Imported Upstream version 16.04
[deb_dpdk.git] / drivers / net / e1000 / base / e1000_mac.c
diff --git a/drivers/net/e1000/base/e1000_mac.c b/drivers/net/e1000/base/e1000_mac.c
new file mode 100644 (file)
index 0000000..a0f3a99
--- /dev/null
@@ -0,0 +1,2249 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2015, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#include "e1000_api.h"
+
+STATIC s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
+STATIC void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
+STATIC void e1000_config_collision_dist_generic(struct e1000_hw *hw);
+STATIC int e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
+
+/**
+ *  e1000_init_mac_ops_generic - Initialize MAC function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Setups up the function pointers to no-op functions
+ **/
+void e1000_init_mac_ops_generic(struct e1000_hw *hw)
+{
+       struct e1000_mac_info *mac = &hw->mac;
+       DEBUGFUNC("e1000_init_mac_ops_generic");
+
+       /* General Setup */
+       mac->ops.init_params = e1000_null_ops_generic;
+       mac->ops.init_hw = e1000_null_ops_generic;
+       mac->ops.reset_hw = e1000_null_ops_generic;
+       mac->ops.setup_physical_interface = e1000_null_ops_generic;
+       mac->ops.get_bus_info = e1000_null_ops_generic;
+       mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie;
+       mac->ops.read_mac_addr = e1000_read_mac_addr_generic;
+       mac->ops.config_collision_dist = e1000_config_collision_dist_generic;
+       mac->ops.clear_hw_cntrs = e1000_null_mac_generic;
+       /* LED */
+       mac->ops.cleanup_led = e1000_null_ops_generic;
+       mac->ops.setup_led = e1000_null_ops_generic;
+       mac->ops.blink_led = e1000_null_ops_generic;
+       mac->ops.led_on = e1000_null_ops_generic;
+       mac->ops.led_off = e1000_null_ops_generic;
+       /* LINK */
+       mac->ops.setup_link = e1000_null_ops_generic;
+       mac->ops.get_link_up_info = e1000_null_link_info;
+       mac->ops.check_for_link = e1000_null_ops_generic;
+       /* Management */
+       mac->ops.check_mng_mode = e1000_null_mng_mode;
+       /* VLAN, MC, etc. */
+       mac->ops.update_mc_addr_list = e1000_null_update_mc;
+       mac->ops.clear_vfta = e1000_null_mac_generic;
+       mac->ops.write_vfta = e1000_null_write_vfta;
+       mac->ops.rar_set = e1000_rar_set_generic;
+       mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic;
+}
+
+/**
+ *  e1000_null_ops_generic - No-op function, returns 0
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_null_ops_generic(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+       DEBUGFUNC("e1000_null_ops_generic");
+       UNREFERENCED_1PARAMETER(hw);
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_null_mac_generic - No-op function, return void
+ *  @hw: pointer to the HW structure
+ **/
+void e1000_null_mac_generic(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+       DEBUGFUNC("e1000_null_mac_generic");
+       UNREFERENCED_1PARAMETER(hw);
+       return;
+}
+
+/**
+ *  e1000_null_link_info - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_null_link_info(struct e1000_hw E1000_UNUSEDARG *hw,
+                        u16 E1000_UNUSEDARG *s, u16 E1000_UNUSEDARG *d)
+{
+       DEBUGFUNC("e1000_null_link_info");
+       UNREFERENCED_3PARAMETER(hw, s, d);
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_null_mng_mode - No-op function, return false
+ *  @hw: pointer to the HW structure
+ **/
+bool e1000_null_mng_mode(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+       DEBUGFUNC("e1000_null_mng_mode");
+       UNREFERENCED_1PARAMETER(hw);
+       return false;
+}
+
+/**
+ *  e1000_null_update_mc - No-op function, return void
+ *  @hw: pointer to the HW structure
+ **/
+void e1000_null_update_mc(struct e1000_hw E1000_UNUSEDARG *hw,
+                         u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a)
+{
+       DEBUGFUNC("e1000_null_update_mc");
+       UNREFERENCED_3PARAMETER(hw, h, a);
+       return;
+}
+
+/**
+ *  e1000_null_write_vfta - No-op function, return void
+ *  @hw: pointer to the HW structure
+ **/
+void e1000_null_write_vfta(struct e1000_hw E1000_UNUSEDARG *hw,
+                          u32 E1000_UNUSEDARG a, u32 E1000_UNUSEDARG b)
+{
+       DEBUGFUNC("e1000_null_write_vfta");
+       UNREFERENCED_3PARAMETER(hw, a, b);
+       return;
+}
+
+/**
+ *  e1000_null_rar_set - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+int e1000_null_rar_set(struct e1000_hw E1000_UNUSEDARG *hw,
+                       u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a)
+{
+       DEBUGFUNC("e1000_null_rar_set");
+       UNREFERENCED_3PARAMETER(hw, h, a);
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_bus_info_pci_generic - Get PCI(x) bus information
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines and stores the system bus information for a particular
+ *  network interface.  The following bus information is determined and stored:
+ *  bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
+ **/
+s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
+{
+       struct e1000_mac_info *mac = &hw->mac;
+       struct e1000_bus_info *bus = &hw->bus;
+       u32 status = E1000_READ_REG(hw, E1000_STATUS);
+       s32 ret_val = E1000_SUCCESS;
+
+       DEBUGFUNC("e1000_get_bus_info_pci_generic");
+
+       /* PCI or PCI-X? */
+       bus->type = (status & E1000_STATUS_PCIX_MODE)
+                       ? e1000_bus_type_pcix
+                       : e1000_bus_type_pci;
+
+       /* Bus speed */
+       if (bus->type == e1000_bus_type_pci) {
+               bus->speed = (status & E1000_STATUS_PCI66)
+                            ? e1000_bus_speed_66
+                            : e1000_bus_speed_33;
+       } else {
+               switch (status & E1000_STATUS_PCIX_SPEED) {
+               case E1000_STATUS_PCIX_SPEED_66:
+                       bus->speed = e1000_bus_speed_66;
+                       break;
+               case E1000_STATUS_PCIX_SPEED_100:
+                       bus->speed = e1000_bus_speed_100;
+                       break;
+               case E1000_STATUS_PCIX_SPEED_133:
+                       bus->speed = e1000_bus_speed_133;
+                       break;
+               default:
+                       bus->speed = e1000_bus_speed_reserved;
+                       break;
+               }
+       }
+
+       /* Bus width */
+       bus->width = (status & E1000_STATUS_BUS64)
+                    ? e1000_bus_width_64
+                    : e1000_bus_width_32;
+
+       /* Which PCI(-X) function? */
+       mac->ops.set_lan_id(hw);
+
+       return ret_val;
+}
+
+/**
+ *  e1000_get_bus_info_pcie_generic - Get PCIe bus information
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines and stores the system bus information for a particular
+ *  network interface.  The following bus information is determined and stored:
+ *  bus speed, bus width, type (PCIe), and PCIe function.
+ **/
+s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
+{
+       struct e1000_mac_info *mac = &hw->mac;
+       struct e1000_bus_info *bus = &hw->bus;
+       s32 ret_val;
+       u16 pcie_link_status;
+
+       DEBUGFUNC("e1000_get_bus_info_pcie_generic");
+
+       bus->type = e1000_bus_type_pci_express;
+
+       ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS,
+                                         &pcie_link_status);
+       if (ret_val) {
+               bus->width = e1000_bus_width_unknown;
+               bus->speed = e1000_bus_speed_unknown;
+       } else {
+               switch (pcie_link_status & PCIE_LINK_SPEED_MASK) {
+               case PCIE_LINK_SPEED_2500:
+                       bus->speed = e1000_bus_speed_2500;
+                       break;
+               case PCIE_LINK_SPEED_5000:
+                       bus->speed = e1000_bus_speed_5000;
+                       break;
+               default:
+                       bus->speed = e1000_bus_speed_unknown;
+                       break;
+               }
+
+               bus->width = (enum e1000_bus_width)((pcie_link_status &
+                             PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT);
+       }
+
+       mac->ops.set_lan_id(hw);
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
+ *
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines the LAN function id by reading memory-mapped registers
+ *  and swaps the port value if requested.
+ **/
+STATIC void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
+{
+       struct e1000_bus_info *bus = &hw->bus;
+       u32 reg;
+
+       /* The status register reports the correct function number
+        * for the device regardless of function swap state.
+        */
+       reg = E1000_READ_REG(hw, E1000_STATUS);
+       bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
+}
+
+/**
+ *  e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines the LAN function id by reading PCI config space.
+ **/
+void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw)
+{
+       struct e1000_bus_info *bus = &hw->bus;
+       u16 pci_header_type;
+       u32 status;
+
+       e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
+       if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
+               status = E1000_READ_REG(hw, E1000_STATUS);
+               bus->func = (status & E1000_STATUS_FUNC_MASK)
+                           >> E1000_STATUS_FUNC_SHIFT;
+       } else {
+               bus->func = 0;
+       }
+}
+
+/**
+ *  e1000_set_lan_id_single_port - Set LAN id for a single port device
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets the LAN function id to zero for a single port device.
+ **/
+void e1000_set_lan_id_single_port(struct e1000_hw *hw)
+{
+       struct e1000_bus_info *bus = &hw->bus;
+
+       bus->func = 0;
+}
+
+/**
+ *  e1000_clear_vfta_generic - Clear VLAN filter table
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the register array which contains the VLAN filter table by
+ *  setting all the values to 0.
+ **/
+void e1000_clear_vfta_generic(struct e1000_hw *hw)
+{
+       u32 offset;
+
+       DEBUGFUNC("e1000_clear_vfta_generic");
+
+       for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
+               E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
+               E1000_WRITE_FLUSH(hw);
+       }
+}
+
+/**
+ *  e1000_write_vfta_generic - Write value to VLAN filter table
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset in VLAN filter table
+ *  @value: register value written to VLAN filter table
+ *
+ *  Writes value at the given offset in the register array which stores
+ *  the VLAN filter table.
+ **/
+void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
+{
+       DEBUGFUNC("e1000_write_vfta_generic");
+
+       E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
+       E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ *  e1000_init_rx_addrs_generic - Initialize receive address's
+ *  @hw: pointer to the HW structure
+ *  @rar_count: receive address registers
+ *
+ *  Setup the receive address registers by setting the base receive address
+ *  register to the devices MAC address and clearing all the other receive
+ *  address registers to 0.
+ **/
+void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
+{
+       u32 i;
+       u8 mac_addr[ETH_ADDR_LEN] = {0};
+
+       DEBUGFUNC("e1000_init_rx_addrs_generic");
+
+       /* Setup the receive address */
+       DEBUGOUT("Programming MAC Address into RAR[0]\n");
+
+       hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
+
+       /* Zero out the other (rar_entry_count - 1) receive addresses */
+       DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
+       for (i = 1; i < rar_count; i++)
+               hw->mac.ops.rar_set(hw, mac_addr, i);
+}
+
+/**
+ *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks the nvm for an alternate MAC address.  An alternate MAC address
+ *  can be setup by pre-boot software and must be treated like a permanent
+ *  address and must override the actual permanent MAC address. If an
+ *  alternate MAC address is found it is programmed into RAR0, replacing
+ *  the permanent address that was installed into RAR0 by the Si on reset.
+ *  This function will return SUCCESS unless it encounters an error while
+ *  reading the EEPROM.
+ **/
+s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
+{
+       u32 i;
+       s32 ret_val;
+       u16 offset, nvm_alt_mac_addr_offset, nvm_data;
+       u8 alt_mac_addr[ETH_ADDR_LEN];
+
+       DEBUGFUNC("e1000_check_alt_mac_addr_generic");
+
+       ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
+       if (ret_val)
+               return ret_val;
+
+       /* not supported on older hardware or 82573 */
+       if ((hw->mac.type < e1000_82571) || (hw->mac.type == e1000_82573))
+               return E1000_SUCCESS;
+
+       /* Alternate MAC address is handled by the option ROM for 82580
+        * and newer. SW support not required.
+        */
+       if (hw->mac.type >= e1000_82580)
+               return E1000_SUCCESS;
+
+       ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
+                                  &nvm_alt_mac_addr_offset);
+       if (ret_val) {
+               DEBUGOUT("NVM Read Error\n");
+               return ret_val;
+       }
+
+       if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
+           (nvm_alt_mac_addr_offset == 0x0000))
+               /* There is no Alternate MAC Address */
+               return E1000_SUCCESS;
+
+       if (hw->bus.func == E1000_FUNC_1)
+               nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
+       if (hw->bus.func == E1000_FUNC_2)
+               nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
+
+       if (hw->bus.func == E1000_FUNC_3)
+               nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
+       for (i = 0; i < ETH_ADDR_LEN; i += 2) {
+               offset = nvm_alt_mac_addr_offset + (i >> 1);
+               ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
+               if (ret_val) {
+                       DEBUGOUT("NVM Read Error\n");
+                       return ret_val;
+               }
+
+               alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
+               alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
+       }
+
+       /* if multicast bit is set, the alternate address will not be used */
+       if (alt_mac_addr[0] & 0x01) {
+               DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
+               return E1000_SUCCESS;
+       }
+
+       /* We have a valid alternate MAC address, and we want to treat it the
+        * same as the normal permanent MAC address stored by the HW into the
+        * RAR. Do this by mapping this address into RAR0.
+        */
+       hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_rar_set_generic - Set receive address register
+ *  @hw: pointer to the HW structure
+ *  @addr: pointer to the receive address
+ *  @index: receive address array register
+ *
+ *  Sets the receive address array register at index to the address passed
+ *  in by addr.
+ **/
+STATIC int e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
+{
+       u32 rar_low, rar_high;
+
+       DEBUGFUNC("e1000_rar_set_generic");
+
+       /* HW expects these in little endian so we reverse the byte order
+        * from network order (big endian) to little endian
+        */
+       rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
+                  ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
+
+       rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
+
+       /* If MAC address zero, no need to set the AV bit */
+       if (rar_low || rar_high)
+               rar_high |= E1000_RAH_AV;
+
+       /* Some bridges will combine consecutive 32-bit writes into
+        * a single burst write, which will malfunction on some parts.
+        * The flushes avoid this.
+        */
+       E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
+       E1000_WRITE_FLUSH(hw);
+       E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
+       E1000_WRITE_FLUSH(hw);
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_hash_mc_addr_generic - Generate a multicast hash value
+ *  @hw: pointer to the HW structure
+ *  @mc_addr: pointer to a multicast address
+ *
+ *  Generates a multicast address hash value which is used to determine
+ *  the multicast filter table array address and new table value.
+ **/
+u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
+{
+       u32 hash_value, hash_mask;
+       u8 bit_shift = 0;
+
+       DEBUGFUNC("e1000_hash_mc_addr_generic");
+
+       /* Register count multiplied by bits per register */
+       hash_mask = (hw->mac.mta_reg_count * 32) - 1;
+
+       /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
+        * where 0xFF would still fall within the hash mask.
+        */
+       while (hash_mask >> bit_shift != 0xFF)
+               bit_shift++;
+
+       /* The portion of the address that is used for the hash table
+        * is determined by the mc_filter_type setting.
+        * The algorithm is such that there is a total of 8 bits of shifting.
+        * The bit_shift for a mc_filter_type of 0 represents the number of
+        * left-shifts where the MSB of mc_addr[5] would still fall within
+        * the hash_mask.  Case 0 does this exactly.  Since there are a total
+        * of 8 bits of shifting, then mc_addr[4] will shift right the
+        * remaining number of bits. Thus 8 - bit_shift.  The rest of the
+        * cases are a variation of this algorithm...essentially raising the
+        * number of bits to shift mc_addr[5] left, while still keeping the
+        * 8-bit shifting total.
+        *
+        * For example, given the following Destination MAC Address and an
+        * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
+        * we can see that the bit_shift for case 0 is 4.  These are the hash
+        * values resulting from each mc_filter_type...
+        * [0] [1] [2] [3] [4] [5]
+        * 01  AA  00  12  34  56
+        * LSB           MSB
+        *
+        * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
+        * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
+        * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
+        * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
+        */
+       switch (hw->mac.mc_filter_type) {
+       default:
+       case 0:
+               break;
+       case 1:
+               bit_shift += 1;
+               break;
+       case 2:
+               bit_shift += 2;
+               break;
+       case 3:
+               bit_shift += 4;
+               break;
+       }
+
+       hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
+                                 (((u16) mc_addr[5]) << bit_shift)));
+
+       return hash_value;
+}
+
+/**
+ *  e1000_update_mc_addr_list_generic - Update Multicast addresses
+ *  @hw: pointer to the HW structure
+ *  @mc_addr_list: array of multicast addresses to program
+ *  @mc_addr_count: number of multicast addresses to program
+ *
+ *  Updates entire Multicast Table Array.
+ *  The caller must have a packed mc_addr_list of multicast addresses.
+ **/
+void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
+                                      u8 *mc_addr_list, u32 mc_addr_count)
+{
+       u32 hash_value, hash_bit, hash_reg;
+       int i;
+
+       DEBUGFUNC("e1000_update_mc_addr_list_generic");
+
+       /* clear mta_shadow */
+       memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
+
+       /* update mta_shadow from mc_addr_list */
+       for (i = 0; (u32) i < mc_addr_count; i++) {
+               hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
+
+               hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
+               hash_bit = hash_value & 0x1F;
+
+               hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
+               mc_addr_list += (ETH_ADDR_LEN);
+       }
+
+       /* replace the entire MTA table */
+       for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
+               E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
+       E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ *  e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
+ *  @hw: pointer to the HW structure
+ *
+ *  In certain situations, a system BIOS may report that the PCIx maximum
+ *  memory read byte count (MMRBC) value is higher than than the actual
+ *  value. We check the PCIx command register with the current PCIx status
+ *  register.
+ **/
+void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
+{
+       u16 cmd_mmrbc;
+       u16 pcix_cmd;
+       u16 pcix_stat_hi_word;
+       u16 stat_mmrbc;
+
+       DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
+
+       /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
+       if (hw->bus.type != e1000_bus_type_pcix)
+               return;
+
+       e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+       e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
+       cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
+                    PCIX_COMMAND_MMRBC_SHIFT;
+       stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
+                     PCIX_STATUS_HI_MMRBC_SHIFT;
+       if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
+               stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
+       if (cmd_mmrbc > stat_mmrbc) {
+               pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
+               pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
+               e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
+       }
+}
+
+/**
+ *  e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
+ *  @hw: pointer to the HW structure
+ *
+ *  Clears the base hardware counters by reading the counter registers.
+ **/
+void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
+{
+       DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
+
+       E1000_READ_REG(hw, E1000_CRCERRS);
+       E1000_READ_REG(hw, E1000_SYMERRS);
+       E1000_READ_REG(hw, E1000_MPC);
+       E1000_READ_REG(hw, E1000_SCC);
+       E1000_READ_REG(hw, E1000_ECOL);
+       E1000_READ_REG(hw, E1000_MCC);
+       E1000_READ_REG(hw, E1000_LATECOL);
+       E1000_READ_REG(hw, E1000_COLC);
+       E1000_READ_REG(hw, E1000_DC);
+       E1000_READ_REG(hw, E1000_SEC);
+       E1000_READ_REG(hw, E1000_RLEC);
+       E1000_READ_REG(hw, E1000_XONRXC);
+       E1000_READ_REG(hw, E1000_XONTXC);
+       E1000_READ_REG(hw, E1000_XOFFRXC);
+       E1000_READ_REG(hw, E1000_XOFFTXC);
+       E1000_READ_REG(hw, E1000_FCRUC);
+       E1000_READ_REG(hw, E1000_GPRC);
+       E1000_READ_REG(hw, E1000_BPRC);
+       E1000_READ_REG(hw, E1000_MPRC);
+       E1000_READ_REG(hw, E1000_GPTC);
+       E1000_READ_REG(hw, E1000_GORCL);
+       E1000_READ_REG(hw, E1000_GORCH);
+       E1000_READ_REG(hw, E1000_GOTCL);
+       E1000_READ_REG(hw, E1000_GOTCH);
+       E1000_READ_REG(hw, E1000_RNBC);
+       E1000_READ_REG(hw, E1000_RUC);
+       E1000_READ_REG(hw, E1000_RFC);
+       E1000_READ_REG(hw, E1000_ROC);
+       E1000_READ_REG(hw, E1000_RJC);
+       E1000_READ_REG(hw, E1000_TORL);
+       E1000_READ_REG(hw, E1000_TORH);
+       E1000_READ_REG(hw, E1000_TOTL);
+       E1000_READ_REG(hw, E1000_TOTH);
+       E1000_READ_REG(hw, E1000_TPR);
+       E1000_READ_REG(hw, E1000_TPT);
+       E1000_READ_REG(hw, E1000_MPTC);
+       E1000_READ_REG(hw, E1000_BPTC);
+}
+
+/**
+ *  e1000_check_for_copper_link_generic - Check for link (Copper)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks to see of the link status of the hardware has changed.  If a
+ *  change in link status has been detected, then we read the PHY registers
+ *  to get the current speed/duplex if link exists.
+ **/
+s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
+{
+       struct e1000_mac_info *mac = &hw->mac;
+       s32 ret_val;
+       bool link;
+
+       DEBUGFUNC("e1000_check_for_copper_link");
+
+       /* We only want to go out to the PHY registers to see if Auto-Neg
+        * has completed and/or if our link status has changed.  The
+        * get_link_status flag is set upon receiving a Link Status
+        * Change or Rx Sequence Error interrupt.
+        */
+       if (!mac->get_link_status)
+               return E1000_SUCCESS;
+
+       /* First we want to see if the MII Status Register reports
+        * link.  If so, then we want to get the current speed/duplex
+        * of the PHY.
+        */
+       ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+       if (ret_val)
+               return ret_val;
+
+       if (!link)
+               return E1000_SUCCESS; /* No link detected */
+
+       mac->get_link_status = false;
+
+       /* Check if there was DownShift, must be checked
+        * immediately after link-up
+        */
+       e1000_check_downshift_generic(hw);
+
+       /* If we are forcing speed/duplex, then we simply return since
+        * we have already determined whether we have link or not.
+        */
+       if (!mac->autoneg)
+               return -E1000_ERR_CONFIG;
+
+       /* Auto-Neg is enabled.  Auto Speed Detection takes care
+        * of MAC speed/duplex configuration.  So we only need to
+        * configure Collision Distance in the MAC.
+        */
+       mac->ops.config_collision_dist(hw);
+
+       /* Configure Flow Control now that Auto-Neg has completed.
+        * First, we need to restore the desired flow control
+        * settings because we may have had to re-autoneg with a
+        * different link partner.
+        */
+       ret_val = e1000_config_fc_after_link_up_generic(hw);
+       if (ret_val)
+               DEBUGOUT("Error configuring flow control\n");
+
+       return ret_val;
+}
+
+/**
+ *  e1000_check_for_fiber_link_generic - Check for link (Fiber)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks for link up on the hardware.  If link is not up and we have
+ *  a signal, then we need to force link up.
+ **/
+s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
+{
+       struct e1000_mac_info *mac = &hw->mac;
+       u32 rxcw;
+       u32 ctrl;
+       u32 status;
+       s32 ret_val;
+
+       DEBUGFUNC("e1000_check_for_fiber_link_generic");
+
+       ctrl = E1000_READ_REG(hw, E1000_CTRL);
+       status = E1000_READ_REG(hw, E1000_STATUS);
+       rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+       /* If we don't have link (auto-negotiation failed or link partner
+        * cannot auto-negotiate), the cable is plugged in (we have signal),
+        * and our link partner is not trying to auto-negotiate with us (we
+        * are receiving idles or data), we need to force link up. We also
+        * need to give auto-negotiation time to complete, in case the cable
+        * was just plugged in. The autoneg_failed flag does this.
+        */
+       /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+       if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
+           !(rxcw & E1000_RXCW_C)) {
+               if (!mac->autoneg_failed) {
+                       mac->autoneg_failed = true;
+                       return E1000_SUCCESS;
+               }
+               DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
+
+               /* Disable auto-negotiation in the TXCW register */
+               E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+               /* Force link-up and also force full-duplex. */
+               ctrl = E1000_READ_REG(hw, E1000_CTRL);
+               ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+               E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+               /* Configure Flow Control after forcing link up. */
+               ret_val = e1000_config_fc_after_link_up_generic(hw);
+               if (ret_val) {
+                       DEBUGOUT("Error configuring flow control\n");
+                       return ret_val;
+               }
+       } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+               /* If we are forcing link and we are receiving /C/ ordered
+                * sets, re-enable auto-negotiation in the TXCW register
+                * and disable forced link in the Device Control register
+                * in an attempt to auto-negotiate with our link partner.
+                */
+               DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
+               E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+               E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+               mac->serdes_has_link = true;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_check_for_serdes_link_generic - Check for link (Serdes)
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks for link up on the hardware.  If link is not up and we have
+ *  a signal, then we need to force link up.
+ **/
+s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
+{
+       struct e1000_mac_info *mac = &hw->mac;
+       u32 rxcw;
+       u32 ctrl;
+       u32 status;
+       s32 ret_val;
+
+       DEBUGFUNC("e1000_check_for_serdes_link_generic");
+
+       ctrl = E1000_READ_REG(hw, E1000_CTRL);
+       status = E1000_READ_REG(hw, E1000_STATUS);
+       rxcw = E1000_READ_REG(hw, E1000_RXCW);
+
+       /* If we don't have link (auto-negotiation failed or link partner
+        * cannot auto-negotiate), and our link partner is not trying to
+        * auto-negotiate with us (we are receiving idles or data),
+        * we need to force link up. We also need to give auto-negotiation
+        * time to complete.
+        */
+       /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
+       if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
+               if (!mac->autoneg_failed) {
+                       mac->autoneg_failed = true;
+                       return E1000_SUCCESS;
+               }
+               DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
+
+               /* Disable auto-negotiation in the TXCW register */
+               E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
+
+               /* Force link-up and also force full-duplex. */
+               ctrl = E1000_READ_REG(hw, E1000_CTRL);
+               ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
+               E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+               /* Configure Flow Control after forcing link up. */
+               ret_val = e1000_config_fc_after_link_up_generic(hw);
+               if (ret_val) {
+                       DEBUGOUT("Error configuring flow control\n");
+                       return ret_val;
+               }
+       } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
+               /* If we are forcing link and we are receiving /C/ ordered
+                * sets, re-enable auto-negotiation in the TXCW register
+                * and disable forced link in the Device Control register
+                * in an attempt to auto-negotiate with our link partner.
+                */
+               DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
+               E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
+               E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
+
+               mac->serdes_has_link = true;
+       } else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
+               /* If we force link for non-auto-negotiation switch, check
+                * link status based on MAC synchronization for internal
+                * serdes media type.
+                */
+               /* SYNCH bit and IV bit are sticky. */
+               usec_delay(10);
+               rxcw = E1000_READ_REG(hw, E1000_RXCW);
+               if (rxcw & E1000_RXCW_SYNCH) {
+                       if (!(rxcw & E1000_RXCW_IV)) {
+                               mac->serdes_has_link = true;
+                               DEBUGOUT("SERDES: Link up - forced.\n");
+                       }
+               } else {
+                       mac->serdes_has_link = false;
+                       DEBUGOUT("SERDES: Link down - force failed.\n");
+               }
+       }
+
+       if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
+               status = E1000_READ_REG(hw, E1000_STATUS);
+               if (status & E1000_STATUS_LU) {
+                       /* SYNCH bit and IV bit are sticky, so reread rxcw. */
+                       usec_delay(10);
+                       rxcw = E1000_READ_REG(hw, E1000_RXCW);
+                       if (rxcw & E1000_RXCW_SYNCH) {
+                               if (!(rxcw & E1000_RXCW_IV)) {
+                                       mac->serdes_has_link = true;
+                                       DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n");
+                               } else {
+                                       mac->serdes_has_link = false;
+                                       DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n");
+                               }
+                       } else {
+                               mac->serdes_has_link = false;
+                               DEBUGOUT("SERDES: Link down - no sync.\n");
+                       }
+               } else {
+                       mac->serdes_has_link = false;
+                       DEBUGOUT("SERDES: Link down - autoneg failed\n");
+               }
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_set_default_fc_generic - Set flow control default values
+ *  @hw: pointer to the HW structure
+ *
+ *  Read the EEPROM for the default values for flow control and store the
+ *  values.
+ **/
+s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
+{
+       s32 ret_val;
+       u16 nvm_data;
+       u16 nvm_offset = 0;
+
+       DEBUGFUNC("e1000_set_default_fc_generic");
+
+       /* Read and store word 0x0F of the EEPROM. This word contains bits
+        * that determine the hardware's default PAUSE (flow control) mode,
+        * a bit that determines whether the HW defaults to enabling or
+        * disabling auto-negotiation, and the direction of the
+        * SW defined pins. If there is no SW over-ride of the flow
+        * control setting, then the variable hw->fc will
+        * be initialized based on a value in the EEPROM.
+        */
+       if (hw->mac.type == e1000_i350) {
+               nvm_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
+               ret_val = hw->nvm.ops.read(hw,
+                                          NVM_INIT_CONTROL2_REG +
+                                          nvm_offset,
+                                          1, &nvm_data);
+       } else {
+               ret_val = hw->nvm.ops.read(hw,
+                                          NVM_INIT_CONTROL2_REG,
+                                          1, &nvm_data);
+       }
+
+
+       if (ret_val) {
+               DEBUGOUT("NVM Read Error\n");
+               return ret_val;
+       }
+
+       if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
+               hw->fc.requested_mode = e1000_fc_none;
+       else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
+                NVM_WORD0F_ASM_DIR)
+               hw->fc.requested_mode = e1000_fc_tx_pause;
+       else
+               hw->fc.requested_mode = e1000_fc_full;
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_setup_link_generic - Setup flow control and link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Determines which flow control settings to use, then configures flow
+ *  control.  Calls the appropriate media-specific link configuration
+ *  function.  Assuming the adapter has a valid link partner, a valid link
+ *  should be established.  Assumes the hardware has previously been reset
+ *  and the transmitter and receiver are not enabled.
+ **/
+s32 e1000_setup_link_generic(struct e1000_hw *hw)
+{
+       s32 ret_val;
+
+       DEBUGFUNC("e1000_setup_link_generic");
+
+       /* In the case of the phy reset being blocked, we already have a link.
+        * We do not need to set it up again.
+        */
+       if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
+               return E1000_SUCCESS;
+
+       /* If requested flow control is set to default, set flow control
+        * based on the EEPROM flow control settings.
+        */
+       if (hw->fc.requested_mode == e1000_fc_default) {
+               ret_val = e1000_set_default_fc_generic(hw);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       /* Save off the requested flow control mode for use later.  Depending
+        * on the link partner's capabilities, we may or may not use this mode.
+        */
+       hw->fc.current_mode = hw->fc.requested_mode;
+
+       DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
+               hw->fc.current_mode);
+
+       /* Call the necessary media_type subroutine to configure the link. */
+       ret_val = hw->mac.ops.setup_physical_interface(hw);
+       if (ret_val)
+               return ret_val;
+
+       /* Initialize the flow control address, type, and PAUSE timer
+        * registers to their default values.  This is done even if flow
+        * control is disabled, because it does not hurt anything to
+        * initialize these registers.
+        */
+       DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
+       E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
+       E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
+       E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
+
+       E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
+
+       return e1000_set_fc_watermarks_generic(hw);
+}
+
+/**
+ *  e1000_commit_fc_settings_generic - Configure flow control
+ *  @hw: pointer to the HW structure
+ *
+ *  Write the flow control settings to the Transmit Config Word Register (TXCW)
+ *  base on the flow control settings in e1000_mac_info.
+ **/
+s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
+{
+       struct e1000_mac_info *mac = &hw->mac;
+       u32 txcw;
+
+       DEBUGFUNC("e1000_commit_fc_settings_generic");
+
+       /* Check for a software override of the flow control settings, and
+        * setup the device accordingly.  If auto-negotiation is enabled, then
+        * software will have to set the "PAUSE" bits to the correct value in
+        * the Transmit Config Word Register (TXCW) and re-start auto-
+        * negotiation.  However, if auto-negotiation is disabled, then
+        * software will have to manually configure the two flow control enable
+        * bits in the CTRL register.
+        *
+        * The possible values of the "fc" parameter are:
+        *      0:  Flow control is completely disabled
+        *      1:  Rx flow control is enabled (we can receive pause frames,
+        *          but not send pause frames).
+        *      2:  Tx flow control is enabled (we can send pause frames but we
+        *          do not support receiving pause frames).
+        *      3:  Both Rx and Tx flow control (symmetric) are enabled.
+        */
+       switch (hw->fc.current_mode) {
+       case e1000_fc_none:
+               /* Flow control completely disabled by a software over-ride. */
+               txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
+               break;
+       case e1000_fc_rx_pause:
+               /* Rx Flow control is enabled and Tx Flow control is disabled
+                * by a software over-ride. Since there really isn't a way to
+                * advertise that we are capable of Rx Pause ONLY, we will
+                * advertise that we support both symmetric and asymmetric Rx
+                * PAUSE.  Later, we will disable the adapter's ability to send
+                * PAUSE frames.
+                */
+               txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+               break;
+       case e1000_fc_tx_pause:
+               /* Tx Flow control is enabled, and Rx Flow control is disabled,
+                * by a software over-ride.
+                */
+               txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
+               break;
+       case e1000_fc_full:
+               /* Flow control (both Rx and Tx) is enabled by a software
+                * over-ride.
+                */
+               txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
+               break;
+       default:
+               DEBUGOUT("Flow control param set incorrectly\n");
+               return -E1000_ERR_CONFIG;
+               break;
+       }
+
+       E1000_WRITE_REG(hw, E1000_TXCW, txcw);
+       mac->txcw = txcw;
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_poll_fiber_serdes_link_generic - Poll for link up
+ *  @hw: pointer to the HW structure
+ *
+ *  Polls for link up by reading the status register, if link fails to come
+ *  up with auto-negotiation, then the link is forced if a signal is detected.
+ **/
+s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+       struct e1000_mac_info *mac = &hw->mac;
+       u32 i, status;
+       s32 ret_val;
+
+       DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
+
+       /* If we have a signal (the cable is plugged in, or assumed true for
+        * serdes media) then poll for a "Link-Up" indication in the Device
+        * Status Register.  Time-out if a link isn't seen in 500 milliseconds
+        * seconds (Auto-negotiation should complete in less than 500
+        * milliseconds even if the other end is doing it in SW).
+        */
+       for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
+               msec_delay(10);
+               status = E1000_READ_REG(hw, E1000_STATUS);
+               if (status & E1000_STATUS_LU)
+                       break;
+       }
+       if (i == FIBER_LINK_UP_LIMIT) {
+               DEBUGOUT("Never got a valid link from auto-neg!!!\n");
+               mac->autoneg_failed = true;
+               /* AutoNeg failed to achieve a link, so we'll call
+                * mac->check_for_link. This routine will force the
+                * link up if we detect a signal. This will allow us to
+                * communicate with non-autonegotiating link partners.
+                */
+               ret_val = mac->ops.check_for_link(hw);
+               if (ret_val) {
+                       DEBUGOUT("Error while checking for link\n");
+                       return ret_val;
+               }
+               mac->autoneg_failed = false;
+       } else {
+               mac->autoneg_failed = false;
+               DEBUGOUT("Valid Link Found\n");
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures collision distance and flow control for fiber and serdes
+ *  links.  Upon successful setup, poll for link.
+ **/
+s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
+{
+       u32 ctrl;
+       s32 ret_val;
+
+       DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
+
+       ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+       /* Take the link out of reset */
+       ctrl &= ~E1000_CTRL_LRST;
+
+       hw->mac.ops.config_collision_dist(hw);
+
+       ret_val = e1000_commit_fc_settings_generic(hw);
+       if (ret_val)
+               return ret_val;
+
+       /* Since auto-negotiation is enabled, take the link out of reset (the
+        * link will be in reset, because we previously reset the chip). This
+        * will restart auto-negotiation.  If auto-negotiation is successful
+        * then the link-up status bit will be set and the flow control enable
+        * bits (RFCE and TFCE) will be set according to their negotiated value.
+        */
+       DEBUGOUT("Auto-negotiation enabled\n");
+
+       E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+       E1000_WRITE_FLUSH(hw);
+       msec_delay(1);
+
+       /* For these adapters, the SW definable pin 1 is set when the optics
+        * detect a signal.  If we have a signal, then poll for a "Link-Up"
+        * indication.
+        */
+       if (hw->phy.media_type == e1000_media_type_internal_serdes ||
+           (E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
+               ret_val = e1000_poll_fiber_serdes_link_generic(hw);
+       } else {
+               DEBUGOUT("No signal detected\n");
+       }
+
+       return ret_val;
+}
+
+/**
+ *  e1000_config_collision_dist_generic - Configure collision distance
+ *  @hw: pointer to the HW structure
+ *
+ *  Configures the collision distance to the default value and is used
+ *  during link setup.
+ **/
+STATIC void e1000_config_collision_dist_generic(struct e1000_hw *hw)
+{
+       u32 tctl;
+
+       DEBUGFUNC("e1000_config_collision_dist_generic");
+
+       tctl = E1000_READ_REG(hw, E1000_TCTL);
+
+       tctl &= ~E1000_TCTL_COLD;
+       tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
+
+       E1000_WRITE_REG(hw, E1000_TCTL, tctl);
+       E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ *  e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets the flow control high/low threshold (watermark) registers.  If
+ *  flow control XON frame transmission is enabled, then set XON frame
+ *  transmission as well.
+ **/
+s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
+{
+       u32 fcrtl = 0, fcrth = 0;
+
+       DEBUGFUNC("e1000_set_fc_watermarks_generic");
+
+       /* Set the flow control receive threshold registers.  Normally,
+        * these registers will be set to a default threshold that may be
+        * adjusted later by the driver's runtime code.  However, if the
+        * ability to transmit pause frames is not enabled, then these
+        * registers will be set to 0.
+        */
+       if (hw->fc.current_mode & e1000_fc_tx_pause) {
+               /* We need to set up the Receive Threshold high and low water
+                * marks as well as (optionally) enabling the transmission of
+                * XON frames.
+                */
+               fcrtl = hw->fc.low_water;
+               if (hw->fc.send_xon)
+                       fcrtl |= E1000_FCRTL_XONE;
+
+               fcrth = hw->fc.high_water;
+       }
+       E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
+       E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_force_mac_fc_generic - Force the MAC's flow control settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
+ *  device control register to reflect the adapter settings.  TFCE and RFCE
+ *  need to be explicitly set by software when a copper PHY is used because
+ *  autonegotiation is managed by the PHY rather than the MAC.  Software must
+ *  also configure these bits when link is forced on a fiber connection.
+ **/
+s32 e1000_force_mac_fc_generic(struct e1000_hw *hw)
+{
+       u32 ctrl;
+
+       DEBUGFUNC("e1000_force_mac_fc_generic");
+
+       ctrl = E1000_READ_REG(hw, E1000_CTRL);
+
+       /* Because we didn't get link via the internal auto-negotiation
+        * mechanism (we either forced link or we got link via PHY
+        * auto-neg), we have to manually enable/disable transmit an
+        * receive flow control.
+        *
+        * The "Case" statement below enables/disable flow control
+        * according to the "hw->fc.current_mode" parameter.
+        *
+        * The possible values of the "fc" parameter are:
+        *      0:  Flow control is completely disabled
+        *      1:  Rx flow control is enabled (we can receive pause
+        *          frames but not send pause frames).
+        *      2:  Tx flow control is enabled (we can send pause frames
+        *          frames but we do not receive pause frames).
+        *      3:  Both Rx and Tx flow control (symmetric) is enabled.
+        *  other:  No other values should be possible at this point.
+        */
+       DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
+
+       switch (hw->fc.current_mode) {
+       case e1000_fc_none:
+               ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
+               break;
+       case e1000_fc_rx_pause:
+               ctrl &= (~E1000_CTRL_TFCE);
+               ctrl |= E1000_CTRL_RFCE;
+               break;
+       case e1000_fc_tx_pause:
+               ctrl &= (~E1000_CTRL_RFCE);
+               ctrl |= E1000_CTRL_TFCE;
+               break;
+       case e1000_fc_full:
+               ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
+               break;
+       default:
+               DEBUGOUT("Flow control param set incorrectly\n");
+               return -E1000_ERR_CONFIG;
+       }
+
+       E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_config_fc_after_link_up_generic - Configures flow control after link
+ *  @hw: pointer to the HW structure
+ *
+ *  Checks the status of auto-negotiation after link up to ensure that the
+ *  speed and duplex were not forced.  If the link needed to be forced, then
+ *  flow control needs to be forced also.  If auto-negotiation is enabled
+ *  and did not fail, then we configure flow control based on our link
+ *  partner.
+ **/
+s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
+{
+       struct e1000_mac_info *mac = &hw->mac;
+       s32 ret_val = E1000_SUCCESS;
+       u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
+       u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
+       u16 speed, duplex;
+
+       DEBUGFUNC("e1000_config_fc_after_link_up_generic");
+
+       /* Check for the case where we have fiber media and auto-neg failed
+        * so we had to force link.  In this case, we need to force the
+        * configuration of the MAC to match the "fc" parameter.
+        */
+       if (mac->autoneg_failed) {
+               if (hw->phy.media_type == e1000_media_type_fiber ||
+                   hw->phy.media_type == e1000_media_type_internal_serdes)
+                       ret_val = e1000_force_mac_fc_generic(hw);
+       } else {
+               if (hw->phy.media_type == e1000_media_type_copper)
+                       ret_val = e1000_force_mac_fc_generic(hw);
+       }
+
+       if (ret_val) {
+               DEBUGOUT("Error forcing flow control settings\n");
+               return ret_val;
+       }
+
+       /* Check for the case where we have copper media and auto-neg is
+        * enabled.  In this case, we need to check and see if Auto-Neg
+        * has completed, and if so, how the PHY and link partner has
+        * flow control configured.
+        */
+       if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
+               /* Read the MII Status Register and check to see if AutoNeg
+                * has completed.  We read this twice because this reg has
+                * some "sticky" (latched) bits.
+                */
+               ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
+               if (ret_val)
+                       return ret_val;
+               ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
+               if (ret_val)
+                       return ret_val;
+
+               if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
+                       DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
+                       return ret_val;
+               }
+
+               /* The AutoNeg process has completed, so we now need to
+                * read both the Auto Negotiation Advertisement
+                * Register (Address 4) and the Auto_Negotiation Base
+                * Page Ability Register (Address 5) to determine how
+                * flow control was negotiated.
+                */
+               ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
+                                              &mii_nway_adv_reg);
+               if (ret_val)
+                       return ret_val;
+               ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
+                                              &mii_nway_lp_ability_reg);
+               if (ret_val)
+                       return ret_val;
+
+               /* Two bits in the Auto Negotiation Advertisement Register
+                * (Address 4) and two bits in the Auto Negotiation Base
+                * Page Ability Register (Address 5) determine flow control
+                * for both the PHY and the link partner.  The following
+                * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+                * 1999, describes these PAUSE resolution bits and how flow
+                * control is determined based upon these settings.
+                * NOTE:  DC = Don't Care
+                *
+                *   LOCAL DEVICE  |   LINK PARTNER
+                * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+                *-------|---------|-------|---------|--------------------
+                *   0   |    0    |  DC   |   DC    | e1000_fc_none
+                *   0   |    1    |   0   |   DC    | e1000_fc_none
+                *   0   |    1    |   1   |    0    | e1000_fc_none
+                *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+                *   1   |    0    |   0   |   DC    | e1000_fc_none
+                *   1   |   DC    |   1   |   DC    | e1000_fc_full
+                *   1   |    1    |   0   |    0    | e1000_fc_none
+                *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+                *
+                * Are both PAUSE bits set to 1?  If so, this implies
+                * Symmetric Flow Control is enabled at both ends.  The
+                * ASM_DIR bits are irrelevant per the spec.
+                *
+                * For Symmetric Flow Control:
+                *
+                *   LOCAL DEVICE  |   LINK PARTNER
+                * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+                *-------|---------|-------|---------|--------------------
+                *   1   |   DC    |   1   |   DC    | E1000_fc_full
+                *
+                */
+               if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+                   (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
+                       /* Now we need to check if the user selected Rx ONLY
+                        * of pause frames.  In this case, we had to advertise
+                        * FULL flow control because we could not advertise Rx
+                        * ONLY. Hence, we must now check to see if we need to
+                        * turn OFF the TRANSMISSION of PAUSE frames.
+                        */
+                       if (hw->fc.requested_mode == e1000_fc_full) {
+                               hw->fc.current_mode = e1000_fc_full;
+                               DEBUGOUT("Flow Control = FULL.\n");
+                       } else {
+                               hw->fc.current_mode = e1000_fc_rx_pause;
+                               DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
+                       }
+               }
+               /* For receiving PAUSE frames ONLY.
+                *
+                *   LOCAL DEVICE  |   LINK PARTNER
+                * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+                *-------|---------|-------|---------|--------------------
+                *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+                */
+               else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+                         (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+                         (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+                         (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+                       hw->fc.current_mode = e1000_fc_tx_pause;
+                       DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
+               }
+               /* For transmitting PAUSE frames ONLY.
+                *
+                *   LOCAL DEVICE  |   LINK PARTNER
+                * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+                *-------|---------|-------|---------|--------------------
+                *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+                */
+               else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
+                        (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
+                        !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
+                        (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
+                       hw->fc.current_mode = e1000_fc_rx_pause;
+                       DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
+               } else {
+                       /* Per the IEEE spec, at this point flow control
+                        * should be disabled.
+                        */
+                       hw->fc.current_mode = e1000_fc_none;
+                       DEBUGOUT("Flow Control = NONE.\n");
+               }
+
+               /* Now we need to do one last check...  If we auto-
+                * negotiated to HALF DUPLEX, flow control should not be
+                * enabled per IEEE 802.3 spec.
+                */
+               ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
+               if (ret_val) {
+                       DEBUGOUT("Error getting link speed and duplex\n");
+                       return ret_val;
+               }
+
+               if (duplex == HALF_DUPLEX)
+                       hw->fc.current_mode = e1000_fc_none;
+
+               /* Now we call a subroutine to actually force the MAC
+                * controller to use the correct flow control settings.
+                */
+               ret_val = e1000_force_mac_fc_generic(hw);
+               if (ret_val) {
+                       DEBUGOUT("Error forcing flow control settings\n");
+                       return ret_val;
+               }
+       }
+
+       /* Check for the case where we have SerDes media and auto-neg is
+        * enabled.  In this case, we need to check and see if Auto-Neg
+        * has completed, and if so, how the PHY and link partner has
+        * flow control configured.
+        */
+       if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
+           mac->autoneg) {
+               /* Read the PCS_LSTS and check to see if AutoNeg
+                * has completed.
+                */
+               pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT);
+
+               if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
+                       DEBUGOUT("PCS Auto Neg has not completed.\n");
+                       return ret_val;
+               }
+
+               /* The AutoNeg process has completed, so we now need to
+                * read both the Auto Negotiation Advertisement
+                * Register (PCS_ANADV) and the Auto_Negotiation Base
+                * Page Ability Register (PCS_LPAB) to determine how
+                * flow control was negotiated.
+                */
+               pcs_adv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
+               pcs_lp_ability_reg = E1000_READ_REG(hw, E1000_PCS_LPAB);
+
+               /* Two bits in the Auto Negotiation Advertisement Register
+                * (PCS_ANADV) and two bits in the Auto Negotiation Base
+                * Page Ability Register (PCS_LPAB) determine flow control
+                * for both the PHY and the link partner.  The following
+                * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
+                * 1999, describes these PAUSE resolution bits and how flow
+                * control is determined based upon these settings.
+                * NOTE:  DC = Don't Care
+                *
+                *   LOCAL DEVICE  |   LINK PARTNER
+                * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
+                *-------|---------|-------|---------|--------------------
+                *   0   |    0    |  DC   |   DC    | e1000_fc_none
+                *   0   |    1    |   0   |   DC    | e1000_fc_none
+                *   0   |    1    |   1   |    0    | e1000_fc_none
+                *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+                *   1   |    0    |   0   |   DC    | e1000_fc_none
+                *   1   |   DC    |   1   |   DC    | e1000_fc_full
+                *   1   |    1    |   0   |    0    | e1000_fc_none
+                *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+                *
+                * Are both PAUSE bits set to 1?  If so, this implies
+                * Symmetric Flow Control is enabled at both ends.  The
+                * ASM_DIR bits are irrelevant per the spec.
+                *
+                * For Symmetric Flow Control:
+                *
+                *   LOCAL DEVICE  |   LINK PARTNER
+                * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+                *-------|---------|-------|---------|--------------------
+                *   1   |   DC    |   1   |   DC    | e1000_fc_full
+                *
+                */
+               if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
+                   (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
+                       /* Now we need to check if the user selected Rx ONLY
+                        * of pause frames.  In this case, we had to advertise
+                        * FULL flow control because we could not advertise Rx
+                        * ONLY. Hence, we must now check to see if we need to
+                        * turn OFF the TRANSMISSION of PAUSE frames.
+                        */
+                       if (hw->fc.requested_mode == e1000_fc_full) {
+                               hw->fc.current_mode = e1000_fc_full;
+                               DEBUGOUT("Flow Control = FULL.\n");
+                       } else {
+                               hw->fc.current_mode = e1000_fc_rx_pause;
+                               DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
+                       }
+               }
+               /* For receiving PAUSE frames ONLY.
+                *
+                *   LOCAL DEVICE  |   LINK PARTNER
+                * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+                *-------|---------|-------|---------|--------------------
+                *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
+                */
+               else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
+                         (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
+                         (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
+                         (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
+                       hw->fc.current_mode = e1000_fc_tx_pause;
+                       DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
+               }
+               /* For transmitting PAUSE frames ONLY.
+                *
+                *   LOCAL DEVICE  |   LINK PARTNER
+                * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
+                *-------|---------|-------|---------|--------------------
+                *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
+                */
+               else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
+                        (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
+                        !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
+                        (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
+                       hw->fc.current_mode = e1000_fc_rx_pause;
+                       DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
+               } else {
+                       /* Per the IEEE spec, at this point flow control
+                        * should be disabled.
+                        */
+                       hw->fc.current_mode = e1000_fc_none;
+                       DEBUGOUT("Flow Control = NONE.\n");
+               }
+
+               /* Now we call a subroutine to actually force the MAC
+                * controller to use the correct flow control settings.
+                */
+               pcs_ctrl_reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
+               pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
+               E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_ctrl_reg);
+
+               ret_val = e1000_force_mac_fc_generic(hw);
+               if (ret_val) {
+                       DEBUGOUT("Error forcing flow control settings\n");
+                       return ret_val;
+               }
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: stores the current speed
+ *  @duplex: stores the current duplex
+ *
+ *  Read the status register for the current speed/duplex and store the current
+ *  speed and duplex for copper connections.
+ **/
+s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
+                                             u16 *duplex)
+{
+       u32 status;
+
+       DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
+
+       status = E1000_READ_REG(hw, E1000_STATUS);
+       if (status & E1000_STATUS_SPEED_1000) {
+               *speed = SPEED_1000;
+               DEBUGOUT("1000 Mbs, ");
+       } else if (status & E1000_STATUS_SPEED_100) {
+               *speed = SPEED_100;
+               DEBUGOUT("100 Mbs, ");
+       } else {
+               *speed = SPEED_10;
+               DEBUGOUT("10 Mbs, ");
+       }
+
+       if (status & E1000_STATUS_FD) {
+               *duplex = FULL_DUPLEX;
+               DEBUGOUT("Full Duplex\n");
+       } else {
+               *duplex = HALF_DUPLEX;
+               DEBUGOUT("Half Duplex\n");
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @speed: stores the current speed
+ *  @duplex: stores the current duplex
+ *
+ *  Sets the speed and duplex to gigabit full duplex (the only possible option)
+ *  for fiber/serdes links.
+ **/
+s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw E1000_UNUSEDARG *hw,
+                                                   u16 *speed, u16 *duplex)
+{
+       DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
+       UNREFERENCED_1PARAMETER(hw);
+
+       *speed = SPEED_1000;
+       *duplex = FULL_DUPLEX;
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_hw_semaphore_generic - Acquire hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Acquire the HW semaphore to access the PHY or NVM
+ **/
+s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
+{
+       u32 swsm;
+       s32 timeout = hw->nvm.word_size + 1;
+       s32 i = 0;
+
+       DEBUGFUNC("e1000_get_hw_semaphore_generic");
+
+       /* Get the SW semaphore */
+       while (i < timeout) {
+               swsm = E1000_READ_REG(hw, E1000_SWSM);
+               if (!(swsm & E1000_SWSM_SMBI))
+                       break;
+
+               usec_delay(50);
+               i++;
+       }
+
+       if (i == timeout) {
+               DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
+               return -E1000_ERR_NVM;
+       }
+
+       /* Get the FW semaphore. */
+       for (i = 0; i < timeout; i++) {
+               swsm = E1000_READ_REG(hw, E1000_SWSM);
+               E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
+
+               /* Semaphore acquired if bit latched */
+               if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
+                       break;
+
+               usec_delay(50);
+       }
+
+       if (i == timeout) {
+               /* Release semaphores */
+               e1000_put_hw_semaphore_generic(hw);
+               DEBUGOUT("Driver can't access the NVM\n");
+               return -E1000_ERR_NVM;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_put_hw_semaphore_generic - Release hardware semaphore
+ *  @hw: pointer to the HW structure
+ *
+ *  Release hardware semaphore used to access the PHY or NVM
+ **/
+void e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
+{
+       u32 swsm;
+
+       DEBUGFUNC("e1000_put_hw_semaphore_generic");
+
+       swsm = E1000_READ_REG(hw, E1000_SWSM);
+
+       swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
+
+       E1000_WRITE_REG(hw, E1000_SWSM, swsm);
+}
+
+/**
+ *  e1000_get_auto_rd_done_generic - Check for auto read completion
+ *  @hw: pointer to the HW structure
+ *
+ *  Check EEPROM for Auto Read done bit.
+ **/
+s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
+{
+       s32 i = 0;
+
+       DEBUGFUNC("e1000_get_auto_rd_done_generic");
+
+       while (i < AUTO_READ_DONE_TIMEOUT) {
+               if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
+                       break;
+               msec_delay(1);
+               i++;
+       }
+
+       if (i == AUTO_READ_DONE_TIMEOUT) {
+               DEBUGOUT("Auto read by HW from NVM has not completed.\n");
+               return -E1000_ERR_RESET;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_valid_led_default_generic - Verify a valid default LED config
+ *  @hw: pointer to the HW structure
+ *  @data: pointer to the NVM (EEPROM)
+ *
+ *  Read the EEPROM for the current default LED configuration.  If the
+ *  LED configuration is not valid, set to a valid LED configuration.
+ **/
+s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
+{
+       s32 ret_val;
+
+       DEBUGFUNC("e1000_valid_led_default_generic");
+
+       ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
+       if (ret_val) {
+               DEBUGOUT("NVM Read Error\n");
+               return ret_val;
+       }
+
+       if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
+               *data = ID_LED_DEFAULT;
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_id_led_init_generic -
+ *  @hw: pointer to the HW structure
+ *
+ **/
+s32 e1000_id_led_init_generic(struct e1000_hw *hw)
+{
+       struct e1000_mac_info *mac = &hw->mac;
+       s32 ret_val;
+       const u32 ledctl_mask = 0x000000FF;
+       const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
+       const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
+       u16 data, i, temp;
+       const u16 led_mask = 0x0F;
+
+       DEBUGFUNC("e1000_id_led_init_generic");
+
+       ret_val = hw->nvm.ops.valid_led_default(hw, &data);
+       if (ret_val)
+               return ret_val;
+
+       mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
+       mac->ledctl_mode1 = mac->ledctl_default;
+       mac->ledctl_mode2 = mac->ledctl_default;
+
+       for (i = 0; i < 4; i++) {
+               temp = (data >> (i << 2)) & led_mask;
+               switch (temp) {
+               case ID_LED_ON1_DEF2:
+               case ID_LED_ON1_ON2:
+               case ID_LED_ON1_OFF2:
+                       mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+                       mac->ledctl_mode1 |= ledctl_on << (i << 3);
+                       break;
+               case ID_LED_OFF1_DEF2:
+               case ID_LED_OFF1_ON2:
+               case ID_LED_OFF1_OFF2:
+                       mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
+                       mac->ledctl_mode1 |= ledctl_off << (i << 3);
+                       break;
+               default:
+                       /* Do nothing */
+                       break;
+               }
+               switch (temp) {
+               case ID_LED_DEF1_ON2:
+               case ID_LED_ON1_ON2:
+               case ID_LED_OFF1_ON2:
+                       mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+                       mac->ledctl_mode2 |= ledctl_on << (i << 3);
+                       break;
+               case ID_LED_DEF1_OFF2:
+               case ID_LED_ON1_OFF2:
+               case ID_LED_OFF1_OFF2:
+                       mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
+                       mac->ledctl_mode2 |= ledctl_off << (i << 3);
+                       break;
+               default:
+                       /* Do nothing */
+                       break;
+               }
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_setup_led_generic - Configures SW controllable LED
+ *  @hw: pointer to the HW structure
+ *
+ *  This prepares the SW controllable LED for use and saves the current state
+ *  of the LED so it can be later restored.
+ **/
+s32 e1000_setup_led_generic(struct e1000_hw *hw)
+{
+       u32 ledctl;
+
+       DEBUGFUNC("e1000_setup_led_generic");
+
+       if (hw->mac.ops.setup_led != e1000_setup_led_generic)
+               return -E1000_ERR_CONFIG;
+
+       if (hw->phy.media_type == e1000_media_type_fiber) {
+               ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
+               hw->mac.ledctl_default = ledctl;
+               /* Turn off LED0 */
+               ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
+                           E1000_LEDCTL_LED0_MODE_MASK);
+               ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
+                          E1000_LEDCTL_LED0_MODE_SHIFT);
+               E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
+       } else if (hw->phy.media_type == e1000_media_type_copper) {
+               E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_cleanup_led_generic - Set LED config to default operation
+ *  @hw: pointer to the HW structure
+ *
+ *  Remove the current LED configuration and set the LED configuration
+ *  to the default value, saved from the EEPROM.
+ **/
+s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
+{
+       DEBUGFUNC("e1000_cleanup_led_generic");
+
+       E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_blink_led_generic - Blink LED
+ *  @hw: pointer to the HW structure
+ *
+ *  Blink the LEDs which are set to be on.
+ **/
+s32 e1000_blink_led_generic(struct e1000_hw *hw)
+{
+       u32 ledctl_blink = 0;
+       u32 i;
+
+       DEBUGFUNC("e1000_blink_led_generic");
+
+       if (hw->phy.media_type == e1000_media_type_fiber) {
+               /* always blink LED0 for PCI-E fiber */
+               ledctl_blink = E1000_LEDCTL_LED0_BLINK |
+                    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
+       } else {
+               /* Set the blink bit for each LED that's "on" (0x0E)
+                * (or "off" if inverted) in ledctl_mode2.  The blink
+                * logic in hardware only works when mode is set to "on"
+                * so it must be changed accordingly when the mode is
+                * "off" and inverted.
+                */
+               ledctl_blink = hw->mac.ledctl_mode2;
+               for (i = 0; i < 32; i += 8) {
+                       u32 mode = (hw->mac.ledctl_mode2 >> i) &
+                           E1000_LEDCTL_LED0_MODE_MASK;
+                       u32 led_default = hw->mac.ledctl_default >> i;
+
+                       if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
+                            (mode == E1000_LEDCTL_MODE_LED_ON)) ||
+                           ((led_default & E1000_LEDCTL_LED0_IVRT) &&
+                            (mode == E1000_LEDCTL_MODE_LED_OFF))) {
+                               ledctl_blink &=
+                                   ~(E1000_LEDCTL_LED0_MODE_MASK << i);
+                               ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
+                                                E1000_LEDCTL_MODE_LED_ON) << i;
+                       }
+               }
+       }
+
+       E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_led_on_generic - Turn LED on
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn LED on.
+ **/
+s32 e1000_led_on_generic(struct e1000_hw *hw)
+{
+       u32 ctrl;
+
+       DEBUGFUNC("e1000_led_on_generic");
+
+       switch (hw->phy.media_type) {
+       case e1000_media_type_fiber:
+               ctrl = E1000_READ_REG(hw, E1000_CTRL);
+               ctrl &= ~E1000_CTRL_SWDPIN0;
+               ctrl |= E1000_CTRL_SWDPIO0;
+               E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+               break;
+       case e1000_media_type_copper:
+               E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
+               break;
+       default:
+               break;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_led_off_generic - Turn LED off
+ *  @hw: pointer to the HW structure
+ *
+ *  Turn LED off.
+ **/
+s32 e1000_led_off_generic(struct e1000_hw *hw)
+{
+       u32 ctrl;
+
+       DEBUGFUNC("e1000_led_off_generic");
+
+       switch (hw->phy.media_type) {
+       case e1000_media_type_fiber:
+               ctrl = E1000_READ_REG(hw, E1000_CTRL);
+               ctrl |= E1000_CTRL_SWDPIN0;
+               ctrl |= E1000_CTRL_SWDPIO0;
+               E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+               break;
+       case e1000_media_type_copper:
+               E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
+               break;
+       default:
+               break;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
+ *  @hw: pointer to the HW structure
+ *  @no_snoop: bitmap of snoop events
+ *
+ *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
+ **/
+void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
+{
+       u32 gcr;
+
+       DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
+
+       if (hw->bus.type != e1000_bus_type_pci_express)
+               return;
+
+       if (no_snoop) {
+               gcr = E1000_READ_REG(hw, E1000_GCR);
+               gcr &= ~(PCIE_NO_SNOOP_ALL);
+               gcr |= no_snoop;
+               E1000_WRITE_REG(hw, E1000_GCR, gcr);
+       }
+}
+
+/**
+ *  e1000_disable_pcie_master_generic - Disables PCI-express master access
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns E1000_SUCCESS if successful, else returns -10
+ *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
+ *  the master requests to be disabled.
+ *
+ *  Disables PCI-Express master access and verifies there are no pending
+ *  requests.
+ **/
+s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
+{
+       u32 ctrl;
+       s32 timeout = MASTER_DISABLE_TIMEOUT;
+
+       DEBUGFUNC("e1000_disable_pcie_master_generic");
+
+       if (hw->bus.type != e1000_bus_type_pci_express)
+               return E1000_SUCCESS;
+
+       ctrl = E1000_READ_REG(hw, E1000_CTRL);
+       ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
+       E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+
+       while (timeout) {
+               if (!(E1000_READ_REG(hw, E1000_STATUS) &
+                     E1000_STATUS_GIO_MASTER_ENABLE) ||
+                               E1000_REMOVED(hw->hw_addr))
+                       break;
+               usec_delay(100);
+               timeout--;
+       }
+
+       if (!timeout) {
+               DEBUGOUT("Master requests are pending.\n");
+               return -E1000_ERR_MASTER_REQUESTS_PENDING;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
+ *  @hw: pointer to the HW structure
+ *
+ *  Reset the Adaptive Interframe Spacing throttle to default values.
+ **/
+void e1000_reset_adaptive_generic(struct e1000_hw *hw)
+{
+       struct e1000_mac_info *mac = &hw->mac;
+
+       DEBUGFUNC("e1000_reset_adaptive_generic");
+
+       if (!mac->adaptive_ifs) {
+               DEBUGOUT("Not in Adaptive IFS mode!\n");
+               return;
+       }
+
+       mac->current_ifs_val = 0;
+       mac->ifs_min_val = IFS_MIN;
+       mac->ifs_max_val = IFS_MAX;
+       mac->ifs_step_size = IFS_STEP;
+       mac->ifs_ratio = IFS_RATIO;
+
+       mac->in_ifs_mode = false;
+       E1000_WRITE_REG(hw, E1000_AIT, 0);
+}
+
+/**
+ *  e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
+ *  @hw: pointer to the HW structure
+ *
+ *  Update the Adaptive Interframe Spacing Throttle value based on the
+ *  time between transmitted packets and time between collisions.
+ **/
+void e1000_update_adaptive_generic(struct e1000_hw *hw)
+{
+       struct e1000_mac_info *mac = &hw->mac;
+
+       DEBUGFUNC("e1000_update_adaptive_generic");
+
+       if (!mac->adaptive_ifs) {
+               DEBUGOUT("Not in Adaptive IFS mode!\n");
+               return;
+       }
+
+       if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
+               if (mac->tx_packet_delta > MIN_NUM_XMITS) {
+                       mac->in_ifs_mode = true;
+                       if (mac->current_ifs_val < mac->ifs_max_val) {
+                               if (!mac->current_ifs_val)
+                                       mac->current_ifs_val = mac->ifs_min_val;
+                               else
+                                       mac->current_ifs_val +=
+                                               mac->ifs_step_size;
+                               E1000_WRITE_REG(hw, E1000_AIT,
+                                               mac->current_ifs_val);
+                       }
+               }
+       } else {
+               if (mac->in_ifs_mode &&
+                   (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
+                       mac->current_ifs_val = 0;
+                       mac->in_ifs_mode = false;
+                       E1000_WRITE_REG(hw, E1000_AIT, 0);
+               }
+       }
+}
+
+/**
+ *  e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Verify that when not using auto-negotiation that MDI/MDIx is correctly
+ *  set, which is forced to MDI mode only.
+ **/
+STATIC s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
+{
+       DEBUGFUNC("e1000_validate_mdi_setting_generic");
+
+       if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
+               DEBUGOUT("Invalid MDI setting detected\n");
+               hw->phy.mdix = 1;
+               return -E1000_ERR_CONFIG;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Validate the MDI/MDIx setting, allowing for auto-crossover during forced
+ *  operation.
+ **/
+s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+       DEBUGFUNC("e1000_validate_mdi_setting_crossover_generic");
+       UNREFERENCED_1PARAMETER(hw);
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
+ *  @hw: pointer to the HW structure
+ *  @reg: 32bit register offset such as E1000_SCTL
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Writes an address/data control type register.  There are several of these
+ *  and they all have the format address << 8 | data and bit 31 is polled for
+ *  completion.
+ **/
+s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
+                                     u32 offset, u8 data)
+{
+       u32 i, regvalue = 0;
+
+       DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
+
+       /* Set up the address and data */
+       regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
+       E1000_WRITE_REG(hw, reg, regvalue);
+
+       /* Poll the ready bit to see if the MDI read completed */
+       for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
+               usec_delay(5);
+               regvalue = E1000_READ_REG(hw, reg);
+               if (regvalue & E1000_GEN_CTL_READY)
+                       break;
+       }
+       if (!(regvalue & E1000_GEN_CTL_READY)) {
+               DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
+               return -E1000_ERR_PHY;
+       }
+
+       return E1000_SUCCESS;
+}