Imported Upstream version 16.04
[deb_dpdk.git] / app / test / test_ring_perf.c
diff --git a/app/test/test_ring_perf.c b/app/test/test_ring_perf.c
new file mode 100644 (file)
index 0000000..8c47ccb
--- /dev/null
@@ -0,0 +1,421 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+
+#include <stdio.h>
+#include <inttypes.h>
+#include <rte_ring.h>
+#include <rte_cycles.h>
+#include <rte_launch.h>
+
+#include "test.h"
+
+/*
+ * Ring
+ * ====
+ *
+ * Measures performance of various operations using rdtsc
+ *  * Empty ring dequeue
+ *  * Enqueue/dequeue of bursts in 1 threads
+ *  * Enqueue/dequeue of bursts in 2 threads
+ */
+
+#define RING_NAME "RING_PERF"
+#define RING_SIZE 4096
+#define MAX_BURST 32
+
+/*
+ * the sizes to enqueue and dequeue in testing
+ * (marked volatile so they won't be seen as compile-time constants)
+ */
+static const volatile unsigned bulk_sizes[] = { 8, 32 };
+
+/* The ring structure used for tests */
+static struct rte_ring *r;
+
+struct lcore_pair {
+       unsigned c1, c2;
+};
+
+static volatile unsigned lcore_count = 0;
+
+/**** Functions to analyse our core mask to get cores for different tests ***/
+
+static int
+get_two_hyperthreads(struct lcore_pair *lcp)
+{
+       unsigned id1, id2;
+       unsigned c1, c2, s1, s2;
+       RTE_LCORE_FOREACH(id1) {
+               /* inner loop just re-reads all id's. We could skip the first few
+                * elements, but since number of cores is small there is little point
+                */
+               RTE_LCORE_FOREACH(id2) {
+                       if (id1 == id2)
+                               continue;
+                       c1 = lcore_config[id1].core_id;
+                       c2 = lcore_config[id2].core_id;
+                       s1 = lcore_config[id1].socket_id;
+                       s2 = lcore_config[id2].socket_id;
+                       if ((c1 == c2) && (s1 == s2)){
+                               lcp->c1 = id1;
+                               lcp->c2 = id2;
+                               return 0;
+                       }
+               }
+       }
+       return 1;
+}
+
+static int
+get_two_cores(struct lcore_pair *lcp)
+{
+       unsigned id1, id2;
+       unsigned c1, c2, s1, s2;
+       RTE_LCORE_FOREACH(id1) {
+               RTE_LCORE_FOREACH(id2) {
+                       if (id1 == id2)
+                               continue;
+                       c1 = lcore_config[id1].core_id;
+                       c2 = lcore_config[id2].core_id;
+                       s1 = lcore_config[id1].socket_id;
+                       s2 = lcore_config[id2].socket_id;
+                       if ((c1 != c2) && (s1 == s2)){
+                               lcp->c1 = id1;
+                               lcp->c2 = id2;
+                               return 0;
+                       }
+               }
+       }
+       return 1;
+}
+
+static int
+get_two_sockets(struct lcore_pair *lcp)
+{
+       unsigned id1, id2;
+       unsigned s1, s2;
+       RTE_LCORE_FOREACH(id1) {
+               RTE_LCORE_FOREACH(id2) {
+                       if (id1 == id2)
+                               continue;
+                       s1 = lcore_config[id1].socket_id;
+                       s2 = lcore_config[id2].socket_id;
+                       if (s1 != s2){
+                               lcp->c1 = id1;
+                               lcp->c2 = id2;
+                               return 0;
+                       }
+               }
+       }
+       return 1;
+}
+
+/* Get cycle counts for dequeuing from an empty ring. Should be 2 or 3 cycles */
+static void
+test_empty_dequeue(void)
+{
+       const unsigned iter_shift = 26;
+       const unsigned iterations = 1<<iter_shift;
+       unsigned i = 0;
+       void *burst[MAX_BURST];
+
+       const uint64_t sc_start = rte_rdtsc();
+       for (i = 0; i < iterations; i++)
+               rte_ring_sc_dequeue_bulk(r, burst, bulk_sizes[0]);
+       const uint64_t sc_end = rte_rdtsc();
+
+       const uint64_t mc_start = rte_rdtsc();
+       for (i = 0; i < iterations; i++)
+               rte_ring_mc_dequeue_bulk(r, burst, bulk_sizes[0]);
+       const uint64_t mc_end = rte_rdtsc();
+
+       printf("SC empty dequeue: %.2F\n",
+                       (double)(sc_end-sc_start) / iterations);
+       printf("MC empty dequeue: %.2F\n",
+                       (double)(mc_end-mc_start) / iterations);
+}
+
+/*
+ * for the separate enqueue and dequeue threads they take in one param
+ * and return two. Input = burst size, output = cycle average for sp/sc & mp/mc
+ */
+struct thread_params {
+       unsigned size;        /* input value, the burst size */
+       double spsc, mpmc;    /* output value, the single or multi timings */
+};
+
+/*
+ * Function that uses rdtsc to measure timing for ring enqueue. Needs pair
+ * thread running dequeue_bulk function
+ */
+static int
+enqueue_bulk(void *p)
+{
+       const unsigned iter_shift = 23;
+       const unsigned iterations = 1<<iter_shift;
+       struct thread_params *params = p;
+       const unsigned size = params->size;
+       unsigned i;
+       void *burst[MAX_BURST] = {0};
+
+       if ( __sync_add_and_fetch(&lcore_count, 1) != 2 )
+               while(lcore_count != 2)
+                       rte_pause();
+
+       const uint64_t sp_start = rte_rdtsc();
+       for (i = 0; i < iterations; i++)
+               while (rte_ring_sp_enqueue_bulk(r, burst, size) != 0)
+                       rte_pause();
+       const uint64_t sp_end = rte_rdtsc();
+
+       const uint64_t mp_start = rte_rdtsc();
+       for (i = 0; i < iterations; i++)
+               while (rte_ring_mp_enqueue_bulk(r, burst, size) != 0)
+                       rte_pause();
+       const uint64_t mp_end = rte_rdtsc();
+
+       params->spsc = ((double)(sp_end - sp_start))/(iterations*size);
+       params->mpmc = ((double)(mp_end - mp_start))/(iterations*size);
+       return 0;
+}
+
+/*
+ * Function that uses rdtsc to measure timing for ring dequeue. Needs pair
+ * thread running enqueue_bulk function
+ */
+static int
+dequeue_bulk(void *p)
+{
+       const unsigned iter_shift = 23;
+       const unsigned iterations = 1<<iter_shift;
+       struct thread_params *params = p;
+       const unsigned size = params->size;
+       unsigned i;
+       void *burst[MAX_BURST] = {0};
+
+       if ( __sync_add_and_fetch(&lcore_count, 1) != 2 )
+               while(lcore_count != 2)
+                       rte_pause();
+
+       const uint64_t sc_start = rte_rdtsc();
+       for (i = 0; i < iterations; i++)
+               while (rte_ring_sc_dequeue_bulk(r, burst, size) != 0)
+                       rte_pause();
+       const uint64_t sc_end = rte_rdtsc();
+
+       const uint64_t mc_start = rte_rdtsc();
+       for (i = 0; i < iterations; i++)
+               while (rte_ring_mc_dequeue_bulk(r, burst, size) != 0)
+                       rte_pause();
+       const uint64_t mc_end = rte_rdtsc();
+
+       params->spsc = ((double)(sc_end - sc_start))/(iterations*size);
+       params->mpmc = ((double)(mc_end - mc_start))/(iterations*size);
+       return 0;
+}
+
+/*
+ * Function that calls the enqueue and dequeue bulk functions on pairs of cores.
+ * used to measure ring perf between hyperthreads, cores and sockets.
+ */
+static void
+run_on_core_pair(struct lcore_pair *cores,
+               lcore_function_t f1, lcore_function_t f2)
+{
+       struct thread_params param1 = {0}, param2 = {0};
+       unsigned i;
+       for (i = 0; i < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); i++) {
+               lcore_count = 0;
+               param1.size = param2.size = bulk_sizes[i];
+               if (cores->c1 == rte_get_master_lcore()) {
+                       rte_eal_remote_launch(f2, &param2, cores->c2);
+                       f1(&param1);
+                       rte_eal_wait_lcore(cores->c2);
+               } else {
+                       rte_eal_remote_launch(f1, &param1, cores->c1);
+                       rte_eal_remote_launch(f2, &param2, cores->c2);
+                       rte_eal_wait_lcore(cores->c1);
+                       rte_eal_wait_lcore(cores->c2);
+               }
+               printf("SP/SC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[i],
+                               param1.spsc + param2.spsc);
+               printf("MP/MC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[i],
+                               param1.mpmc + param2.mpmc);
+       }
+}
+
+/*
+ * Test function that determines how long an enqueue + dequeue of a single item
+ * takes on a single lcore. Result is for comparison with the bulk enq+deq.
+ */
+static void
+test_single_enqueue_dequeue(void)
+{
+       const unsigned iter_shift = 24;
+       const unsigned iterations = 1<<iter_shift;
+       unsigned i = 0;
+       void *burst = NULL;
+
+       const uint64_t sc_start = rte_rdtsc();
+       for (i = 0; i < iterations; i++) {
+               rte_ring_sp_enqueue(r, burst);
+               rte_ring_sc_dequeue(r, &burst);
+       }
+       const uint64_t sc_end = rte_rdtsc();
+
+       const uint64_t mc_start = rte_rdtsc();
+       for (i = 0; i < iterations; i++) {
+               rte_ring_mp_enqueue(r, burst);
+               rte_ring_mc_dequeue(r, &burst);
+       }
+       const uint64_t mc_end = rte_rdtsc();
+
+       printf("SP/SC single enq/dequeue: %"PRIu64"\n",
+                       (sc_end-sc_start) >> iter_shift);
+       printf("MP/MC single enq/dequeue: %"PRIu64"\n",
+                       (mc_end-mc_start) >> iter_shift);
+}
+
+/*
+ * Test that does both enqueue and dequeue on a core using the burst() API calls
+ * instead of the bulk() calls used in other tests. Results should be the same
+ * as for the bulk function called on a single lcore.
+ */
+static void
+test_burst_enqueue_dequeue(void)
+{
+       const unsigned iter_shift = 23;
+       const unsigned iterations = 1<<iter_shift;
+       unsigned sz, i = 0;
+       void *burst[MAX_BURST] = {0};
+
+       for (sz = 0; sz < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); sz++) {
+               const uint64_t sc_start = rte_rdtsc();
+               for (i = 0; i < iterations; i++) {
+                       rte_ring_sp_enqueue_burst(r, burst, bulk_sizes[sz]);
+                       rte_ring_sc_dequeue_burst(r, burst, bulk_sizes[sz]);
+               }
+               const uint64_t sc_end = rte_rdtsc();
+
+               const uint64_t mc_start = rte_rdtsc();
+               for (i = 0; i < iterations; i++) {
+                       rte_ring_mp_enqueue_burst(r, burst, bulk_sizes[sz]);
+                       rte_ring_mc_dequeue_burst(r, burst, bulk_sizes[sz]);
+               }
+               const uint64_t mc_end = rte_rdtsc();
+
+               uint64_t mc_avg = ((mc_end-mc_start) >> iter_shift) / bulk_sizes[sz];
+               uint64_t sc_avg = ((sc_end-sc_start) >> iter_shift) / bulk_sizes[sz];
+
+               printf("SP/SC burst enq/dequeue (size: %u): %"PRIu64"\n", bulk_sizes[sz],
+                               sc_avg);
+               printf("MP/MC burst enq/dequeue (size: %u): %"PRIu64"\n", bulk_sizes[sz],
+                               mc_avg);
+       }
+}
+
+/* Times enqueue and dequeue on a single lcore */
+static void
+test_bulk_enqueue_dequeue(void)
+{
+       const unsigned iter_shift = 23;
+       const unsigned iterations = 1<<iter_shift;
+       unsigned sz, i = 0;
+       void *burst[MAX_BURST] = {0};
+
+       for (sz = 0; sz < sizeof(bulk_sizes)/sizeof(bulk_sizes[0]); sz++) {
+               const uint64_t sc_start = rte_rdtsc();
+               for (i = 0; i < iterations; i++) {
+                       rte_ring_sp_enqueue_bulk(r, burst, bulk_sizes[sz]);
+                       rte_ring_sc_dequeue_bulk(r, burst, bulk_sizes[sz]);
+               }
+               const uint64_t sc_end = rte_rdtsc();
+
+               const uint64_t mc_start = rte_rdtsc();
+               for (i = 0; i < iterations; i++) {
+                       rte_ring_mp_enqueue_bulk(r, burst, bulk_sizes[sz]);
+                       rte_ring_mc_dequeue_bulk(r, burst, bulk_sizes[sz]);
+               }
+               const uint64_t mc_end = rte_rdtsc();
+
+               double sc_avg = ((double)(sc_end-sc_start) /
+                               (iterations * bulk_sizes[sz]));
+               double mc_avg = ((double)(mc_end-mc_start) /
+                               (iterations * bulk_sizes[sz]));
+
+               printf("SP/SC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[sz],
+                               sc_avg);
+               printf("MP/MC bulk enq/dequeue (size: %u): %.2F\n", bulk_sizes[sz],
+                               mc_avg);
+       }
+}
+
+static int
+test_ring_perf(void)
+{
+       struct lcore_pair cores;
+       r = rte_ring_create(RING_NAME, RING_SIZE, rte_socket_id(), 0);
+       if (r == NULL && (r = rte_ring_lookup(RING_NAME)) == NULL)
+               return -1;
+
+       printf("### Testing single element and burst enq/deq ###\n");
+       test_single_enqueue_dequeue();
+       test_burst_enqueue_dequeue();
+
+       printf("\n### Testing empty dequeue ###\n");
+       test_empty_dequeue();
+
+       printf("\n### Testing using a single lcore ###\n");
+       test_bulk_enqueue_dequeue();
+
+       if (get_two_hyperthreads(&cores) == 0) {
+               printf("\n### Testing using two hyperthreads ###\n");
+               run_on_core_pair(&cores, enqueue_bulk, dequeue_bulk);
+       }
+       if (get_two_cores(&cores) == 0) {
+               printf("\n### Testing using two physical cores ###\n");
+               run_on_core_pair(&cores, enqueue_bulk, dequeue_bulk);
+       }
+       if (get_two_sockets(&cores) == 0) {
+               printf("\n### Testing using two NUMA nodes ###\n");
+               run_on_core_pair(&cores, enqueue_bulk, dequeue_bulk);
+       }
+       return 0;
+}
+
+static struct test_command ring_perf_cmd = {
+       .command = "ring_perf_autotest",
+       .callback = test_ring_perf,
+};
+REGISTER_TEST_COMMAND(ring_perf_cmd);