Imported Upstream version 16.04
[deb_dpdk.git] / doc / guides / prog_guide / hash_lib.rst
diff --git a/doc/guides/prog_guide/hash_lib.rst b/doc/guides/prog_guide/hash_lib.rst
new file mode 100644 (file)
index 0000000..7944640
--- /dev/null
@@ -0,0 +1,254 @@
+..  BSD LICENSE
+    Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
+    All rights reserved.
+
+    Redistribution and use in source and binary forms, with or without
+    modification, are permitted provided that the following conditions
+    are met:
+
+    * Redistributions of source code must retain the above copyright
+    notice, this list of conditions and the following disclaimer.
+    * Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in
+    the documentation and/or other materials provided with the
+    distribution.
+    * Neither the name of Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived
+    from this software without specific prior written permission.
+
+    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+.. _Hash_Library:
+
+Hash Library
+============
+
+The DPDK provides a Hash Library for creating hash table for fast lookup.
+The hash table is a data structure optimized for searching through a set of entries that are each identified by a unique key.
+For increased performance the DPDK Hash requires that all the keys have the same number of bytes which is set at the hash creation time.
+
+Hash API Overview
+-----------------
+
+The main configuration parameters for the hash are:
+
+*   Total number of hash entries
+
+*   Size of the key in bytes
+
+The hash also allows the configuration of some low-level implementation related parameters such as:
+
+*   Hash function to translate the key into a bucket index
+
+The main methods exported by the hash are:
+
+*   Add entry with key: The key is provided as input. If a new entry is successfully added to the hash for the specified key,
+    or there is already an entry in the hash for the specified key, then the position of the entry is returned.
+    If the operation was not successful, for example due to lack of free entries in the hash, then a negative value is returned;
+
+*   Delete entry with key: The key is provided as input. If an entry with the specified key is found in the hash,
+    then the entry is removed from the hash and the position where the entry was found in the hash is returned.
+    If no entry with the specified key exists in the hash, then a negative value is returned
+
+*   Lookup for entry with key: The key is provided as input. If an entry with the specified key is found in the hash (lookup hit),
+    then the position of the entry is returned, otherwise (lookup miss) a negative value is returned.
+
+Apart from these method explained above, the API allows the user three more options:
+
+*   Add / lookup / delete with key and precomputed hash: Both the key and its precomputed hash are provided as input. This allows
+    the user to perform these operations faster, as hash is already computed.
+
+*   Add / lookup with key and data: A pair of key-value is provided as input. This allows the user to store
+    not only the key, but also data which may be either a 8-byte integer or a pointer to external data (if data size is more than 8 bytes).
+
+*   Combination of the two options above: User can provide key, precomputed hash and data.
+
+Also, the API contains a method to allow the user to look up entries in bursts, achieving higher performance
+than looking up individual entries, as the function prefetches next entries at the time it is operating
+with the first ones, which reduces significantly the impact of the necessary memory accesses.
+Notice that this method uses a pipeline of 8 entries (4 stages of 2 entries), so it is highly recommended
+to use at least 8 entries per burst.
+
+The actual data associated with each key can be either managed by the user using a separate table that
+mirrors the hash in terms of number of entries and position of each entry,
+as shown in the Flow Classification use case describes in the following sections,
+or stored in the hash table itself.
+
+The example hash tables in the L2/L3 Forwarding sample applications defines which port to forward a packet to based on a packet flow identified by the five-tuple lookup.
+However, this table could also be used for more sophisticated features and provide many other functions and actions that could be performed on the packets and flows.
+
+Multi-process support
+---------------------
+
+The hash library can be used in a multi-process environment, minding that only lookups are thread-safe.
+The only function that can only be used in single-process mode is rte_hash_set_cmp_func(), which sets up
+a custom compare function, which is assigned to a function pointer (therefore, it is not supported in
+multi-process mode).
+
+Implementation Details
+----------------------
+
+The hash table has two main tables:
+
+* First table is an array of entries which is further divided into buckets,
+  with the same number of consecutive array entries in each bucket. Each entry contains the computed primary
+  and secondary hashes of a given key (explained below), and an index to the second table.
+
+* The second table is an array of all the keys stored in the hash table and its data associated to each key.
+
+The hash library uses the cuckoo hash method to resolve collisions.
+For any input key, there are two possible buckets (primary and secondary/alternative location)
+where that key can be stored in the hash, therefore only the entries within those bucket need to be examined
+when the key is looked up.
+The lookup speed is achieved by reducing the number of entries to be scanned from the total
+number of hash entries down to the number of entries in the two hash buckets,
+as opposed to the basic method of linearly scanning all the entries in the array.
+The hash uses a hash function (configurable) to translate the input key into a 4-byte key signature.
+The bucket index is the key signature modulo the number of hash buckets.
+
+Once the buckets are identified, the scope of the hash add,
+delete and lookup operations is reduced to the entries in those buckets (it is very likely that entries are in the primary bucket).
+
+To speed up the search logic within the bucket, each hash entry stores the 4-byte key signature together with the full key for each hash entry.
+For large key sizes, comparing the input key against a key from the bucket can take significantly more time than
+comparing the 4-byte signature of the input key against the signature of a key from the bucket.
+Therefore, the signature comparison is done first and the full key comparison done only when the signatures matches.
+The full key comparison is still necessary, as two input keys from the same bucket can still potentially have the same 4-byte hash signature,
+although this event is relatively rare for hash functions providing good uniform distributions for the set of input keys.
+
+Example of lookup:
+
+First of all, the primary bucket is identified and entry is likely to be stored there.
+If signature was stored there, we compare its key against the one provided and return the position
+where it was stored and/or the data associated to that key if there is a match.
+If signature is not in the primary bucket, the secondary bucket is looked up, where same procedure
+is carried out. If there is no match there either, key is considered not to be in the table.
+
+Example of addition:
+
+Like lookup, the primary and secondary buckets are identified. If there is an empty slot in
+the primary bucket, primary and secondary signatures are stored in that slot, key and data (if any) are added to
+the second table and an index to the position in the second table is stored in the slot of the first table.
+If there is no space in the primary bucket, one of the entries on that bucket is pushed to its alternative location,
+and the key to be added is inserted in its position.
+To know where the alternative bucket of the evicted entry is, the secondary signature is looked up and alternative bucket index
+is calculated from doing the modulo, as seen above. If there is room in the alternative bucket, the evicted entry
+is stored in it. If not, same process is repeated (one of the entries gets pushed) until a non full bucket is found.
+Notice that despite all the entry movement in the first table, the second table is not touched, which would impact
+greatly in performance.
+
+In the very unlikely event that table enters in a loop where same entries are being evicted indefinitely,
+key is considered not able to be stored.
+With random keys, this method allows the user to get around 90% of the table utilization, without
+having to drop any stored entry (LRU) or allocate more memory (extended buckets).
+
+Entry distribution in hash table
+--------------------------------
+
+As mentioned above, Cuckoo hash implementation pushes elements out of their bucket,
+if there is a new entry to be added which primary location coincides with their current bucket,
+being pushed to their alternative location.
+Therefore, as user adds more entries to the hash table, distribution of the hash values
+in the buckets will change, being most of them in their primary location and a few in
+their secondary location, which the later will increase, as table gets busier.
+This information is quite useful, as performance may be lower as more entries
+are evicted to their secondary location.
+
+See the tables below showing example entry distribution as table utilization increases.
+
+.. _table_hash_lib_1:
+
+.. table:: Entry distribution measured with an example table with 1024 random entries using jhash algorithm
+
+   +--------------+-----------------------+-------------------------+
+   | % Table used | % In Primary location | % In Secondary location |
+   +==============+=======================+=========================+
+   |      25      |         100           |           0             |
+   +--------------+-----------------------+-------------------------+
+   |      50      |         96.1          |           3.9           |
+   +--------------+-----------------------+-------------------------+
+   |      75      |         88.2          |           11.8          |
+   +--------------+-----------------------+-------------------------+
+   |      80      |         86.3          |           13.7          |
+   +--------------+-----------------------+-------------------------+
+   |      85      |         83.1          |           16.9          |
+   +--------------+-----------------------+-------------------------+
+   |      90      |         77.3          |           22.7          |
+   +--------------+-----------------------+-------------------------+
+   |      95.8    |         64.5          |           35.5          |
+   +--------------+-----------------------+-------------------------+
+
+|
+
+.. _table_hash_lib_2:
+
+.. table:: Entry distribution measured with an example table with 1 million random entries using jhash algorithm
+
+   +--------------+-----------------------+-------------------------+
+   | % Table used | % In Primary location | % In Secondary location |
+   +==============+=======================+=========================+
+   |      50      |         96            |           4             |
+   +--------------+-----------------------+-------------------------+
+   |      75      |         86.9          |           13.1          |
+   +--------------+-----------------------+-------------------------+
+   |      80      |         83.9          |           16.1          |
+   +--------------+-----------------------+-------------------------+
+   |      85      |         80.1          |           19.9          |
+   +--------------+-----------------------+-------------------------+
+   |      90      |         74.8          |           25.2          |
+   +--------------+-----------------------+-------------------------+
+   |      94.5    |         67.4          |           32.6          |
+   +--------------+-----------------------+-------------------------+
+
+.. note::
+
+   Last values on the tables above are the average maximum table
+   utilization with random keys and using Jenkins hash function.
+
+Use Case: Flow Classification
+-----------------------------
+
+Flow classification is used to map each input packet to the connection/flow it belongs to.
+This operation is necessary as the processing of each input packet is usually done in the context of their connection,
+so the same set of operations is applied to all the packets from the same flow.
+
+Applications using flow classification typically have a flow table to manage, with each separate flow having an entry associated with it in this table.
+The size of the flow table entry is application specific, with typical values of 4, 16, 32 or 64 bytes.
+
+Each application using flow classification typically has a mechanism defined to uniquely identify a flow based on
+a number of fields read from the input packet that make up the flow key.
+One example is to use the DiffServ 5-tuple made up of the following fields of the IP and transport layer packet headers:
+Source IP Address, Destination IP Address, Protocol, Source Port, Destination Port.
+
+The DPDK hash provides a generic method to implement an application specific flow classification mechanism.
+Given a flow table implemented as an array, the application should create a hash object with the same number of entries as the flow table and
+with the hash key size set to the number of bytes in the selected flow key.
+
+The flow table operations on the application side are described below:
+
+*   Add flow: Add the flow key to hash.
+    If the returned position is valid, use it to access the flow entry in the flow table for adding a new flow or
+    updating the information associated with an existing flow.
+    Otherwise, the flow addition failed, for example due to lack of free entries for storing new flows.
+
+*   Delete flow: Delete the flow key from the hash. If the returned position is valid,
+    use it to access the flow entry in the flow table to invalidate the information associated with the flow.
+
+*   Lookup flow: Lookup for the flow key in the hash.
+    If the returned position is valid (flow lookup hit), use the returned position to access the flow entry in the flow table.
+    Otherwise (flow lookup miss) there is no flow registered for the current packet.
+
+References
+----------
+
+*   Donald E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching (2nd Edition), 1998, Addison-Wesley Professional