New upstream version 17.11-rc3
[deb_dpdk.git] / app / test-crypto-perf / cperf_test_pmd_cyclecount.c
diff --git a/app/test-crypto-perf/cperf_test_pmd_cyclecount.c b/app/test-crypto-perf/cperf_test_pmd_cyclecount.c
new file mode 100644 (file)
index 0000000..9b41724
--- /dev/null
@@ -0,0 +1,520 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2017 Intel Corporation. All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <stdbool.h>
+
+#include <rte_crypto.h>
+#include <rte_cryptodev.h>
+#include <rte_cycles.h>
+#include <rte_malloc.h>
+
+#include "cperf_ops.h"
+#include "cperf_test_pmd_cyclecount.h"
+#include "cperf_test_common.h"
+
+#define PRETTY_HDR_FMT "%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n"
+#define PRETTY_LINE_FMT "%12u%12u%12u%12u%12u%12u%12u%12.0f%12.0f%12.0f\n"
+#define CSV_HDR_FMT "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n"
+#define CSV_LINE_FMT "%10u;%10u;%u;%u;%u;%u;%u;%.f3;%.f3;%.f3\n"
+
+struct cperf_pmd_cyclecount_ctx {
+       uint8_t dev_id;
+       uint16_t qp_id;
+       uint8_t lcore_id;
+
+       struct rte_mempool *pool;
+       struct rte_crypto_op **ops;
+       struct rte_crypto_op **ops_processed;
+
+       struct rte_cryptodev_sym_session *sess;
+
+       cperf_populate_ops_t populate_ops;
+
+       uint32_t src_buf_offset;
+       uint32_t dst_buf_offset;
+
+       const struct cperf_options *options;
+       const struct cperf_test_vector *test_vector;
+};
+
+struct pmd_cyclecount_state {
+       struct cperf_pmd_cyclecount_ctx *ctx;
+       const struct cperf_options *opts;
+       uint32_t lcore;
+       uint64_t delay;
+       int linearize;
+       uint32_t ops_enqd;
+       uint32_t ops_deqd;
+       uint32_t ops_enq_retries;
+       uint32_t ops_deq_retries;
+       double cycles_per_build;
+       double cycles_per_enq;
+       double cycles_per_deq;
+};
+
+static const uint16_t iv_offset =
+               sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op);
+
+static void
+cperf_pmd_cyclecount_test_free(struct cperf_pmd_cyclecount_ctx *ctx)
+{
+       if (ctx) {
+               if (ctx->sess) {
+                       rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
+                       rte_cryptodev_sym_session_free(ctx->sess);
+               }
+
+               if (ctx->pool)
+                       rte_mempool_free(ctx->pool);
+
+               if (ctx->ops)
+                       rte_free(ctx->ops);
+
+               if (ctx->ops_processed)
+                       rte_free(ctx->ops_processed);
+
+               rte_free(ctx);
+       }
+}
+
+void *
+cperf_pmd_cyclecount_test_constructor(struct rte_mempool *sess_mp,
+               uint8_t dev_id, uint16_t qp_id,
+               const struct cperf_options *options,
+               const struct cperf_test_vector *test_vector,
+               const struct cperf_op_fns *op_fns)
+{
+       struct cperf_pmd_cyclecount_ctx *ctx = NULL;
+
+       /* preallocate buffers for crypto ops as they can get quite big */
+       size_t alloc_sz = sizeof(struct rte_crypto_op *) *
+                       options->nb_descriptors;
+
+       ctx = rte_malloc(NULL, sizeof(struct cperf_pmd_cyclecount_ctx), 0);
+       if (ctx == NULL)
+               goto err;
+
+       ctx->dev_id = dev_id;
+       ctx->qp_id = qp_id;
+
+       ctx->populate_ops = op_fns->populate_ops;
+       ctx->options = options;
+       ctx->test_vector = test_vector;
+
+       /* IV goes at the end of the crypto operation */
+       uint16_t iv_offset = sizeof(struct rte_crypto_op) +
+                       sizeof(struct rte_crypto_sym_op);
+
+       ctx->sess = op_fns->sess_create(
+                       sess_mp, dev_id, options, test_vector, iv_offset);
+       if (ctx->sess == NULL)
+               goto err;
+
+       if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
+                       &ctx->src_buf_offset, &ctx->dst_buf_offset,
+                       &ctx->pool) < 0)
+               goto err;
+
+       ctx->ops = rte_malloc("ops", alloc_sz, 0);
+       if (!ctx->ops)
+               goto err;
+
+       ctx->ops_processed = rte_malloc("ops_processed", alloc_sz, 0);
+       if (!ctx->ops_processed)
+               goto err;
+
+       return ctx;
+
+err:
+       cperf_pmd_cyclecount_test_free(ctx);
+
+       return NULL;
+}
+
+/* benchmark alloc-build-free of ops */
+static inline int
+pmd_cyclecount_bench_ops(struct pmd_cyclecount_state *state, uint32_t cur_op,
+               uint16_t test_burst_size)
+{
+       uint32_t iter_ops_left = state->opts->total_ops - cur_op;
+       uint32_t iter_ops_needed =
+                       RTE_MIN(state->opts->nb_descriptors, iter_ops_left);
+       uint32_t cur_iter_op;
+
+       for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
+                       cur_iter_op += test_burst_size) {
+               uint32_t burst_size = RTE_MIN(state->opts->total_ops - cur_op,
+                               test_burst_size);
+               struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
+
+               /* Allocate objects containing crypto operations and mbufs */
+               if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
+                                       burst_size) != 0) {
+                       RTE_LOG(ERR, USER1,
+                                       "Failed to allocate more crypto operations "
+                                       "from the the crypto operation pool.\n"
+                                       "Consider increasing the pool size "
+                                       "with --pool-sz\n");
+                               return -1;
+               }
+
+               /* Setup crypto op, attach mbuf etc */
+               (state->ctx->populate_ops)(ops,
+                               state->ctx->src_buf_offset,
+                               state->ctx->dst_buf_offset,
+                               burst_size,
+                               state->ctx->sess, state->opts,
+                               state->ctx->test_vector, iv_offset);
+
+#ifdef CPERF_LINEARIZATION_ENABLE
+               /* Check if source mbufs require coalescing */
+               if (state->linearize) {
+                       uint8_t i;
+                       for (i = 0; i < burst_size; i++) {
+                               struct rte_mbuf *src = ops[i]->sym->m_src;
+                               rte_pktmbuf_linearize(src);
+                       }
+               }
+#endif /* CPERF_LINEARIZATION_ENABLE */
+               rte_mempool_put_bulk(state->ctx->pool, (void **)ops,
+                               burst_size);
+       }
+
+       return 0;
+}
+
+/* allocate and build ops (no free) */
+static int
+pmd_cyclecount_build_ops(struct pmd_cyclecount_state *state,
+               uint32_t iter_ops_needed, uint16_t test_burst_size)
+{
+       uint32_t cur_iter_op;
+
+       for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
+                       cur_iter_op += test_burst_size) {
+               uint32_t burst_size = RTE_MIN(
+                               iter_ops_needed - cur_iter_op, test_burst_size);
+               struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
+
+               /* Allocate objects containing crypto operations and mbufs */
+               if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
+                                       burst_size) != 0) {
+                       RTE_LOG(ERR, USER1,
+                                       "Failed to allocate more crypto operations "
+                                       "from the the crypto operation pool.\n"
+                                       "Consider increasing the pool size "
+                                       "with --pool-sz\n");
+                               return -1;
+               }
+
+               /* Setup crypto op, attach mbuf etc */
+               (state->ctx->populate_ops)(ops,
+                               state->ctx->src_buf_offset,
+                               state->ctx->dst_buf_offset,
+                               burst_size,
+                               state->ctx->sess, state->opts,
+                               state->ctx->test_vector, iv_offset);
+       }
+       return 0;
+}
+
+/* benchmark enqueue, returns number of ops enqueued */
+static uint32_t
+pmd_cyclecount_bench_enq(struct pmd_cyclecount_state *state,
+               uint32_t iter_ops_needed, uint16_t test_burst_size)
+{
+       /* Enqueue full descriptor ring of ops on crypto device */
+       uint32_t cur_iter_op = 0;
+       while (cur_iter_op < iter_ops_needed) {
+               uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
+                               test_burst_size);
+               struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
+               uint32_t burst_enqd;
+
+               burst_enqd = rte_cryptodev_enqueue_burst(state->ctx->dev_id,
+                               state->ctx->qp_id, ops, burst_size);
+
+               /* if we couldn't enqueue anything, the queue is full */
+               if (!burst_enqd) {
+                       /* don't try to dequeue anything we didn't enqueue */
+                       return cur_iter_op;
+               }
+
+               if (burst_enqd < burst_size)
+                       state->ops_enq_retries++;
+               state->ops_enqd += burst_enqd;
+               cur_iter_op += burst_enqd;
+       }
+       return iter_ops_needed;
+}
+
+/* benchmark dequeue */
+static void
+pmd_cyclecount_bench_deq(struct pmd_cyclecount_state *state,
+               uint32_t iter_ops_needed, uint16_t test_burst_size)
+{
+       /* Dequeue full descriptor ring of ops on crypto device */
+       uint32_t cur_iter_op = 0;
+       while (cur_iter_op < iter_ops_needed) {
+               uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
+                               test_burst_size);
+               struct rte_crypto_op **ops_processed =
+                               &state->ctx->ops[cur_iter_op];
+               uint32_t burst_deqd;
+
+               burst_deqd = rte_cryptodev_dequeue_burst(state->ctx->dev_id,
+                               state->ctx->qp_id, ops_processed, burst_size);
+
+               if (burst_deqd < burst_size)
+                       state->ops_deq_retries++;
+               state->ops_deqd += burst_deqd;
+               cur_iter_op += burst_deqd;
+       }
+}
+
+/* run benchmark per burst size */
+static inline int
+pmd_cyclecount_bench_burst_sz(
+               struct pmd_cyclecount_state *state, uint16_t test_burst_size)
+{
+       uint64_t tsc_start;
+       uint64_t tsc_end;
+       uint64_t tsc_op;
+       uint64_t tsc_enq;
+       uint64_t tsc_deq;
+       uint32_t cur_op;
+
+       /* reset all counters */
+       tsc_enq = 0;
+       tsc_deq = 0;
+       state->ops_enqd = 0;
+       state->ops_enq_retries = 0;
+       state->ops_deqd = 0;
+       state->ops_deq_retries = 0;
+
+       /*
+        * Benchmark crypto op alloc-build-free separately.
+        */
+       tsc_start = rte_rdtsc_precise();
+
+       for (cur_op = 0; cur_op < state->opts->total_ops;
+                       cur_op += state->opts->nb_descriptors) {
+               if (unlikely(pmd_cyclecount_bench_ops(
+                               state, cur_op, test_burst_size)))
+                       return -1;
+       }
+
+       tsc_end = rte_rdtsc_precise();
+       tsc_op = tsc_end - tsc_start;
+
+
+       /*
+        * Hardware acceleration cyclecount benchmarking loop.
+        *
+        * We're benchmarking raw enq/deq performance by filling up the device
+        * queue, so we never get any failed enqs unless the driver won't accept
+        * the exact number of descriptors we requested, or the driver won't
+        * wrap around the end of the TX ring. However, since we're only
+        * dequeueing once we've filled up the queue, we have to benchmark it
+        * piecemeal and then average out the results.
+        */
+       cur_op = 0;
+       while (cur_op < state->opts->total_ops) {
+               uint32_t iter_ops_left = state->opts->total_ops - cur_op;
+               uint32_t iter_ops_needed = RTE_MIN(
+                               state->opts->nb_descriptors, iter_ops_left);
+               uint32_t iter_ops_allocd = iter_ops_needed;
+
+               /* allocate and build ops */
+               if (unlikely(pmd_cyclecount_build_ops(state, iter_ops_needed,
+                               test_burst_size)))
+                       return -1;
+
+               tsc_start = rte_rdtsc_precise();
+
+               /* fill up TX ring */
+               iter_ops_needed = pmd_cyclecount_bench_enq(state,
+                               iter_ops_needed, test_burst_size);
+
+               tsc_end = rte_rdtsc_precise();
+
+               tsc_enq += tsc_end - tsc_start;
+
+               /* allow for HW to catch up */
+               if (state->delay)
+                       rte_delay_us_block(state->delay);
+
+               tsc_start = rte_rdtsc_precise();
+
+               /* drain RX ring */
+               pmd_cyclecount_bench_deq(state, iter_ops_needed,
+                               test_burst_size);
+
+               tsc_end = rte_rdtsc_precise();
+
+               tsc_deq += tsc_end - tsc_start;
+
+               cur_op += iter_ops_needed;
+
+               /*
+                * we may not have processed all ops that we allocated, so
+                * free everything we've allocated.
+                */
+               rte_mempool_put_bulk(state->ctx->pool,
+                               (void **)state->ctx->ops, iter_ops_allocd);
+       }
+
+       state->cycles_per_build = (double)tsc_op / state->opts->total_ops;
+       state->cycles_per_enq = (double)tsc_enq / state->ops_enqd;
+       state->cycles_per_deq = (double)tsc_deq / state->ops_deqd;
+
+       return 0;
+}
+
+int
+cperf_pmd_cyclecount_test_runner(void *test_ctx)
+{
+       struct pmd_cyclecount_state state = {0};
+       const struct cperf_options *opts;
+       uint16_t test_burst_size;
+       uint8_t burst_size_idx = 0;
+
+       state.ctx = test_ctx;
+       opts = state.ctx->options;
+       state.opts = opts;
+       state.lcore = rte_lcore_id();
+       state.linearize = 0;
+
+       static int only_once;
+       static bool warmup = true;
+
+       /*
+        * We need a small delay to allow for hardware to process all the crypto
+        * operations. We can't automatically figure out what the delay should
+        * be, so we leave it up to the user (by default it's 0).
+        */
+       state.delay = 1000 * opts->pmdcc_delay;
+
+#ifdef CPERF_LINEARIZATION_ENABLE
+       struct rte_cryptodev_info dev_info;
+
+       /* Check if source mbufs require coalescing */
+       if (opts->segments_sz < ctx->options->max_buffer_size) {
+               rte_cryptodev_info_get(state.ctx->dev_id, &dev_info);
+               if ((dev_info.feature_flags &
+                                   RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) ==
+                               0) {
+                       state.linearize = 1;
+               }
+       }
+#endif /* CPERF_LINEARIZATION_ENABLE */
+
+       state.ctx->lcore_id = state.lcore;
+
+       /* Get first size from range or list */
+       if (opts->inc_burst_size != 0)
+               test_burst_size = opts->min_burst_size;
+       else
+               test_burst_size = opts->burst_size_list[0];
+
+       while (test_burst_size <= opts->max_burst_size) {
+               /* do a benchmark run */
+               if (pmd_cyclecount_bench_burst_sz(&state, test_burst_size))
+                       return -1;
+
+               /*
+                * First run is always a warm up run.
+                */
+               if (warmup) {
+                       warmup = false;
+                       continue;
+               }
+
+               if (!opts->csv) {
+                       if (!only_once)
+                               printf(PRETTY_HDR_FMT, "lcore id", "Buf Size",
+                                               "Burst Size", "Enqueued",
+                                               "Dequeued", "Enq Retries",
+                                               "Deq Retries", "Cycles/Op",
+                                               "Cycles/Enq", "Cycles/Deq");
+                       only_once = 1;
+
+                       printf(PRETTY_LINE_FMT, state.ctx->lcore_id,
+                                       opts->test_buffer_size, test_burst_size,
+                                       state.ops_enqd, state.ops_deqd,
+                                       state.ops_enq_retries,
+                                       state.ops_deq_retries,
+                                       state.cycles_per_build,
+                                       state.cycles_per_enq,
+                                       state.cycles_per_deq);
+               } else {
+                       if (!only_once)
+                               printf(CSV_HDR_FMT, "# lcore id", "Buf Size",
+                                               "Burst Size", "Enqueued",
+                                               "Dequeued", "Enq Retries",
+                                               "Deq Retries", "Cycles/Op",
+                                               "Cycles/Enq", "Cycles/Deq");
+                       only_once = 1;
+
+                       printf(CSV_LINE_FMT, state.ctx->lcore_id,
+                                       opts->test_buffer_size, test_burst_size,
+                                       state.ops_enqd, state.ops_deqd,
+                                       state.ops_enq_retries,
+                                       state.ops_deq_retries,
+                                       state.cycles_per_build,
+                                       state.cycles_per_enq,
+                                       state.cycles_per_deq);
+               }
+
+               /* Get next size from range or list */
+               if (opts->inc_burst_size != 0)
+                       test_burst_size += opts->inc_burst_size;
+               else {
+                       if (++burst_size_idx == opts->burst_size_count)
+                               break;
+                       test_burst_size = opts->burst_size_list[burst_size_idx];
+               }
+       }
+
+       return 0;
+}
+
+void
+cperf_pmd_cyclecount_test_destructor(void *arg)
+{
+       struct cperf_pmd_cyclecount_ctx *ctx = arg;
+
+       if (ctx == NULL)
+               return;
+
+       cperf_pmd_cyclecount_test_free(ctx);
+}