Imported Upstream version 16.04
[deb_dpdk.git] / drivers / net / bnx2x / ecore_init.h
diff --git a/drivers/net/bnx2x/ecore_init.h b/drivers/net/bnx2x/ecore_init.h
new file mode 100644 (file)
index 0000000..d25e280
--- /dev/null
@@ -0,0 +1,819 @@
+/*-
+ * Copyright (c) 2007-2013 QLogic Corporation. All rights reserved.
+ *
+ * Eric Davis        <edavis@broadcom.com>
+ * David Christensen <davidch@broadcom.com>
+ * Gary Zambrano     <zambrano@broadcom.com>
+ *
+ * Copyright (c) 2013-2015 Brocade Communications Systems, Inc.
+ * Copyright (c) 2015 QLogic Corporation.
+ * All rights reserved.
+ * www.qlogic.com
+ *
+ * See LICENSE.bnx2x_pmd for copyright and licensing details.
+ */
+
+#ifndef ECORE_INIT_H
+#define ECORE_INIT_H
+
+/* Init operation types and structures */
+enum {
+       OP_RD = 0x1,    /* read a single register */
+       OP_WR,          /* write a single register */
+       OP_SW,          /* copy a string to the device */
+       OP_ZR,          /* clear memory */
+       OP_ZP,          /* unzip then copy with DMAE */
+       OP_WR_64,       /* write 64 bit pattern */
+       OP_WB,          /* copy a string using DMAE */
+       OP_WB_ZR,       /* Clear a string using DMAE or indirect-wr */
+       OP_IF_MODE_OR,  /* Skip the following ops if all init modes don't match */
+       OP_IF_MODE_AND, /* Skip the following ops if any init modes don't match */
+       OP_IF_PHASE,
+       OP_RT,
+       OP_DELAY,
+       OP_VERIFY,
+       OP_MAX
+};
+
+enum {
+       STAGE_START,
+       STAGE_END,
+};
+
+/* Returns the index of start or end of a specific block stage in ops array*/
+#define BLOCK_OPS_IDX(block, stage, end) \
+       (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
+
+
+/* structs for the various opcodes */
+struct raw_op {
+       uint32_t op:8;
+       uint32_t offset:24;
+       uint32_t raw_data;
+};
+
+struct op_read {
+       uint32_t op:8;
+       uint32_t offset:24;
+       uint32_t val;
+};
+
+struct op_write {
+       uint32_t op:8;
+       uint32_t offset:24;
+       uint32_t val;
+};
+
+struct op_arr_write {
+       uint32_t op:8;
+       uint32_t offset:24;
+#ifdef __BIG_ENDIAN
+       uint16_t data_len;
+       uint16_t data_off;
+#else /* __LITTLE_ENDIAN */
+       uint16_t data_off;
+       uint16_t data_len;
+#endif
+};
+
+struct op_zero {
+       uint32_t op:8;
+       uint32_t offset:24;
+       uint32_t len;
+};
+
+struct op_if_mode {
+       uint32_t op:8;
+       uint32_t cmd_offset:24;
+       uint32_t mode_bit_map;
+};
+
+struct op_if_phase {
+       uint32_t op:8;
+       uint32_t cmd_offset:24;
+       uint32_t phase_bit_map;
+};
+
+struct op_delay {
+       uint32_t op:8;
+       uint32_t reserved:24;
+       uint32_t delay;
+};
+
+union init_op {
+       struct op_read          read;
+       struct op_write         write;
+       struct op_arr_write     arr_wr;
+       struct op_zero          zero;
+       struct raw_op           raw;
+       struct op_if_mode       if_mode;
+       struct op_if_phase      if_phase;
+       struct op_delay         delay;
+};
+
+
+/* Init Phases */
+enum {
+       PHASE_COMMON,
+       PHASE_PORT0,
+       PHASE_PORT1,
+       PHASE_PF0,
+       PHASE_PF1,
+       PHASE_PF2,
+       PHASE_PF3,
+       PHASE_PF4,
+       PHASE_PF5,
+       PHASE_PF6,
+       PHASE_PF7,
+       NUM_OF_INIT_PHASES
+};
+
+/* Init Modes */
+enum {
+       MODE_ASIC                      = 0x00000001,
+       MODE_FPGA                      = 0x00000002,
+       MODE_EMUL                      = 0x00000004,
+       MODE_E2                        = 0x00000008,
+       MODE_E3                        = 0x00000010,
+       MODE_PORT2                     = 0x00000020,
+       MODE_PORT4                     = 0x00000040,
+       MODE_SF                        = 0x00000080,
+       MODE_MF                        = 0x00000100,
+       MODE_MF_SD                     = 0x00000200,
+       MODE_MF_SI                     = 0x00000400,
+       MODE_MF_AFEX                   = 0x00000800,
+       MODE_E3_A0                     = 0x00001000,
+       MODE_E3_B0                     = 0x00002000,
+       MODE_COS3                      = 0x00004000,
+       MODE_COS6                      = 0x00008000,
+       MODE_LITTLE_ENDIAN             = 0x00010000,
+       MODE_BIG_ENDIAN                = 0x00020000,
+};
+
+/* Init Blocks */
+enum {
+       BLOCK_ATC,
+       BLOCK_BRB1,
+       BLOCK_CCM,
+       BLOCK_CDU,
+       BLOCK_CFC,
+       BLOCK_CSDM,
+       BLOCK_CSEM,
+       BLOCK_DBG,
+       BLOCK_DMAE,
+       BLOCK_DORQ,
+       BLOCK_HC,
+       BLOCK_IGU,
+       BLOCK_MISC,
+       BLOCK_NIG,
+       BLOCK_PBF,
+       BLOCK_PGLUE_B,
+       BLOCK_PRS,
+       BLOCK_PXP2,
+       BLOCK_PXP,
+       BLOCK_QM,
+       BLOCK_SRC,
+       BLOCK_TCM,
+       BLOCK_TM,
+       BLOCK_TSDM,
+       BLOCK_TSEM,
+       BLOCK_UCM,
+       BLOCK_UPB,
+       BLOCK_USDM,
+       BLOCK_USEM,
+       BLOCK_XCM,
+       BLOCK_XPB,
+       BLOCK_XSDM,
+       BLOCK_XSEM,
+       BLOCK_MISC_AEU,
+       NUM_OF_INIT_BLOCKS
+};
+
+
+
+
+
+
+
+
+/* Vnics per mode */
+#define ECORE_PORT2_MODE_NUM_VNICS 4
+
+
+/* QM queue numbers */
+#define ECORE_ETH_Q            0
+#define ECORE_TOE_Q            3
+#define ECORE_TOE_ACK_Q                6
+#define ECORE_ISCSI_Q          9
+#define ECORE_ISCSI_ACK_Q      11
+#define ECORE_FCOE_Q           10
+
+/* Vnics per mode */
+#define ECORE_PORT4_MODE_NUM_VNICS 2
+
+/* COS offset for port1 in E3 B0 4port mode */
+#define ECORE_E3B0_PORT1_COS_OFFSET 3
+
+/* QM Register addresses */
+#define ECORE_Q_VOQ_REG_ADDR(pf_q_num)\
+       (QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
+#define ECORE_VOQ_Q_REG_ADDR(cos, pf_q_num)\
+       (QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
+#define ECORE_Q_CMDQ_REG_ADDR(pf_q_num)\
+       (QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
+
+/* extracts the QM queue number for the specified port and vnic */
+#define ECORE_PF_Q_NUM(q_num, port, vnic)\
+       ((((port) << 1) | (vnic)) * 16 + (q_num))
+
+
+/* Maps the specified queue to the specified COS */
+static inline void ecore_map_q_cos(struct bnx2x_softc *sc, uint32_t q_num, uint32_t new_cos)
+{
+       /* find current COS mapping */
+       uint32_t curr_cos = REG_RD(sc, QM_REG_QVOQIDX_0 + q_num * 4);
+
+       /* check if queue->COS mapping has changed */
+       if (curr_cos != new_cos) {
+               uint32_t num_vnics = ECORE_PORT2_MODE_NUM_VNICS;
+               uint32_t reg_addr, reg_bit_map, vnic;
+
+               /* update parameters for 4port mode */
+               if (INIT_MODE_FLAGS(sc) & MODE_PORT4) {
+                       num_vnics = ECORE_PORT4_MODE_NUM_VNICS;
+                       if (PORT_ID(sc)) {
+                               curr_cos += ECORE_E3B0_PORT1_COS_OFFSET;
+                               new_cos += ECORE_E3B0_PORT1_COS_OFFSET;
+                       }
+               }
+
+               /* change queue mapping for each VNIC */
+               for (vnic = 0; vnic < num_vnics; vnic++) {
+                       uint32_t pf_q_num =
+                               ECORE_PF_Q_NUM(q_num, PORT_ID(sc), vnic);
+                       uint32_t q_bit_map = 1 << (pf_q_num & 0x1f);
+
+                       /* overwrite queue->VOQ mapping */
+                       REG_WR(sc, ECORE_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
+
+                       /* clear queue bit from current COS bit map */
+                       reg_addr = ECORE_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
+                       reg_bit_map = REG_RD(sc, reg_addr);
+                       REG_WR(sc, reg_addr, reg_bit_map & (~q_bit_map));
+
+                       /* set queue bit in new COS bit map */
+                       reg_addr = ECORE_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
+                       reg_bit_map = REG_RD(sc, reg_addr);
+                       REG_WR(sc, reg_addr, reg_bit_map | q_bit_map);
+
+                       /* set/clear queue bit in command-queue bit map
+                       (E2/E3A0 only, valid COS values are 0/1) */
+                       if (!(INIT_MODE_FLAGS(sc) & MODE_E3_B0)) {
+                               reg_addr = ECORE_Q_CMDQ_REG_ADDR(pf_q_num);
+                               reg_bit_map = REG_RD(sc, reg_addr);
+                               q_bit_map = 1 << (2 * (pf_q_num & 0xf));
+                               reg_bit_map = new_cos ?
+                                             (reg_bit_map | q_bit_map) :
+                                             (reg_bit_map & (~q_bit_map));
+                               REG_WR(sc, reg_addr, reg_bit_map);
+                       }
+               }
+       }
+}
+
+/* Configures the QM according to the specified per-traffic-type COSes */
+static inline void ecore_dcb_config_qm(struct bnx2x_softc *sc, enum cos_mode mode,
+                                      struct priority_cos *traffic_cos)
+{
+       ecore_map_q_cos(sc, ECORE_FCOE_Q,
+                       traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
+       ecore_map_q_cos(sc, ECORE_ISCSI_Q,
+                       traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
+       ecore_map_q_cos(sc, ECORE_ISCSI_ACK_Q,
+               traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
+       if (mode != STATIC_COS) {
+               /* required only in OVERRIDE_COS mode */
+               ecore_map_q_cos(sc, ECORE_ETH_Q,
+                               traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
+               ecore_map_q_cos(sc, ECORE_TOE_Q,
+                               traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
+               ecore_map_q_cos(sc, ECORE_TOE_ACK_Q,
+                               traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
+       }
+}
+
+
+/*
+ * congestion managment port init api description
+ * the api works as follows:
+ * the driver should pass the cmng_init_input struct, the port_init function
+ * will prepare the required internal ram structure which will be passed back
+ * to the driver (cmng_init) that will write it into the internal ram.
+ *
+ * IMPORTANT REMARKS:
+ * 1. the cmng_init struct does not represent the contiguous internal ram
+ *    structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
+ *    offset in order to write the port sub struct and the
+ *    PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
+ *    words - don't use memcpy!).
+ * 2. although the cmng_init struct is filled for the maximal vnic number
+ *    possible, the driver should only write the valid vnics into the internal
+ *    ram according to the appropriate port mode.
+ */
+#define BITS_TO_BYTES(x) ((x)/8)
+
+/* CMNG constants, as derived from system spec calculations */
+
+/* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
+#define DEF_MIN_RATE 100
+
+/* resolution of the rate shaping timer - 400 usec */
+#define RS_PERIODIC_TIMEOUT_USEC 400
+
+/*
+ *  number of bytes in single QM arbitration cycle -
+ *  coefficient for calculating the fairness timer
+ */
+#define QM_ARB_BYTES 160000
+
+/* resolution of Min algorithm 1:100 */
+#define MIN_RES 100
+
+/*
+ *  how many bytes above threshold for
+ *  the minimal credit of Min algorithm
+ */
+#define MIN_ABOVE_THRESH 32768
+
+/*
+ *  Fairness algorithm integration time coefficient -
+ *  for calculating the actual Tfair
+ */
+#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
+
+/* Memory of fairness algorithm - 2 cycles */
+#define FAIR_MEM 2
+#define SAFC_TIMEOUT_USEC 52
+
+#define SDM_TICKS 4
+
+
+static inline void ecore_init_max(const struct cmng_init_input *input_data,
+                                 uint32_t r_param, struct cmng_init *ram_data)
+{
+       uint32_t vnic;
+       struct cmng_vnic *vdata = &ram_data->vnic;
+       struct cmng_struct_per_port *pdata = &ram_data->port;
+       /*
+        * rate shaping per-port variables
+        *  100 micro seconds in SDM ticks = 25
+        *  since each tick is 4 microSeconds
+        */
+
+       pdata->rs_vars.rs_periodic_timeout =
+       RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
+
+       /* this is the threshold below which no timer arming will occur.
+        *  1.25 coefficient is for the threshold to be a little bigger
+        *  then the real time to compensate for timer in-accuracy
+        */
+       pdata->rs_vars.rs_threshold =
+       (5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
+
+       /* rate shaping per-vnic variables */
+       for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
+               /* global vnic counter */
+               vdata->vnic_max_rate[vnic].vn_counter.rate =
+               input_data->vnic_max_rate[vnic];
+               /*
+                * maximal Mbps for this vnic
+                * the quota in each timer period - number of bytes
+                * transmitted in this period
+                */
+               vdata->vnic_max_rate[vnic].vn_counter.quota =
+                       RS_PERIODIC_TIMEOUT_USEC *
+                       (uint32_t)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
+       }
+
+}
+
+static inline void ecore_init_max_per_vn(uint16_t vnic_max_rate,
+                                 struct rate_shaping_vars_per_vn *ram_data)
+{
+       /* global vnic counter */
+       ram_data->vn_counter.rate = vnic_max_rate;
+
+       /*
+       * maximal Mbps for this vnic
+       * the quota in each timer period - number of bytes
+       * transmitted in this period
+       */
+       ram_data->vn_counter.quota =
+               RS_PERIODIC_TIMEOUT_USEC * (uint32_t)vnic_max_rate / 8;
+}
+
+static inline void ecore_init_min(const struct cmng_init_input *input_data,
+                                 uint32_t r_param, struct cmng_init *ram_data)
+{
+       uint32_t vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
+       struct cmng_vnic *vdata = &ram_data->vnic;
+       struct cmng_struct_per_port *pdata = &ram_data->port;
+
+       /* this is the resolution of the fairness timer */
+       fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
+
+       /*
+        * fairness per-port variables
+        * for 10G it is 1000usec. for 1G it is 10000usec.
+        */
+       tFair = T_FAIR_COEF / input_data->port_rate;
+
+       /* this is the threshold below which we won't arm the timer anymore */
+       pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
+
+       /*
+        *  we multiply by 1e3/8 to get bytes/msec. We don't want the credits
+        *  to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
+        */
+       pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
+
+       /* since each tick is 4 microSeconds */
+       pdata->fair_vars.fairness_timeout =
+                               fair_periodic_timeout_usec / SDM_TICKS;
+
+       /* calculate sum of weights */
+       vnicWeightSum = 0;
+
+       for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++)
+               vnicWeightSum += input_data->vnic_min_rate[vnic];
+
+       /* global vnic counter */
+       if (vnicWeightSum > 0) {
+               /* fairness per-vnic variables */
+               for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
+                       /*
+                        *  this is the credit for each period of the fairness
+                        *  algorithm - number of bytes in T_FAIR (this vnic
+                        *  share of the port rate)
+                        */
+                       vdata->vnic_min_rate[vnic].vn_credit_delta =
+                               ((uint32_t)(input_data->vnic_min_rate[vnic]) * 100 *
+                               (T_FAIR_COEF / (8 * 100 * vnicWeightSum)));
+                       if (vdata->vnic_min_rate[vnic].vn_credit_delta <
+                           pdata->fair_vars.fair_threshold +
+                           MIN_ABOVE_THRESH) {
+                               vdata->vnic_min_rate[vnic].vn_credit_delta =
+                                       pdata->fair_vars.fair_threshold +
+                                       MIN_ABOVE_THRESH;
+                       }
+               }
+       }
+}
+
+static inline void ecore_init_fw_wrr(const struct cmng_init_input *input_data,
+                                    struct cmng_init *ram_data)
+{
+       uint32_t vnic, cos;
+       uint32_t cosWeightSum = 0;
+       struct cmng_vnic *vdata = &ram_data->vnic;
+       struct cmng_struct_per_port *pdata = &ram_data->port;
+
+       for (cos = 0; cos < MAX_COS_NUMBER; cos++)
+               cosWeightSum += input_data->cos_min_rate[cos];
+
+       if (cosWeightSum > 0) {
+
+               for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
+                       /*
+                        *  Since cos and vnic shouldn't work together the rate
+                        *  to divide between the coses is the port rate.
+                        */
+                       uint32_t *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
+                       for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
+                               /*
+                                * this is the credit for each period of
+                                * the fairness algorithm - number of bytes
+                                * in T_FAIR (this cos share of the vnic rate)
+                                */
+                               ccd[cos] =
+                                   ((uint32_t)input_data->cos_min_rate[cos] * 100 *
+                                   (T_FAIR_COEF / (8 * 100 * cosWeightSum)));
+                                if (ccd[cos] < pdata->fair_vars.fair_threshold
+                                               + MIN_ABOVE_THRESH) {
+                                       ccd[cos] =
+                                           pdata->fair_vars.fair_threshold +
+                                           MIN_ABOVE_THRESH;
+                               }
+                       }
+               }
+       }
+}
+
+static inline void ecore_init_safc(struct cmng_init *ram_data)
+{
+       /* in microSeconds */
+       ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
+}
+
+/* Congestion management port init */
+static inline void ecore_init_cmng(const struct cmng_init_input *input_data,
+                                  struct cmng_init *ram_data)
+{
+       uint32_t r_param;
+       ECORE_MEMSET(ram_data, 0,sizeof(struct cmng_init));
+
+       ram_data->port.flags = input_data->flags;
+
+       /*
+        *  number of bytes transmitted in a rate of 10Gbps
+        *  in one usec = 1.25KB.
+        */
+       r_param = BITS_TO_BYTES(input_data->port_rate);
+       ecore_init_max(input_data, r_param, ram_data);
+       ecore_init_min(input_data, r_param, ram_data);
+       ecore_init_fw_wrr(input_data, ram_data);
+       ecore_init_safc(ram_data);
+}
+
+
+
+
+/* Returns the index of start or end of a specific block stage in ops array*/
+#define BLOCK_OPS_IDX(block, stage, end) \
+                       (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
+
+
+#define INITOP_SET             0       /* set the HW directly */
+#define INITOP_CLEAR           1       /* clear the HW directly */
+#define INITOP_INIT            2       /* set the init-value array */
+
+/****************************************************************************
+* ILT management
+****************************************************************************/
+struct ilt_line {
+       ecore_dma_addr_t page_mapping;
+       void *page;
+       uint32_t size;
+};
+
+struct ilt_client_info {
+       uint32_t page_size;
+       uint16_t start;
+       uint16_t end;
+       uint16_t client_num;
+       uint16_t flags;
+#define ILT_CLIENT_SKIP_INIT   0x1
+#define ILT_CLIENT_SKIP_MEM    0x2
+};
+
+struct ecore_ilt {
+       uint32_t start_line;
+       struct ilt_line         *lines;
+       struct ilt_client_info  clients[4];
+#define ILT_CLIENT_CDU 0
+#define ILT_CLIENT_QM  1
+#define ILT_CLIENT_SRC 2
+#define ILT_CLIENT_TM  3
+};
+
+/****************************************************************************
+* SRC configuration
+****************************************************************************/
+struct src_ent {
+       uint8_t opaque[56];
+       uint64_t next;
+};
+
+/****************************************************************************
+* Parity configuration
+****************************************************************************/
+#define BLOCK_PRTY_INFO(block, en_mask, m1h, m2, m3) \
+{ \
+       block##_REG_##block##_PRTY_MASK, \
+       block##_REG_##block##_PRTY_STS_CLR, \
+       en_mask, {m1h, m2, m3}, #block \
+}
+
+#define BLOCK_PRTY_INFO_0(block, en_mask, m1h, m2, m3) \
+{ \
+       block##_REG_##block##_PRTY_MASK_0, \
+       block##_REG_##block##_PRTY_STS_CLR_0, \
+       en_mask, {m1h, m2, m3}, #block"_0" \
+}
+
+#define BLOCK_PRTY_INFO_1(block, en_mask, m1h, m2, m3) \
+{ \
+       block##_REG_##block##_PRTY_MASK_1, \
+       block##_REG_##block##_PRTY_STS_CLR_1, \
+       en_mask, {m1h, m2, m3}, #block"_1" \
+}
+
+static const struct {
+       uint32_t mask_addr;
+       uint32_t sts_clr_addr;
+       uint32_t en_mask;               /* Mask to enable parity attentions */
+       struct {
+               uint32_t e1h;   /* 57711 */
+               uint32_t e2;            /* 57712 */
+               uint32_t e3;            /* 578xx */
+       } reg_mask;             /* Register mask (all valid bits) */
+       char name[8];           /* Block's longest name is 7 characters long
+                                * (name + suffix)
+                                */
+} ecore_blocks_parity_data[] = {
+       /* bit 19 masked */
+       /* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
+       /* bit 5,18,20-31 */
+       /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
+       /* bit 5 */
+       /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20); */
+       /* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
+       /* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
+
+       /* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
+        * want to handle "system kill" flow at the moment.
+        */
+       BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x7ffffff,
+                       0x7ffffff),
+       BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff,
+                         0xffffffff),
+       BLOCK_PRTY_INFO_1(PXP2, 0x1ffffff, 0x7f, 0x7ff, 0x1ffffff),
+       BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0, 0),
+       BLOCK_PRTY_INFO(NIG, 0xffffffff, 0xffffffff, 0, 0),
+       BLOCK_PRTY_INFO_0(NIG,  0xffffffff, 0, 0xffffffff, 0xffffffff),
+       BLOCK_PRTY_INFO_1(NIG,  0xffff, 0, 0xff, 0xffff),
+       BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0x7ff, 0x7ff),
+       BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1),
+       BLOCK_PRTY_INFO(QM, 0, 0xfff, 0xfff, 0xfff),
+       BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0x1f, 0x1f),
+       BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0x3, 0x3),
+       BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3),
+       {GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
+               GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
+               {0xf, 0xf, 0xf}, "UPB"},
+       {GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
+               GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
+               {0xf, 0xf, 0xf}, "XPB"},
+       BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7),
+       BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f),
+       BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0x3f),
+       BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1),
+       BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf),
+       BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf),
+       BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff),
+       BLOCK_PRTY_INFO(PBF, 0, 0x3ffff, 0xfffff, 0xfffffff),
+       BLOCK_PRTY_INFO(TM, 0, 0x7f, 0x7f, 0x7f),
+       BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff),
+       BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff),
+       BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff),
+       BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff),
+       BLOCK_PRTY_INFO(TCM, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
+       BLOCK_PRTY_INFO(CCM, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
+       BLOCK_PRTY_INFO(UCM, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
+       BLOCK_PRTY_INFO(XCM, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
+       BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff),
+       BLOCK_PRTY_INFO_1(TSEM, 0, 0x1f, 0x3f, 0x3f),
+       BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff),
+       BLOCK_PRTY_INFO_1(USEM, 0, 0x1f, 0x1f, 0x1f),
+       BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff),
+       BLOCK_PRTY_INFO_1(CSEM, 0, 0x1f, 0x1f, 0x1f),
+       BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff),
+       BLOCK_PRTY_INFO_1(XSEM, 0, 0x1f, 0x3f, 0x3f),
+};
+
+
+/* [28] MCP Latched rom_parity
+ * [29] MCP Latched ump_rx_parity
+ * [30] MCP Latched ump_tx_parity
+ * [31] MCP Latched scpad_parity
+ */
+#define MISC_AEU_ENABLE_MCP_PRTY_BITS  \
+       (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
+        AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
+        AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \
+        AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
+
+/* Below registers control the MCP parity attention output. When
+ * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
+ * enabled, when cleared - disabled.
+ */
+static const uint32_t mcp_attn_ctl_regs[] = {
+       MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
+       MISC_REG_AEU_ENABLE4_NIG_0,
+       MISC_REG_AEU_ENABLE4_PXP_0,
+       MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
+       MISC_REG_AEU_ENABLE4_NIG_1,
+       MISC_REG_AEU_ENABLE4_PXP_1
+};
+
+static inline void ecore_set_mcp_parity(struct bnx2x_softc *sc, uint8_t enable)
+{
+       uint32_t i;
+       uint32_t reg_val;
+
+       for (i = 0; i < ARRSIZE(mcp_attn_ctl_regs); i++) {
+               reg_val = REG_RD(sc, mcp_attn_ctl_regs[i]);
+
+               if (enable)
+                       reg_val |= MISC_AEU_ENABLE_MCP_PRTY_BITS;
+               else
+                       reg_val &= ~MISC_AEU_ENABLE_MCP_PRTY_BITS;
+
+               REG_WR(sc, mcp_attn_ctl_regs[i], reg_val);
+       }
+}
+
+static inline uint32_t ecore_parity_reg_mask(struct bnx2x_softc *sc, int idx)
+{
+       if (CHIP_IS_E1H(sc))
+               return ecore_blocks_parity_data[idx].reg_mask.e1h;
+       else if (CHIP_IS_E2(sc))
+               return ecore_blocks_parity_data[idx].reg_mask.e2;
+       else /* CHIP_IS_E3 */
+               return ecore_blocks_parity_data[idx].reg_mask.e3;
+}
+
+static inline void ecore_disable_blocks_parity(struct bnx2x_softc *sc)
+{
+       uint32_t i;
+
+       for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
+               uint32_t dis_mask = ecore_parity_reg_mask(sc, i);
+
+               if (dis_mask) {
+                       REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
+                              dis_mask);
+                       ECORE_MSG("Setting parity mask "
+                                                "for %s to\t\t0x%x",
+                                   ecore_blocks_parity_data[i].name, dis_mask);
+               }
+       }
+
+       /* Disable MCP parity attentions */
+       ecore_set_mcp_parity(sc, FALSE);
+}
+
+/**
+ * Clear the parity error status registers.
+ */
+static inline void ecore_clear_blocks_parity(struct bnx2x_softc *sc)
+{
+       uint32_t i;
+       uint32_t reg_val, mcp_aeu_bits =
+               AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
+               AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
+               AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
+               AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
+
+       /* Clear SEM_FAST parities */
+       REG_WR(sc, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
+       REG_WR(sc, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
+       REG_WR(sc, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
+       REG_WR(sc, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
+
+       for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
+               uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
+
+               if (reg_mask) {
+                       reg_val = REG_RD(sc, ecore_blocks_parity_data[i].
+                                        sts_clr_addr);
+                       if (reg_val & reg_mask)
+                               ECORE_MSG("Parity errors in %s: 0x%x",
+                                          ecore_blocks_parity_data[i].name,
+                                          reg_val & reg_mask);
+               }
+       }
+
+       /* Check if there were parity attentions in MCP */
+       reg_val = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_MCP);
+       if (reg_val & mcp_aeu_bits)
+               ECORE_MSG("Parity error in MCP: 0x%x",
+                          reg_val & mcp_aeu_bits);
+
+       /* Clear parity attentions in MCP:
+        * [7]  clears Latched rom_parity
+        * [8]  clears Latched ump_rx_parity
+        * [9]  clears Latched ump_tx_parity
+        * [10] clears Latched scpad_parity (both ports)
+        */
+       REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
+}
+
+static inline void ecore_enable_blocks_parity(struct bnx2x_softc *sc)
+{
+       uint32_t i;
+
+       for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
+               uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
+
+               if (reg_mask)
+                       REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
+                               ecore_blocks_parity_data[i].en_mask & reg_mask);
+       }
+
+       /* Enable MCP parity attentions */
+       ecore_set_mcp_parity(sc, TRUE);
+}
+
+
+#endif /* ECORE_INIT_H */