_LEN); rte_pktmbuf_free(m); return 0; fail: if(m) { rte_pktmbuf_free(m); } return -1; } /* * test data manipulation in mbuf */ static int test_one_pktmbuf(struct rte_mempool *pktmbuf_pool) { struct rte_mbuf *m = NULL; char *data, *data2, *hdr; unsigned i; printf("Test pktmbuf API\n"); /* alloc a mbuf */ m = rte_pktmbuf_alloc(pktmbuf_pool); if (m == NULL) GOTO_FAIL("Cannot allocate mbuf"); if (rte_pktmbuf_pkt_len(m) != 0) GOTO_FAIL("Bad length"); rte_pktmbuf_dump(stdout, m, 0); /* append data */ data = rte_pktmbuf_append(m, MBUF_TEST_DATA_LEN); if (data == NULL) GOTO_FAIL("Cannot append data"); if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN) GOTO_FAIL("Bad pkt length"); if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN) GOTO_FAIL("Bad data length"); memset(data, 0x66, rte_pktmbuf_pkt_len(m)); if (!rte_pktmbuf_is_contiguous(m)) GOTO_FAIL("Buffer should be continuous"); rte_pktmbuf_dump(stdout, m, MBUF_TEST_DATA_LEN); rte_pktmbuf_dump(stdout, m, 2*MBUF_TEST_DATA_LEN); /* this append should fail */ data2 = rte_pktmbuf_append(m, (uint16_t)(rte_pktmbuf_tailroom(m) + 1)); if (data2 != NULL) GOTO_FAIL("Append should not succeed"); /* append some more data */ data2 = rte_pktmbuf_append(m, MBUF_TEST_DATA_LEN2); if (data2 == NULL) GOTO_FAIL("Cannot append data"); if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_DATA_LEN2) GOTO_FAIL("Bad pkt length"); if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_DATA_LEN2) GOTO_FAIL("Bad data length"); if (!rte_pktmbuf_is_contiguous(m)) GOTO_FAIL("Buffer should be continuous"); /* trim data at the end of mbuf */ if (rte_pktmbuf_trim(m, MBUF_TEST_DATA_LEN2) < 0) GOTO_FAIL("Cannot trim data"); if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN) GOTO_FAIL("Bad pkt length"); if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN) GOTO_FAIL("Bad data length"); if (!rte_pktmbuf_is_contiguous(m)) GOTO_FAIL("Buffer should be continuous"); /* this trim should fail */ if (rte_pktmbuf_trim(m, (uint16_t)(rte_pktmbuf_data_len(m) + 1)) == 0) GOTO_FAIL("trim should not succeed"); /* prepend one header */ hdr = rte_pktmbuf_prepend(m, MBUF_TEST_HDR1_LEN); if (hdr == NULL) GOTO_FAIL("Cannot prepend"); if (data - hdr != MBUF_TEST_HDR1_LEN) GOTO_FAIL("Prepend failed"); if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_HDR1_LEN) GOTO_FAIL("Bad pkt length"); if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_HDR1_LEN) GOTO_FAIL("Bad data length"); if (!rte_pktmbuf_is_contiguous(m)) GOTO_FAIL("Buffer should be continuous"); memset(hdr, 0x55, MBUF_TEST_HDR1_LEN); /* prepend another header */ hdr = rte_pktmbuf_prepend(m, MBUF_TEST_HDR2_LEN); if (hdr == NULL) GOTO_FAIL("Cannot prepend"); if (data - hdr != MBUF_TEST_ALL_HDRS_LEN) GOTO_FAIL("Prepend failed"); if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_ALL_HDRS_LEN) GOTO_FAIL("Bad pkt length"); if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN + MBUF_TEST_ALL_HDRS_LEN) GOTO_FAIL("Bad data length"); if (!rte_pktmbuf_is_contiguous(m)) GOTO_FAIL("Buffer should be continuous"); memset(hdr, 0x55, MBUF_TEST_HDR2_LEN); rte_mbuf_sanity_check(m, 1); rte_mbuf_sanity_check(m, 0); rte_pktmbuf_dump(stdout, m, 0); /* this prepend should fail */ hdr = rte_pktmbuf_prepend(m, (uint16_t)(rte_pktmbuf_headroom(m) + 1)); if (hdr != NULL) GOTO_FAIL("prepend should not succeed"); /* remove data at beginning of mbuf (adj) */ if (data != rte_pktmbuf_adj(m, MBUF_TEST_ALL_HDRS_LEN)) GOTO_FAIL("rte_pktmbuf_adj failed"); if (rte_pktmbuf_pkt_len(m) != MBUF_TEST_DATA_LEN) GOTO_FAIL("Bad pkt length"); if (rte_pktmbuf_data_len(m) != MBUF_TEST_DATA_LEN) GOTO_FAIL("Bad data length"); if (!rte_pktmbuf_is_contiguous(m)) GOTO_FAIL("Buffer should be continuous"); /* this adj should fail */ if (rte_pktmbuf_adj(m, (uint16_t)(rte_pktmbuf_data_len(m) + 1)) != NULL) GOTO_FAIL("rte_pktmbuf_adj should not succeed"); /* check data */ if (!rte_pktmbuf_is_contiguous(m)) GOTO_FAIL("Buffer should be continuous"); for (i=0; inext = rte_pktmbuf_alloc(pktmbuf_pool); if (m->next == NULL) GOTO_FAIL("Next Pkt Null\n"); rte_pktmbuf_append(m->next, sizeof(uint32_t)); data = rte_pktmbuf_mtod(m->next, unaligned_uint32_t *); *data = MAGIC_DATA; clone = rte_pktmbuf_clone(m, pktmbuf_pool); if (clone == NULL) GOTO_FAIL("cannot clone data\n"); data = rte_pktmbuf_mtod(clone, unaligned_uint32_t *); if (*data != MAGIC_DATA) GOTO_FAIL("invalid data in clone\n"); data = rte_pktmbuf_mtod(clone->next, unaligned_uint32_t *); if (*data != MAGIC_DATA) GOTO_FAIL("invalid data in clone->next\n"); if (rte_mbuf_refcnt_read(m) != 2) GOTO_FAIL("invalid refcnt in m\n"); if (rte_mbuf_refcnt_read(m->next) != 2) GOTO_FAIL("invalid refcnt in m->next\n"); /* try to clone the clone */ clone2 = rte_pktmbuf_clone(clone, pktmbuf_pool); if (clone2 == NULL) GOTO_FAIL("cannot clone the clone\n"); data = rte_pktmbuf_mtod(clone2, unaligned_uint32_t *); if (*data != MAGIC_DATA) GOTO_FAIL("invalid data in clone2\n"); data = rte_pktmbuf_mtod(clone2->next, unaligned_uint32_t *); if (*data != MAGIC_DATA) GOTO_FAIL("invalid data in clone2->next\n"); if (rte_mbuf_refcnt_read(m) != 3) GOTO_FAIL("invalid refcnt in m\n"); if (rte_mbuf_refcnt_read(m->next) != 3) GOTO_FAIL("invalid refcnt in m->next\n"); /* free mbuf */ rte_pktmbuf_free(m); rte_pktmbuf_free(clone); rte_pktmbuf_free(clone2); m = NULL; clone = NULL; clone2 = NULL; printf("%s ok\n", __func__); return 0; fail: if (m) rte_pktmbuf_free(m); if (clone) rte_pktmbuf_free(clone); if (clone2) rte_pktmbuf_free(clone2); return -1; } static int test_attach_from_different_pool(struct rte_mempool *pktmbuf_pool, struct rte_mempool *pktmbuf_pool2) { struct rte_mbuf *m = NULL; struct rte_mbuf *clone = NULL; struct rte_mbuf *clone2 = NULL; char *data, *c_data, *c_data2; /* alloc a mbuf */ m = rte_pktmbuf_alloc(pktmbuf_pool); if (m == NULL) GOTO_FAIL("cannot allocate mbuf"); if (rte_pktmbuf_pkt_len(m) != 0) GOTO_FAIL("Bad length"); data = rte_pktmbuf_mtod(m, char *); /* allocate a new mbuf from the second pool, and attach it to the first * mbuf */ clone = rte_pktmbuf_alloc(pktmbuf_pool2); if (clone == NULL) GOTO_FAIL("cannot allocate mbuf from second pool\n"); /* check data room size and priv size, and erase priv */ if (rte_pktmbuf_data_room_size(clone->pool) != 0) GOTO_FAIL("data room size should be 0\n"); if (rte_pktmbuf_priv_size(clone->pool) != MBUF2_PRIV_SIZE) GOTO_FAIL("data room size should be %d\n", MBUF2_PRIV_SIZE); memset(clone + 1, 0, MBUF2_PRIV_SIZE); /* save data pointer to compare it after detach() */ c_data = rte_pktmbuf_mtod(clone, char *); if (c_data != (char *)clone + sizeof(*clone) + MBUF2_PRIV_SIZE) GOTO_FAIL("bad data pointer in clone"); if (rte_pktmbuf_headroom(clone) != 0) GOTO_FAIL("bad headroom in clone"); rte_pktmbuf_attach(clone, m); if (rte_pktmbuf_mtod(clone, char *) != data) GOTO_FAIL("clone was not attached properly\n"); if (rte_pktmbuf_headroom(clone) != RTE_PKTMBUF_HEADROOM) GOTO_FAIL("bad headroom in clone after attach"); if (rte_mbuf_refcnt_read(m) != 2) GOTO_FAIL("invalid refcnt in m\n"); /* allocate a new mbuf from the second pool, and attach it to the first * cloned mbuf */ clone2 = rte_pktmbuf_alloc(pktmbuf_pool2); if (clone2 == NULL) GOTO_FAIL("cannot allocate clone2 from second pool\n"); /* check data room size and priv size, and erase priv */ if (rte_pktmbuf_data_room_size(clone2->pool) != 0) GOTO_FAIL("data room size should be 0\n"); if (rte_pktmbuf_priv_size(clone2->pool) != MBUF2_PRIV_SIZE) GOTO_FAIL("data room size should be %d\n", MBUF2_PRIV_SIZE); memset(clone2 + 1, 0, MBUF2_PRIV_SIZE); /* save data pointer to compare it after detach() */ c_data2 = rte_pktmbuf_mtod(clone2, char *); if (c_data2 != (char *)clone2 + sizeof(*clone2) + MBUF2_PRIV_SIZE) GOTO_FAIL("bad data pointer in clone2"); if (rte_pktmbuf_headroom(clone2) != 0) GOTO_FAIL("bad headroom in clone2"); rte_pktmbuf_attach(clone2, clone); if (rte_pktmbuf_mtod(clone2, char *) != data) GOTO_FAIL("clone2 was not attached properly\n"); if (rte_pktmbuf_headroom(clone2) != RTE_PKTMBUF_HEADROOM) GOTO_FAIL("bad headroom in clone2 after attach"); if (rte_mbuf_refcnt_read(m) != 3) GOTO_FAIL("invalid refcnt in m\n"); /* detach the clones */ rte_pktmbuf_detach(clone); if (c_data != rte_pktmbuf_mtod(clone, char *)) GOTO_FAIL("clone was not detached properly\n"); if (rte_mbuf_refcnt_read(m) != 2) GOTO_FAIL("invalid refcnt in m\n"); rte_pktmbuf_detach(clone2); if (c_data2 != rte_pktmbuf_mtod(clone2, char *)) GOTO_FAIL("clone2 was not detached properly\n"); if (rte_mbuf_refcnt_read(m) != 1) GOTO_FAIL("invalid refcnt in m\n"); /* free the clones and the initial mbuf */ rte_pktmbuf_free(clone2); rte_pktmbuf_free(clone); rte_pktmbuf_free(m); printf("%s ok\n", __func__); return 0; fail: if (m) rte_pktmbuf_free(m); if (clone) rte_pktmbuf_free(clone); if (clone2) rte_pktmbuf_free(clone2); return -1; } #undef GOTO_FAIL /* * test allocation and free of mbufs */ static int test_pktmbuf_pool(struct rte_mempool *pktmbuf_pool) { unsigned i; struct rte_mbuf *m[NB_MBUF]; int ret = 0; for (i=0; idata_off += 64; } /* free them */ for (i=0; idata_off != RTE_PKTMBUF_HEADROOM) { printf("invalid data_off\n"); ret = -1; } } /* free them */ for (i=0; inext; rte_pktmbuf_free_seg(mt); } } } return ret; } /* * Stress test for rte_mbuf atomic refcnt. * Implies that RTE_MBUF_REFCNT_ATOMIC is defined. * For more efficiency, recommended to run with RTE_LIBRTE_MBUF_DEBUG defined. */ #ifdef RTE_MBUF_REFCNT_ATOMIC static int test_refcnt_slave(void *arg) { unsigned lcore, free; void *mp = 0; struct rte_ring *refcnt_mbuf_ring = arg; lcore = rte_lcore_id(); printf("%s started at lcore %u\n", __func__, lcore); free = 0; while (refcnt_stop_slaves == 0) { if (rte_ring_dequeue(refcnt_mbuf_ring, &mp) == 0) { free++; rte_pktmbuf_free(mp); } } refcnt_lcore[lcore] += free; printf("%s finished at lcore %u, " "number of freed mbufs: %u\n", __func__, lcore, free); return 0; } static void test_refcnt_iter(unsigned int lcore, unsigned int iter, struct rte_mempool *refcnt_pool, struct rte_ring *refcnt_mbuf_ring) { uint16_t ref; unsigned i, n, tref, wn; struct rte_mbuf *m; tref = 0; /* For each mbuf in the pool: * - allocate mbuf, * - increment it's reference up to N+1, * - enqueue it N times into the ring for slave cores to free. */ for (i = 0, n = rte_mempool_avail_count(refcnt_pool); i != n && (m = rte_pktmbuf_alloc(refcnt_pool)) != NULL; i++) { ref = RTE_MAX(rte_rand() % REFCNT_MAX_REF, 1UL); tref += ref; if ((ref & 1) != 0) { rte_pktmbuf_refcnt_update(m, ref); while (ref-- != 0) rte_ring_enqueue(refcnt_mbuf_ring, m); } else { while (ref-- != 0) { rte_pktmbuf_refcnt_update(m, 1); rte_ring_enqueue(refcnt_mbuf_ring, m); } } rte_pktmbuf_free(m); } if (i != n) rte_panic("(lcore=%u, iter=%u): was able to allocate only " "%u from %u mbufs\n", lcore, iter, i, n); /* wait till slave lcores will consume all mbufs */ while (!rte_ring_empty(refcnt_mbuf_ring)) ; /* check that all mbufs are back into mempool by now */ for (wn = 0; wn != REFCNT_MAX_TIMEOUT; wn++) { if ((i = rte_mempool_avail_count(refcnt_pool)) == n) { refcnt_lcore[lcore] += tref; printf("%s(lcore=%u, iter=%u) completed, " "%u references processed\n", __func__, lcore, iter, tref); return; } rte_delay_ms(100); } rte_panic("(lcore=%u, iter=%u): after %us only " "%u of %u mbufs left free\n", lcore, iter, wn, i, n); } static int test_refcnt_master(struct rte_mempool *refcnt_pool, struct rte_ring *refcnt_mbuf_ring) { unsigned i, lcore; lcore = rte_lcore_id(); printf("%s started at lcore %u\n", __func__, lcore); for (i = 0; i != REFCNT_MAX_ITER; i++) test_refcnt_iter(lcore, i, refcnt_pool, refcnt_mbuf_ring); refcnt_stop_slaves = 1; rte_wmb(); printf("%s finished at lcore %u\n", __func__, lcore); return 0; } #endif static int test_refcnt_mbuf(void) { #ifdef RTE_MBUF_REFCNT_ATOMIC unsigned lnum, master, slave, tref; int ret = -1; struct rte_mempool *refcnt_pool = NULL; struct rte_ring *refcnt_mbuf_ring = NULL; if ((lnum = rte_lcore_count()) == 1) { printf("skipping %s, number of lcores: %u is not enough\n", __func__, lnum); return 0; } printf("starting %s, at %u lcores\n", __func__, lnum); /* create refcnt pool & ring if they don't exist */ refcnt_pool = rte_pktmbuf_pool_create(MAKE_STRING(refcnt_pool), REFCNT_MBUF_NUM, 0, 0, 0, SOCKET_ID_ANY); if (refcnt_pool == NULL) { printf("%s: cannot allocate " MAKE_STRING(refcnt_pool) "\n", __func__); return -1; } refcnt_mbuf_ring = rte_ring_create("refcnt_mbuf_ring", rte_align32pow2(REFCNT_RING_SIZE), SOCKET_ID_ANY, RING_F_SP_ENQ); if (refcnt_mbuf_ring == NULL) { printf("%s: cannot allocate " MAKE_STRING(refcnt_mbuf_ring) "\n", __func__); goto err; } refcnt_stop_slaves = 0; memset(refcnt_lcore, 0, sizeof (refcnt_lcore)); rte_eal_mp_remote_launch(test_refcnt_slave, refcnt_mbuf_ring, SKIP_MASTER); test_refcnt_master(refcnt_pool, refcnt_mbuf_ring); rte_eal_mp_wait_lcore(); /* check that we porcessed all references */ tref = 0; master = rte_get_master_lcore(); RTE_LCORE_FOREACH_SLAVE(slave) tref += refcnt_lcore[slave]; if (tref != refcnt_lcore[master]) rte_panic("refernced mbufs: %u, freed mbufs: %u\n", tref, refcnt_lcore[master]); rte_mempool_dump(stdout, refcnt_pool); rte_ring_dump(stdout, refcnt_mbuf_ring); ret = 0; err: rte_mempool_free(refcnt_pool); rte_ring_free(refcnt_mbuf_ring); return ret; #else return 0; #endif } #include #include /* use fork() to test mbuf errors panic */ static int verify_mbuf_check_panics(struct rte_mbuf *buf) { int pid; int status; pid = fork(); if (pid == 0) { rte_mbuf_sanity_check(buf, 1); /* should panic */ exit(0); /* return normally if it doesn't panic */ } else if (pid < 0){ printf("Fork Failed\n"); return -1; } wait(&status); if(status == 0) return -1; return 0; } static int test_failing_mbuf_sanity_check(struct rte_mempool *pktmbuf_pool) { struct rte_mbuf *buf; struct rte_mbuf badbuf; printf("Checking rte_mbuf_sanity_check for failure conditions\n"); /* get a good mbuf to use to make copies */ buf = rte_pktmbuf_alloc(pktmbuf_pool); if (buf == NULL) return -1; printf("Checking good mbuf initially\n"); if (verify_mbuf_check_panics(buf) != -1) return -1; printf("Now checking for error conditions\n"); if (verify_mbuf_check_panics(NULL)) { printf("Error with NULL mbuf test\n"); return -1; } badbuf = *buf; badbuf.pool = NULL; if (verify_mbuf_check_panics(&badbuf)) { printf("Error with bad-pool mbuf test\n"); return -1; } badbuf = *buf; badbuf.buf_iova = 0; if (verify_mbuf_check_panics(&badbuf)) { printf("Error with bad-physaddr mbuf test\n"); return -1; } badbuf = *buf; badbuf.buf_addr = NULL; if (verify_mbuf_check_panics(&badbuf)) { printf("Error with bad-addr mbuf test\n"); return -1; } badbuf = *buf; badbuf.refcnt = 0; if (verify_mbuf_check_panics(&badbuf)) { printf("Error with bad-refcnt(0) mbuf test\n"); return -1; } badbuf = *buf; badbuf.refcnt = UINT16_MAX; if (verify_mbuf_check_panics(&badbuf)) { printf("Error with bad-refcnt(MAX) mbuf test\n"); return -1; } return 0; } static int test_mbuf_linearize(struct rte_mempool *pktmbuf_pool, int pkt_len, int nb_segs) { struct rte_mbuf *m = NULL, *mbuf = NULL; uint8_t *data; int data_len = 0; int remain; int seg, seg_len; int i; if (pkt_len < 1) { printf("Packet size must be 1 or more (is %d)\n", pkt_len); return -1; } if (nb_segs < 1) { printf("Number of segments must be 1 or more (is %d)\n", nb_segs); return -1; } seg_len = pkt_len / nb_segs; if (seg_len == 0) seg_len = 1; remain = pkt_len; /* Create chained mbuf_src and fill it generated data */ for (seg = 0; remain > 0; seg++) { m = rte_pktmbuf_alloc(pktmbuf_pool); if (m == NULL) { printf("Cannot create segment for source mbuf"); goto fail; } /* Make sure if tailroom is zeroed */ memset(rte_pktmbuf_mtod(m, uint8_t *), 0, rte_pktmbuf_tailroom(m)); data_len = remain; if (data_len > seg_len) data_len = seg_len; data = (uint8_t *)rte_pktmbuf_append(m, data_len); if (data == NULL) { printf("Cannot append %d bytes to the mbuf\n", data_len); goto fail; } for (i = 0; i < data_len; i++) data[i] = (seg * seg_len + i) % 0x0ff; if (seg == 0) mbuf = m; else rte_pktmbuf_chain(mbuf, m); remain -= data_len; } /* Create destination buffer to store coalesced data */ if (rte_pktmbuf_linearize(mbuf)) { printf("Mbuf linearization failed\n"); goto fail; } if (!rte_pktmbuf_is_contiguous(mbuf)) { printf("Source buffer should be contiguous after " "linearization\n"); goto fail; } data = rte_pktmbuf_mtod(mbuf, uint8_t *); for (i = 0; i < pkt_len; i++) if (data[i] != (i % 0x0ff)) { printf("Incorrect data in linearized mbuf\n"); goto fail; } rte_pktmbuf_free(mbuf); return 0; fail: if (mbuf) rte_pktmbuf_free(mbuf); return -1; } static int test_mbuf_linearize_check(struct rte_mempool *pktmbuf_pool) { struct test_mbuf_array { int size; int nb_segs; } mbuf_array[] = { { 128, 1 }, { 64, 64 }, { 512, 10 }, { 250, 11 }, { 123, 8 }, }; unsigned int i; printf("Test mbuf linearize API\n"); for (i = 0; i < RTE_DIM(mbuf_array); i++) if (test_mbuf_linearize(pktmbuf_pool, mbuf_array[i].size, mbuf_array[i].nb_segs)) { printf("Test failed for %d, %d\n", mbuf_array[i].size, mbuf_array[i].nb_segs); return -1; } return 0; } static int test_mbuf(void) { int ret = -1; struct rte_mempool *pktmbuf_pool = NULL; struct rte_mempool *pktmbuf_pool2 = NULL; RTE_BUILD_BUG_ON(sizeof(struct rte_mbuf) != RTE_CACHE_LINE_MIN_SIZE * 2); /* create pktmbuf pool if it does not exist */ pktmbuf_pool = rte_pktmbuf_pool_create("test_pktmbuf_pool", NB_MBUF, 32, 0, MBUF_DATA_SIZE, SOCKET_ID_ANY); if (pktmbuf_pool == NULL) { printf("cannot allocate mbuf pool\n"); goto err; } /* create a specific pktmbuf pool with a priv_size != 0 and no data * room size */ pktmbuf_pool2 = rte_pktmbuf_pool_create("test_pktmbuf_pool2", NB_MBUF, 32, MBUF2_PRIV_SIZE, 0, SOCKET_ID_ANY); if (pktmbuf_pool2 == NULL) { printf("cannot allocate mbuf pool\n"); goto err; } /* test multiple mbuf alloc */ if (test_pktmbuf_pool(pktmbuf_pool) < 0) { printf("test_mbuf_pool() failed\n"); goto err; } /* do it another time to check that all mbufs were freed */ if (test_pktmbuf_pool(pktmbuf_pool) < 0) { printf("test_mbuf_pool() failed (2)\n"); goto err; } /* test that the pointer to the data on a packet mbuf is set properly */ if (test_pktmbuf_pool_ptr(pktmbuf_pool) < 0) { printf("test_pktmbuf_pool_ptr() failed\n"); goto err; } /* test data manipulation in mbuf */ if (test_one_pktmbuf(pktmbuf_pool) < 0) { printf("test_one_mbuf() failed\n"); goto err; } /* * do it another time, to check that allocation reinitialize * the mbuf correctly */ if (test_one_pktmbuf(pktmbuf_pool) < 0) { printf("test_one_mbuf() failed (2)\n"); goto err; } if (test_pktmbuf_with_non_ascii_data(pktmbuf_pool) < 0) { printf("test_pktmbuf_with_non_ascii_data() failed\n"); goto err; } /* test free pktmbuf segment one by one */ if (test_pktmbuf_free_segment(pktmbuf_pool) < 0) { printf("test_pktmbuf_free_segment() failed.\n"); goto err; } if (testclone_testupdate_testdetach(pktmbuf_pool) < 0) { printf("testclone_and_testupdate() failed \n"); goto err; } if (test_attach_from_different_pool(pktmbuf_pool, pktmbuf_pool2) < 0) { printf("test_attach_from_different_pool() failed\n"); goto err; } if (test_refcnt_mbuf()<0){ printf("test_refcnt_mbuf() failed \n"); goto err; } if (test_failing_mbuf_sanity_check(pktmbuf_pool) < 0) { printf("test_failing_mbuf_sanity_check() failed\n"); goto err; } if (test_mbuf_linearize_check(pktmbuf_pool) < 0) { printf("test_mbuf_linearize_check() failed\n"); goto err; } ret = 0; err: rte_mempool_free(pktmbuf_pool); rte_mempool_free(pktmbuf_pool2); return ret; } REGISTER_TEST_COMMAND(mbuf_autotest, test_mbuf);