Imported Upstream version 16.04
[deb_dpdk.git] / drivers / net / e1000 / base / e1000_phy.c
diff --git a/drivers/net/e1000/base/e1000_phy.c b/drivers/net/e1000/base/e1000_phy.c
new file mode 100644 (file)
index 0000000..d43b7ce
--- /dev/null
@@ -0,0 +1,4258 @@
+/*******************************************************************************
+
+Copyright (c) 2001-2015, Intel Corporation
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ 1. Redistributions of source code must retain the above copyright notice,
+    this list of conditions and the following disclaimer.
+
+ 2. Redistributions in binary form must reproduce the above copyright
+    notice, this list of conditions and the following disclaimer in the
+    documentation and/or other materials provided with the distribution.
+
+ 3. Neither the name of the Intel Corporation nor the names of its
+    contributors may be used to endorse or promote products derived from
+    this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+***************************************************************************/
+
+#include "e1000_api.h"
+
+STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw);
+STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
+                                         u16 *data, bool read, bool page_set);
+STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page);
+STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
+                                         u16 *data, bool read);
+
+/* Cable length tables */
+STATIC const u16 e1000_m88_cable_length_table[] = {
+       0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
+#define M88E1000_CABLE_LENGTH_TABLE_SIZE \
+               (sizeof(e1000_m88_cable_length_table) / \
+                sizeof(e1000_m88_cable_length_table[0]))
+
+STATIC const u16 e1000_igp_2_cable_length_table[] = {
+       0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
+       6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
+       26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
+       44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
+       66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
+       87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
+       100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
+       124};
+#define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
+               (sizeof(e1000_igp_2_cable_length_table) / \
+                sizeof(e1000_igp_2_cable_length_table[0]))
+
+/**
+ *  e1000_init_phy_ops_generic - Initialize PHY function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Setups up the function pointers to no-op functions
+ **/
+void e1000_init_phy_ops_generic(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       DEBUGFUNC("e1000_init_phy_ops_generic");
+
+       /* Initialize function pointers */
+       phy->ops.init_params = e1000_null_ops_generic;
+       phy->ops.acquire = e1000_null_ops_generic;
+       phy->ops.check_polarity = e1000_null_ops_generic;
+       phy->ops.check_reset_block = e1000_null_ops_generic;
+       phy->ops.commit = e1000_null_ops_generic;
+       phy->ops.force_speed_duplex = e1000_null_ops_generic;
+       phy->ops.get_cfg_done = e1000_null_ops_generic;
+       phy->ops.get_cable_length = e1000_null_ops_generic;
+       phy->ops.get_info = e1000_null_ops_generic;
+       phy->ops.set_page = e1000_null_set_page;
+       phy->ops.read_reg = e1000_null_read_reg;
+       phy->ops.read_reg_locked = e1000_null_read_reg;
+       phy->ops.read_reg_page = e1000_null_read_reg;
+       phy->ops.release = e1000_null_phy_generic;
+       phy->ops.reset = e1000_null_ops_generic;
+       phy->ops.set_d0_lplu_state = e1000_null_lplu_state;
+       phy->ops.set_d3_lplu_state = e1000_null_lplu_state;
+       phy->ops.write_reg = e1000_null_write_reg;
+       phy->ops.write_reg_locked = e1000_null_write_reg;
+       phy->ops.write_reg_page = e1000_null_write_reg;
+       phy->ops.power_up = e1000_null_phy_generic;
+       phy->ops.power_down = e1000_null_phy_generic;
+       phy->ops.read_i2c_byte = e1000_read_i2c_byte_null;
+       phy->ops.write_i2c_byte = e1000_write_i2c_byte_null;
+       phy->ops.cfg_on_link_up = e1000_null_ops_generic;
+}
+
+/**
+ *  e1000_null_set_page - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_null_set_page(struct e1000_hw E1000_UNUSEDARG *hw,
+                       u16 E1000_UNUSEDARG data)
+{
+       DEBUGFUNC("e1000_null_set_page");
+       UNREFERENCED_2PARAMETER(hw, data);
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_null_read_reg - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_null_read_reg(struct e1000_hw E1000_UNUSEDARG *hw,
+                       u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG *data)
+{
+       DEBUGFUNC("e1000_null_read_reg");
+       UNREFERENCED_3PARAMETER(hw, offset, data);
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_null_phy_generic - No-op function, return void
+ *  @hw: pointer to the HW structure
+ **/
+void e1000_null_phy_generic(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+       DEBUGFUNC("e1000_null_phy_generic");
+       UNREFERENCED_1PARAMETER(hw);
+       return;
+}
+
+/**
+ *  e1000_null_lplu_state - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_null_lplu_state(struct e1000_hw E1000_UNUSEDARG *hw,
+                         bool E1000_UNUSEDARG active)
+{
+       DEBUGFUNC("e1000_null_lplu_state");
+       UNREFERENCED_2PARAMETER(hw, active);
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_null_write_reg - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_null_write_reg(struct e1000_hw E1000_UNUSEDARG *hw,
+                        u32 E1000_UNUSEDARG offset, u16 E1000_UNUSEDARG data)
+{
+       DEBUGFUNC("e1000_null_write_reg");
+       UNREFERENCED_3PARAMETER(hw, offset, data);
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_i2c_byte_null - No-op function, return 0
+ *  @hw: pointer to hardware structure
+ *  @byte_offset: byte offset to write
+ *  @dev_addr: device address
+ *  @data: data value read
+ *
+ **/
+s32 e1000_read_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw,
+                            u8 E1000_UNUSEDARG byte_offset,
+                            u8 E1000_UNUSEDARG dev_addr,
+                            u8 E1000_UNUSEDARG *data)
+{
+       DEBUGFUNC("e1000_read_i2c_byte_null");
+       UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data);
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_i2c_byte_null - No-op function, return 0
+ *  @hw: pointer to hardware structure
+ *  @byte_offset: byte offset to write
+ *  @dev_addr: device address
+ *  @data: data value to write
+ *
+ **/
+s32 e1000_write_i2c_byte_null(struct e1000_hw E1000_UNUSEDARG *hw,
+                             u8 E1000_UNUSEDARG byte_offset,
+                             u8 E1000_UNUSEDARG dev_addr,
+                             u8 E1000_UNUSEDARG data)
+{
+       DEBUGFUNC("e1000_write_i2c_byte_null");
+       UNREFERENCED_4PARAMETER(hw, byte_offset, dev_addr, data);
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_check_reset_block_generic - Check if PHY reset is blocked
+ *  @hw: pointer to the HW structure
+ *
+ *  Read the PHY management control register and check whether a PHY reset
+ *  is blocked.  If a reset is not blocked return E1000_SUCCESS, otherwise
+ *  return E1000_BLK_PHY_RESET (12).
+ **/
+s32 e1000_check_reset_block_generic(struct e1000_hw *hw)
+{
+       u32 manc;
+
+       DEBUGFUNC("e1000_check_reset_block");
+
+       manc = E1000_READ_REG(hw, E1000_MANC);
+
+       return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
+              E1000_BLK_PHY_RESET : E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_phy_id - Retrieve the PHY ID and revision
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the PHY registers and stores the PHY ID and possibly the PHY
+ *  revision in the hardware structure.
+ **/
+s32 e1000_get_phy_id(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val = E1000_SUCCESS;
+       u16 phy_id;
+       u16 retry_count = 0;
+
+       DEBUGFUNC("e1000_get_phy_id");
+
+       if (!phy->ops.read_reg)
+               return E1000_SUCCESS;
+
+       while (retry_count < 2) {
+               ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
+               if (ret_val)
+                       return ret_val;
+
+               phy->id = (u32)(phy_id << 16);
+               usec_delay(20);
+               ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
+               if (ret_val)
+                       return ret_val;
+
+               phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
+               phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
+
+               if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
+                       return E1000_SUCCESS;
+
+               retry_count++;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_phy_reset_dsp_generic - Reset PHY DSP
+ *  @hw: pointer to the HW structure
+ *
+ *  Reset the digital signal processor.
+ **/
+s32 e1000_phy_reset_dsp_generic(struct e1000_hw *hw)
+{
+       s32 ret_val;
+
+       DEBUGFUNC("e1000_phy_reset_dsp_generic");
+
+       if (!hw->phy.ops.write_reg)
+               return E1000_SUCCESS;
+
+       ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
+       if (ret_val)
+               return ret_val;
+
+       return hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
+}
+
+/**
+ *  e1000_read_phy_reg_mdic - Read MDI control register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the MDI control register in the PHY at offset and stores the
+ *  information read to data.
+ **/
+s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       u32 i, mdic = 0;
+
+       DEBUGFUNC("e1000_read_phy_reg_mdic");
+
+       if (offset > MAX_PHY_REG_ADDRESS) {
+               DEBUGOUT1("PHY Address %d is out of range\n", offset);
+               return -E1000_ERR_PARAM;
+       }
+
+       /* Set up Op-code, Phy Address, and register offset in the MDI
+        * Control register.  The MAC will take care of interfacing with the
+        * PHY to retrieve the desired data.
+        */
+       mdic = ((offset << E1000_MDIC_REG_SHIFT) |
+               (phy->addr << E1000_MDIC_PHY_SHIFT) |
+               (E1000_MDIC_OP_READ));
+
+       E1000_WRITE_REG(hw, E1000_MDIC, mdic);
+
+       /* Poll the ready bit to see if the MDI read completed
+        * Increasing the time out as testing showed failures with
+        * the lower time out
+        */
+       for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+               usec_delay_irq(50);
+               mdic = E1000_READ_REG(hw, E1000_MDIC);
+               if (mdic & E1000_MDIC_READY)
+                       break;
+       }
+       if (!(mdic & E1000_MDIC_READY)) {
+               DEBUGOUT("MDI Read did not complete\n");
+               return -E1000_ERR_PHY;
+       }
+       if (mdic & E1000_MDIC_ERROR) {
+               DEBUGOUT("MDI Error\n");
+               return -E1000_ERR_PHY;
+       }
+       if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
+               DEBUGOUT2("MDI Read offset error - requested %d, returned %d\n",
+                         offset,
+                         (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
+               return -E1000_ERR_PHY;
+       }
+       *data = (u16) mdic;
+
+       /* Allow some time after each MDIC transaction to avoid
+        * reading duplicate data in the next MDIC transaction.
+        */
+       if (hw->mac.type == e1000_pch2lan)
+               usec_delay_irq(100);
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_phy_reg_mdic - Write MDI control register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write to register at offset
+ *
+ *  Writes data to MDI control register in the PHY at offset.
+ **/
+s32 e1000_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       u32 i, mdic = 0;
+
+       DEBUGFUNC("e1000_write_phy_reg_mdic");
+
+       if (offset > MAX_PHY_REG_ADDRESS) {
+               DEBUGOUT1("PHY Address %d is out of range\n", offset);
+               return -E1000_ERR_PARAM;
+       }
+
+       /* Set up Op-code, Phy Address, and register offset in the MDI
+        * Control register.  The MAC will take care of interfacing with the
+        * PHY to retrieve the desired data.
+        */
+       mdic = (((u32)data) |
+               (offset << E1000_MDIC_REG_SHIFT) |
+               (phy->addr << E1000_MDIC_PHY_SHIFT) |
+               (E1000_MDIC_OP_WRITE));
+
+       E1000_WRITE_REG(hw, E1000_MDIC, mdic);
+
+       /* Poll the ready bit to see if the MDI read completed
+        * Increasing the time out as testing showed failures with
+        * the lower time out
+        */
+       for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
+               usec_delay_irq(50);
+               mdic = E1000_READ_REG(hw, E1000_MDIC);
+               if (mdic & E1000_MDIC_READY)
+                       break;
+       }
+       if (!(mdic & E1000_MDIC_READY)) {
+               DEBUGOUT("MDI Write did not complete\n");
+               return -E1000_ERR_PHY;
+       }
+       if (mdic & E1000_MDIC_ERROR) {
+               DEBUGOUT("MDI Error\n");
+               return -E1000_ERR_PHY;
+       }
+       if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
+               DEBUGOUT2("MDI Write offset error - requested %d, returned %d\n",
+                         offset,
+                         (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
+               return -E1000_ERR_PHY;
+       }
+
+       /* Allow some time after each MDIC transaction to avoid
+        * reading duplicate data in the next MDIC transaction.
+        */
+       if (hw->mac.type == e1000_pch2lan)
+               usec_delay_irq(100);
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_phy_reg_i2c - Read PHY register using i2c
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the PHY register at offset using the i2c interface and stores the
+ *  retrieved information in data.
+ **/
+s32 e1000_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       u32 i, i2ccmd = 0;
+
+       DEBUGFUNC("e1000_read_phy_reg_i2c");
+
+       /* Set up Op-code, Phy Address, and register address in the I2CCMD
+        * register.  The MAC will take care of interfacing with the
+        * PHY to retrieve the desired data.
+        */
+       i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+                 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
+                 (E1000_I2CCMD_OPCODE_READ));
+
+       E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+       /* Poll the ready bit to see if the I2C read completed */
+       for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+               usec_delay(50);
+               i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+               if (i2ccmd & E1000_I2CCMD_READY)
+                       break;
+       }
+       if (!(i2ccmd & E1000_I2CCMD_READY)) {
+               DEBUGOUT("I2CCMD Read did not complete\n");
+               return -E1000_ERR_PHY;
+       }
+       if (i2ccmd & E1000_I2CCMD_ERROR) {
+               DEBUGOUT("I2CCMD Error bit set\n");
+               return -E1000_ERR_PHY;
+       }
+
+       /* Need to byte-swap the 16-bit value. */
+       *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_phy_reg_i2c - Write PHY register using i2c
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Writes the data to PHY register at the offset using the i2c interface.
+ **/
+s32 e1000_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       u32 i, i2ccmd = 0;
+       u16 phy_data_swapped;
+
+       DEBUGFUNC("e1000_write_phy_reg_i2c");
+
+       /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
+       if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
+               DEBUGOUT1("PHY I2C Address %d is out of range.\n",
+                         hw->phy.addr);
+               return -E1000_ERR_CONFIG;
+       }
+
+       /* Swap the data bytes for the I2C interface */
+       phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
+
+       /* Set up Op-code, Phy Address, and register address in the I2CCMD
+        * register.  The MAC will take care of interfacing with the
+        * PHY to retrieve the desired data.
+        */
+       i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+                 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
+                 E1000_I2CCMD_OPCODE_WRITE |
+                 phy_data_swapped);
+
+       E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+       /* Poll the ready bit to see if the I2C read completed */
+       for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+               usec_delay(50);
+               i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+               if (i2ccmd & E1000_I2CCMD_READY)
+                       break;
+       }
+       if (!(i2ccmd & E1000_I2CCMD_READY)) {
+               DEBUGOUT("I2CCMD Write did not complete\n");
+               return -E1000_ERR_PHY;
+       }
+       if (i2ccmd & E1000_I2CCMD_ERROR) {
+               DEBUGOUT("I2CCMD Error bit set\n");
+               return -E1000_ERR_PHY;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_sfp_data_byte - Reads SFP module data.
+ *  @hw: pointer to the HW structure
+ *  @offset: byte location offset to be read
+ *  @data: read data buffer pointer
+ *
+ *  Reads one byte from SFP module data stored
+ *  in SFP resided EEPROM memory or SFP diagnostic area.
+ *  Function should be called with
+ *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
+ *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
+ *  access
+ **/
+s32 e1000_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
+{
+       u32 i = 0;
+       u32 i2ccmd = 0;
+       u32 data_local = 0;
+
+       DEBUGFUNC("e1000_read_sfp_data_byte");
+
+       if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
+               DEBUGOUT("I2CCMD command address exceeds upper limit\n");
+               return -E1000_ERR_PHY;
+       }
+
+       /* Set up Op-code, EEPROM Address,in the I2CCMD
+        * register. The MAC will take care of interfacing with the
+        * EEPROM to retrieve the desired data.
+        */
+       i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+                 E1000_I2CCMD_OPCODE_READ);
+
+       E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+
+       /* Poll the ready bit to see if the I2C read completed */
+       for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+               usec_delay(50);
+               data_local = E1000_READ_REG(hw, E1000_I2CCMD);
+               if (data_local & E1000_I2CCMD_READY)
+                       break;
+       }
+       if (!(data_local & E1000_I2CCMD_READY)) {
+               DEBUGOUT("I2CCMD Read did not complete\n");
+               return -E1000_ERR_PHY;
+       }
+       if (data_local & E1000_I2CCMD_ERROR) {
+               DEBUGOUT("I2CCMD Error bit set\n");
+               return -E1000_ERR_PHY;
+       }
+       *data = (u8) data_local & 0xFF;
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_sfp_data_byte - Writes SFP module data.
+ *  @hw: pointer to the HW structure
+ *  @offset: byte location offset to write to
+ *  @data: data to write
+ *
+ *  Writes one byte to SFP module data stored
+ *  in SFP resided EEPROM memory or SFP diagnostic area.
+ *  Function should be called with
+ *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
+ *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
+ *  access
+ **/
+s32 e1000_write_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 data)
+{
+       u32 i = 0;
+       u32 i2ccmd = 0;
+       u32 data_local = 0;
+
+       DEBUGFUNC("e1000_write_sfp_data_byte");
+
+       if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
+               DEBUGOUT("I2CCMD command address exceeds upper limit\n");
+               return -E1000_ERR_PHY;
+       }
+       /* The programming interface is 16 bits wide
+        * so we need to read the whole word first
+        * then update appropriate byte lane and write
+        * the updated word back.
+        */
+       /* Set up Op-code, EEPROM Address,in the I2CCMD
+        * register. The MAC will take care of interfacing
+        * with an EEPROM to write the data given.
+        */
+       i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
+                 E1000_I2CCMD_OPCODE_READ);
+       /* Set a command to read single word */
+       E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+       for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
+               usec_delay(50);
+               /* Poll the ready bit to see if lastly
+                * launched I2C operation completed
+                */
+               i2ccmd = E1000_READ_REG(hw, E1000_I2CCMD);
+               if (i2ccmd & E1000_I2CCMD_READY) {
+                       /* Check if this is READ or WRITE phase */
+                       if ((i2ccmd & E1000_I2CCMD_OPCODE_READ) ==
+                           E1000_I2CCMD_OPCODE_READ) {
+                               /* Write the selected byte
+                                * lane and update whole word
+                                */
+                               data_local = i2ccmd & 0xFF00;
+                               data_local |= data;
+                               i2ccmd = ((offset <<
+                                       E1000_I2CCMD_REG_ADDR_SHIFT) |
+                                       E1000_I2CCMD_OPCODE_WRITE | data_local);
+                               E1000_WRITE_REG(hw, E1000_I2CCMD, i2ccmd);
+                       } else {
+                               break;
+                       }
+               }
+       }
+       if (!(i2ccmd & E1000_I2CCMD_READY)) {
+               DEBUGOUT("I2CCMD Write did not complete\n");
+               return -E1000_ERR_PHY;
+       }
+       if (i2ccmd & E1000_I2CCMD_ERROR) {
+               DEBUGOUT("I2CCMD Error bit set\n");
+               return -E1000_ERR_PHY;
+       }
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_phy_reg_m88 - Read m88 PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and storing the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+       s32 ret_val;
+
+       DEBUGFUNC("e1000_read_phy_reg_m88");
+
+       if (!hw->phy.ops.acquire)
+               return E1000_SUCCESS;
+
+       ret_val = hw->phy.ops.acquire(hw);
+       if (ret_val)
+               return ret_val;
+
+       ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+                                         data);
+
+       hw->phy.ops.release(hw);
+
+       return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_m88 - Write m88 PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
+{
+       s32 ret_val;
+
+       DEBUGFUNC("e1000_write_phy_reg_m88");
+
+       if (!hw->phy.ops.acquire)
+               return E1000_SUCCESS;
+
+       ret_val = hw->phy.ops.acquire(hw);
+       if (ret_val)
+               return ret_val;
+
+       ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+                                          data);
+
+       hw->phy.ops.release(hw);
+
+       return ret_val;
+}
+
+/**
+ *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
+ *  @hw: pointer to the HW structure
+ *  @page: page to set (shifted left when necessary)
+ *
+ *  Sets PHY page required for PHY register access.  Assumes semaphore is
+ *  already acquired.  Note, this function sets phy.addr to 1 so the caller
+ *  must set it appropriately (if necessary) after this function returns.
+ **/
+s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
+{
+       DEBUGFUNC("e1000_set_page_igp");
+
+       DEBUGOUT1("Setting page 0x%x\n", page);
+
+       hw->phy.addr = 1;
+
+       return e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
+}
+
+/**
+ *  __e1000_read_phy_reg_igp - Read igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and stores the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+STATIC s32 __e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
+                                   bool locked)
+{
+       s32 ret_val = E1000_SUCCESS;
+
+       DEBUGFUNC("__e1000_read_phy_reg_igp");
+
+       if (!locked) {
+               if (!hw->phy.ops.acquire)
+                       return E1000_SUCCESS;
+
+               ret_val = hw->phy.ops.acquire(hw);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       if (offset > MAX_PHY_MULTI_PAGE_REG)
+               ret_val = e1000_write_phy_reg_mdic(hw,
+                                                  IGP01E1000_PHY_PAGE_SELECT,
+                                                  (u16)offset);
+       if (!ret_val)
+               ret_val = e1000_read_phy_reg_mdic(hw,
+                                                 MAX_PHY_REG_ADDRESS & offset,
+                                                 data);
+       if (!locked)
+               hw->phy.ops.release(hw);
+
+       return ret_val;
+}
+
+/**
+ *  e1000_read_phy_reg_igp - Read igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore then reads the PHY register at offset and stores the
+ *  retrieved information in data.
+ *  Release the acquired semaphore before exiting.
+ **/
+s32 e1000_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+       return __e1000_read_phy_reg_igp(hw, offset, data, false);
+}
+
+/**
+ *  e1000_read_phy_reg_igp_locked - Read igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the PHY register at offset and stores the retrieved information
+ *  in data.  Assumes semaphore already acquired.
+ **/
+s32 e1000_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+       return __e1000_read_phy_reg_igp(hw, offset, data, true);
+}
+
+/**
+ *  e1000_write_phy_reg_igp - Write igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+STATIC s32 __e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
+                                    bool locked)
+{
+       s32 ret_val = E1000_SUCCESS;
+
+       DEBUGFUNC("e1000_write_phy_reg_igp");
+
+       if (!locked) {
+               if (!hw->phy.ops.acquire)
+                       return E1000_SUCCESS;
+
+               ret_val = hw->phy.ops.acquire(hw);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       if (offset > MAX_PHY_MULTI_PAGE_REG)
+               ret_val = e1000_write_phy_reg_mdic(hw,
+                                                  IGP01E1000_PHY_PAGE_SELECT,
+                                                  (u16)offset);
+       if (!ret_val)
+               ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
+                                                      offset,
+                                                  data);
+       if (!locked)
+               hw->phy.ops.release(hw);
+
+       return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_igp - Write igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
+{
+       return __e1000_write_phy_reg_igp(hw, offset, data, false);
+}
+
+/**
+ *  e1000_write_phy_reg_igp_locked - Write igp PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Writes the data to PHY register at the offset.
+ *  Assumes semaphore already acquired.
+ **/
+s32 e1000_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+       return __e1000_write_phy_reg_igp(hw, offset, data, true);
+}
+
+/**
+ *  __e1000_read_kmrn_reg - Read kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
+ *  using the kumeran interface.  The information retrieved is stored in data.
+ *  Release any acquired semaphores before exiting.
+ **/
+STATIC s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
+                                bool locked)
+{
+       u32 kmrnctrlsta;
+
+       DEBUGFUNC("__e1000_read_kmrn_reg");
+
+       if (!locked) {
+               s32 ret_val = E1000_SUCCESS;
+
+               if (!hw->phy.ops.acquire)
+                       return E1000_SUCCESS;
+
+               ret_val = hw->phy.ops.acquire(hw);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+                      E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
+       E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+       E1000_WRITE_FLUSH(hw);
+
+       usec_delay(2);
+
+       kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
+       *data = (u16)kmrnctrlsta;
+
+       if (!locked)
+               hw->phy.ops.release(hw);
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_kmrn_reg_generic -  Read kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore then reads the PHY register at offset using the
+ *  kumeran interface.  The information retrieved is stored in data.
+ *  Release the acquired semaphore before exiting.
+ **/
+s32 e1000_read_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+       return __e1000_read_kmrn_reg(hw, offset, data, false);
+}
+
+/**
+ *  e1000_read_kmrn_reg_locked -  Read kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the PHY register at offset using the kumeran interface.  The
+ *  information retrieved is stored in data.
+ *  Assumes semaphore already acquired.
+ **/
+s32 e1000_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+       return __e1000_read_kmrn_reg(hw, offset, data, true);
+}
+
+/**
+ *  __e1000_write_kmrn_reg - Write kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary.  Then write the data to PHY register
+ *  at the offset using the kumeran interface.  Release any acquired semaphores
+ *  before exiting.
+ **/
+STATIC s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
+                                 bool locked)
+{
+       u32 kmrnctrlsta;
+
+       DEBUGFUNC("e1000_write_kmrn_reg_generic");
+
+       if (!locked) {
+               s32 ret_val = E1000_SUCCESS;
+
+               if (!hw->phy.ops.acquire)
+                       return E1000_SUCCESS;
+
+               ret_val = hw->phy.ops.acquire(hw);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
+                      E1000_KMRNCTRLSTA_OFFSET) | data;
+       E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
+       E1000_WRITE_FLUSH(hw);
+
+       usec_delay(2);
+
+       if (!locked)
+               hw->phy.ops.release(hw);
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_kmrn_reg_generic -  Write kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore then writes the data to the PHY register at the offset
+ *  using the kumeran interface.  Release the acquired semaphore before exiting.
+ **/
+s32 e1000_write_kmrn_reg_generic(struct e1000_hw *hw, u32 offset, u16 data)
+{
+       return __e1000_write_kmrn_reg(hw, offset, data, false);
+}
+
+/**
+ *  e1000_write_kmrn_reg_locked -  Write kumeran register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Write the data to PHY register at the offset using the kumeran interface.
+ *  Assumes semaphore already acquired.
+ **/
+s32 e1000_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+       return __e1000_write_kmrn_reg(hw, offset, data, true);
+}
+
+/**
+ *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets up Master/slave mode
+ **/
+STATIC s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
+{
+       s32 ret_val;
+       u16 phy_data;
+
+       /* Resolve Master/Slave mode */
+       ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
+       if (ret_val)
+               return ret_val;
+
+       /* load defaults for future use */
+       hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
+                                  ((phy_data & CR_1000T_MS_VALUE) ?
+                                   e1000_ms_force_master :
+                                   e1000_ms_force_slave) : e1000_ms_auto;
+
+       switch (hw->phy.ms_type) {
+       case e1000_ms_force_master:
+               phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
+               break;
+       case e1000_ms_force_slave:
+               phy_data |= CR_1000T_MS_ENABLE;
+               phy_data &= ~(CR_1000T_MS_VALUE);
+               break;
+       case e1000_ms_auto:
+               phy_data &= ~CR_1000T_MS_ENABLE;
+               /* fall-through */
+       default:
+               break;
+       }
+
+       return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
+}
+
+/**
+ *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets up Carrier-sense on Transmit and downshift values.
+ **/
+s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
+{
+       s32 ret_val;
+       u16 phy_data;
+
+       DEBUGFUNC("e1000_copper_link_setup_82577");
+
+       if (hw->phy.type == e1000_phy_82580) {
+               ret_val = hw->phy.ops.reset(hw);
+               if (ret_val) {
+                       DEBUGOUT("Error resetting the PHY.\n");
+                       return ret_val;
+               }
+       }
+
+       /* Enable CRS on Tx. This must be set for half-duplex operation. */
+       ret_val = hw->phy.ops.read_reg(hw, I82577_CFG_REG, &phy_data);
+       if (ret_val)
+               return ret_val;
+
+       phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
+
+       /* Enable downshift */
+       phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
+
+       ret_val = hw->phy.ops.write_reg(hw, I82577_CFG_REG, phy_data);
+       if (ret_val)
+               return ret_val;
+
+       /* Set MDI/MDIX mode */
+       ret_val = hw->phy.ops.read_reg(hw, I82577_PHY_CTRL_2, &phy_data);
+       if (ret_val)
+               return ret_val;
+       phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
+       /* Options:
+        *   0 - Auto (default)
+        *   1 - MDI mode
+        *   2 - MDI-X mode
+        */
+       switch (hw->phy.mdix) {
+       case 1:
+               break;
+       case 2:
+               phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
+               break;
+       case 0:
+       default:
+               phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
+               break;
+       }
+       ret_val = hw->phy.ops.write_reg(hw, I82577_PHY_CTRL_2, phy_data);
+       if (ret_val)
+               return ret_val;
+
+       return e1000_set_master_slave_mode(hw);
+}
+
+/**
+ *  e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
+ *  and downshift values are set also.
+ **/
+s32 e1000_copper_link_setup_m88(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 phy_data;
+
+       DEBUGFUNC("e1000_copper_link_setup_m88");
+
+
+       /* Enable CRS on Tx. This must be set for half-duplex operation. */
+       ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+       if (ret_val)
+               return ret_val;
+
+       /* For BM PHY this bit is downshift enable */
+       if (phy->type != e1000_phy_bm)
+               phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+
+       /* Options:
+        *   MDI/MDI-X = 0 (default)
+        *   0 - Auto for all speeds
+        *   1 - MDI mode
+        *   2 - MDI-X mode
+        *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+        */
+       phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+       switch (phy->mdix) {
+       case 1:
+               phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+               break;
+       case 2:
+               phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+               break;
+       case 3:
+               phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+               break;
+       case 0:
+       default:
+               phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+               break;
+       }
+
+       /* Options:
+        *   disable_polarity_correction = 0 (default)
+        *       Automatic Correction for Reversed Cable Polarity
+        *   0 - Disabled
+        *   1 - Enabled
+        */
+       phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+       if (phy->disable_polarity_correction)
+               phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+
+       /* Enable downshift on BM (disabled by default) */
+       if (phy->type == e1000_phy_bm) {
+               /* For 82574/82583, first disable then enable downshift */
+               if (phy->id == BME1000_E_PHY_ID_R2) {
+                       phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
+                       ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
+                                                    phy_data);
+                       if (ret_val)
+                               return ret_val;
+                       /* Commit the changes. */
+                       ret_val = phy->ops.commit(hw);
+                       if (ret_val) {
+                               DEBUGOUT("Error committing the PHY changes\n");
+                               return ret_val;
+                       }
+               }
+
+               phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
+       }
+
+       ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+       if (ret_val)
+               return ret_val;
+
+       if ((phy->type == e1000_phy_m88) &&
+           (phy->revision < E1000_REVISION_4) &&
+           (phy->id != BME1000_E_PHY_ID_R2)) {
+               /* Force TX_CLK in the Extended PHY Specific Control Register
+                * to 25MHz clock.
+                */
+               ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+                                           &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               phy_data |= M88E1000_EPSCR_TX_CLK_25;
+
+               if ((phy->revision == E1000_REVISION_2) &&
+                   (phy->id == M88E1111_I_PHY_ID)) {
+                       /* 82573L PHY - set the downshift counter to 5x. */
+                       phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
+                       phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
+               } else {
+                       /* Configure Master and Slave downshift values */
+                       phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
+                                    M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
+                       phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
+                                    M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
+               }
+               ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+                                            phy_data);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
+               /* Set PHY page 0, register 29 to 0x0003 */
+               ret_val = phy->ops.write_reg(hw, 29, 0x0003);
+               if (ret_val)
+                       return ret_val;
+
+               /* Set PHY page 0, register 30 to 0x0000 */
+               ret_val = phy->ops.write_reg(hw, 30, 0x0000);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       /* Commit the changes. */
+       ret_val = phy->ops.commit(hw);
+       if (ret_val) {
+               DEBUGOUT("Error committing the PHY changes\n");
+               return ret_val;
+       }
+
+       if (phy->type == e1000_phy_82578) {
+               ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+                                           &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               /* 82578 PHY - set the downshift count to 1x. */
+               phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
+               phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
+               ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
+                                            phy_data);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
+ *  Also enables and sets the downshift parameters.
+ **/
+s32 e1000_copper_link_setup_m88_gen2(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 phy_data;
+
+       DEBUGFUNC("e1000_copper_link_setup_m88_gen2");
+
+
+       /* Enable CRS on Tx. This must be set for half-duplex operation. */
+       ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+       if (ret_val)
+               return ret_val;
+
+       /* Options:
+        *   MDI/MDI-X = 0 (default)
+        *   0 - Auto for all speeds
+        *   1 - MDI mode
+        *   2 - MDI-X mode
+        *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
+        */
+       phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+
+       switch (phy->mdix) {
+       case 1:
+               phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
+               break;
+       case 2:
+               phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
+               break;
+       case 3:
+               /* M88E1112 does not support this mode) */
+               if (phy->id != M88E1112_E_PHY_ID) {
+                       phy_data |= M88E1000_PSCR_AUTO_X_1000T;
+                       break;
+               }
+       case 0:
+       default:
+               phy_data |= M88E1000_PSCR_AUTO_X_MODE;
+               break;
+       }
+
+       /* Options:
+        *   disable_polarity_correction = 0 (default)
+        *       Automatic Correction for Reversed Cable Polarity
+        *   0 - Disabled
+        *   1 - Enabled
+        */
+       phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
+       if (phy->disable_polarity_correction)
+               phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
+
+       /* Enable downshift and setting it to X6 */
+       if (phy->id == M88E1543_E_PHY_ID) {
+               phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
+               ret_val =
+                   phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               ret_val = phy->ops.commit(hw);
+               if (ret_val) {
+                       DEBUGOUT("Error committing the PHY changes\n");
+                       return ret_val;
+               }
+       }
+
+       phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
+       phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
+       phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
+
+       ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+       if (ret_val)
+               return ret_val;
+
+       /* Commit the changes. */
+       ret_val = phy->ops.commit(hw);
+       if (ret_val) {
+               DEBUGOUT("Error committing the PHY changes\n");
+               return ret_val;
+       }
+
+       ret_val = e1000_set_master_slave_mode(hw);
+       if (ret_val)
+               return ret_val;
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_copper_link_setup_igp - Setup igp PHY's for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
+ *  igp PHY's.
+ **/
+s32 e1000_copper_link_setup_igp(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 data;
+
+       DEBUGFUNC("e1000_copper_link_setup_igp");
+
+
+       ret_val = hw->phy.ops.reset(hw);
+       if (ret_val) {
+               DEBUGOUT("Error resetting the PHY.\n");
+               return ret_val;
+       }
+
+       /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
+        * timeout issues when LFS is enabled.
+        */
+       msec_delay(100);
+
+       /* The NVM settings will configure LPLU in D3 for
+        * non-IGP1 PHYs.
+        */
+       if (phy->type == e1000_phy_igp) {
+               /* disable lplu d3 during driver init */
+               ret_val = hw->phy.ops.set_d3_lplu_state(hw, false);
+               if (ret_val) {
+                       DEBUGOUT("Error Disabling LPLU D3\n");
+                       return ret_val;
+               }
+       }
+
+       /* disable lplu d0 during driver init */
+       if (hw->phy.ops.set_d0_lplu_state) {
+               ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
+               if (ret_val) {
+                       DEBUGOUT("Error Disabling LPLU D0\n");
+                       return ret_val;
+               }
+       }
+       /* Configure mdi-mdix settings */
+       ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
+       if (ret_val)
+               return ret_val;
+
+       data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+
+       switch (phy->mdix) {
+       case 1:
+               data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+               break;
+       case 2:
+               data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
+               break;
+       case 0:
+       default:
+               data |= IGP01E1000_PSCR_AUTO_MDIX;
+               break;
+       }
+       ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
+       if (ret_val)
+               return ret_val;
+
+       /* set auto-master slave resolution settings */
+       if (hw->mac.autoneg) {
+               /* when autonegotiation advertisement is only 1000Mbps then we
+                * should disable SmartSpeed and enable Auto MasterSlave
+                * resolution as hardware default.
+                */
+               if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
+                       /* Disable SmartSpeed */
+                       ret_val = phy->ops.read_reg(hw,
+                                                   IGP01E1000_PHY_PORT_CONFIG,
+                                                   &data);
+                       if (ret_val)
+                               return ret_val;
+
+                       data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+                       ret_val = phy->ops.write_reg(hw,
+                                                    IGP01E1000_PHY_PORT_CONFIG,
+                                                    data);
+                       if (ret_val)
+                               return ret_val;
+
+                       /* Set auto Master/Slave resolution process */
+                       ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
+                       if (ret_val)
+                               return ret_val;
+
+                       data &= ~CR_1000T_MS_ENABLE;
+                       ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
+                       if (ret_val)
+                               return ret_val;
+               }
+
+               ret_val = e1000_set_master_slave_mode(hw);
+       }
+
+       return ret_val;
+}
+
+/**
+ *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the MII auto-neg advertisement register and/or the 1000T control
+ *  register and if the PHY is already setup for auto-negotiation, then
+ *  return successful.  Otherwise, setup advertisement and flow control to
+ *  the appropriate values for the wanted auto-negotiation.
+ **/
+s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 mii_autoneg_adv_reg;
+       u16 mii_1000t_ctrl_reg = 0;
+
+       DEBUGFUNC("e1000_phy_setup_autoneg");
+
+       phy->autoneg_advertised &= phy->autoneg_mask;
+
+       /* Read the MII Auto-Neg Advertisement Register (Address 4). */
+       ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
+       if (ret_val)
+               return ret_val;
+
+       if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
+               /* Read the MII 1000Base-T Control Register (Address 9). */
+               ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
+                                           &mii_1000t_ctrl_reg);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       /* Need to parse both autoneg_advertised and fc and set up
+        * the appropriate PHY registers.  First we will parse for
+        * autoneg_advertised software override.  Since we can advertise
+        * a plethora of combinations, we need to check each bit
+        * individually.
+        */
+
+       /* First we clear all the 10/100 mb speed bits in the Auto-Neg
+        * Advertisement Register (Address 4) and the 1000 mb speed bits in
+        * the  1000Base-T Control Register (Address 9).
+        */
+       mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
+                                NWAY_AR_100TX_HD_CAPS |
+                                NWAY_AR_10T_FD_CAPS   |
+                                NWAY_AR_10T_HD_CAPS);
+       mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
+
+       DEBUGOUT1("autoneg_advertised %x\n", phy->autoneg_advertised);
+
+       /* Do we want to advertise 10 Mb Half Duplex? */
+       if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
+               DEBUGOUT("Advertise 10mb Half duplex\n");
+               mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
+       }
+
+       /* Do we want to advertise 10 Mb Full Duplex? */
+       if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
+               DEBUGOUT("Advertise 10mb Full duplex\n");
+               mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
+       }
+
+       /* Do we want to advertise 100 Mb Half Duplex? */
+       if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
+               DEBUGOUT("Advertise 100mb Half duplex\n");
+               mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
+       }
+
+       /* Do we want to advertise 100 Mb Full Duplex? */
+       if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
+               DEBUGOUT("Advertise 100mb Full duplex\n");
+               mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
+       }
+
+       /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
+       if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
+               DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
+
+       /* Do we want to advertise 1000 Mb Full Duplex? */
+       if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
+               DEBUGOUT("Advertise 1000mb Full duplex\n");
+               mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
+       }
+
+       /* Check for a software override of the flow control settings, and
+        * setup the PHY advertisement registers accordingly.  If
+        * auto-negotiation is enabled, then software will have to set the
+        * "PAUSE" bits to the correct value in the Auto-Negotiation
+        * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
+        * negotiation.
+        *
+        * The possible values of the "fc" parameter are:
+        *      0:  Flow control is completely disabled
+        *      1:  Rx flow control is enabled (we can receive pause frames
+        *          but not send pause frames).
+        *      2:  Tx flow control is enabled (we can send pause frames
+        *          but we do not support receiving pause frames).
+        *      3:  Both Rx and Tx flow control (symmetric) are enabled.
+        *  other:  No software override.  The flow control configuration
+        *          in the EEPROM is used.
+        */
+       switch (hw->fc.current_mode) {
+       case e1000_fc_none:
+               /* Flow control (Rx & Tx) is completely disabled by a
+                * software over-ride.
+                */
+               mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+               break;
+       case e1000_fc_rx_pause:
+               /* Rx Flow control is enabled, and Tx Flow control is
+                * disabled, by a software over-ride.
+                *
+                * Since there really isn't a way to advertise that we are
+                * capable of Rx Pause ONLY, we will advertise that we
+                * support both symmetric and asymmetric Rx PAUSE.  Later
+                * (in e1000_config_fc_after_link_up) we will disable the
+                * hw's ability to send PAUSE frames.
+                */
+               mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+               break;
+       case e1000_fc_tx_pause:
+               /* Tx Flow control is enabled, and Rx Flow control is
+                * disabled, by a software over-ride.
+                */
+               mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
+               mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
+               break;
+       case e1000_fc_full:
+               /* Flow control (both Rx and Tx) is enabled by a software
+                * over-ride.
+                */
+               mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
+               break;
+       default:
+               DEBUGOUT("Flow control param set incorrectly\n");
+               return -E1000_ERR_CONFIG;
+       }
+
+       ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
+       if (ret_val)
+               return ret_val;
+
+       DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
+
+       if (phy->autoneg_mask & ADVERTISE_1000_FULL)
+               ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL,
+                                            mii_1000t_ctrl_reg);
+
+       return ret_val;
+}
+
+/**
+ *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
+ *  @hw: pointer to the HW structure
+ *
+ *  Performs initial bounds checking on autoneg advertisement parameter, then
+ *  configure to advertise the full capability.  Setup the PHY to autoneg
+ *  and restart the negotiation process between the link partner.  If
+ *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
+ **/
+s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 phy_ctrl;
+
+       DEBUGFUNC("e1000_copper_link_autoneg");
+
+       /* Perform some bounds checking on the autoneg advertisement
+        * parameter.
+        */
+       phy->autoneg_advertised &= phy->autoneg_mask;
+
+       /* If autoneg_advertised is zero, we assume it was not defaulted
+        * by the calling code so we set to advertise full capability.
+        */
+       if (!phy->autoneg_advertised)
+               phy->autoneg_advertised = phy->autoneg_mask;
+
+       DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
+       ret_val = e1000_phy_setup_autoneg(hw);
+       if (ret_val) {
+               DEBUGOUT("Error Setting up Auto-Negotiation\n");
+               return ret_val;
+       }
+       DEBUGOUT("Restarting Auto-Neg\n");
+
+       /* Restart auto-negotiation by setting the Auto Neg Enable bit and
+        * the Auto Neg Restart bit in the PHY control register.
+        */
+       ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
+       if (ret_val)
+               return ret_val;
+
+       phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
+       ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
+       if (ret_val)
+               return ret_val;
+
+       /* Does the user want to wait for Auto-Neg to complete here, or
+        * check at a later time (for example, callback routine).
+        */
+       if (phy->autoneg_wait_to_complete) {
+               ret_val = e1000_wait_autoneg(hw);
+               if (ret_val) {
+                       DEBUGOUT("Error while waiting for autoneg to complete\n");
+                       return ret_val;
+               }
+       }
+
+       hw->mac.get_link_status = true;
+
+       return ret_val;
+}
+
+/**
+ *  e1000_setup_copper_link_generic - Configure copper link settings
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the appropriate function to configure the link for auto-neg or forced
+ *  speed and duplex.  Then we check for link, once link is established calls
+ *  to configure collision distance and flow control are called.  If link is
+ *  not established, we return -E1000_ERR_PHY (-2).
+ **/
+s32 e1000_setup_copper_link_generic(struct e1000_hw *hw)
+{
+       s32 ret_val;
+       bool link;
+
+       DEBUGFUNC("e1000_setup_copper_link_generic");
+
+       if (hw->mac.autoneg) {
+               /* Setup autoneg and flow control advertisement and perform
+                * autonegotiation.
+                */
+               ret_val = e1000_copper_link_autoneg(hw);
+               if (ret_val)
+                       return ret_val;
+       } else {
+               /* PHY will be set to 10H, 10F, 100H or 100F
+                * depending on user settings.
+                */
+               DEBUGOUT("Forcing Speed and Duplex\n");
+               ret_val = hw->phy.ops.force_speed_duplex(hw);
+               if (ret_val) {
+                       DEBUGOUT("Error Forcing Speed and Duplex\n");
+                       return ret_val;
+               }
+       }
+
+       /* Check link status. Wait up to 100 microseconds for link to become
+        * valid.
+        */
+       ret_val = e1000_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
+                                            &link);
+       if (ret_val)
+               return ret_val;
+
+       if (link) {
+               DEBUGOUT("Valid link established!!!\n");
+               hw->mac.ops.config_collision_dist(hw);
+               ret_val = e1000_config_fc_after_link_up_generic(hw);
+       } else {
+               DEBUGOUT("Unable to establish link!!!\n");
+       }
+
+       return ret_val;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the PHY setup function to force speed and duplex.  Clears the
+ *  auto-crossover to force MDI manually.  Waits for link and returns
+ *  successful if link up is successful, else -E1000_ERR_PHY (-2).
+ **/
+s32 e1000_phy_force_speed_duplex_igp(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 phy_data;
+       bool link;
+
+       DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
+
+       ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
+       if (ret_val)
+               return ret_val;
+
+       e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+       ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
+       if (ret_val)
+               return ret_val;
+
+       /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
+        * forced whenever speed and duplex are forced.
+        */
+       ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
+       if (ret_val)
+               return ret_val;
+
+       phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
+       phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
+
+       ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
+       if (ret_val)
+               return ret_val;
+
+       DEBUGOUT1("IGP PSCR: %X\n", phy_data);
+
+       usec_delay(1);
+
+       if (phy->autoneg_wait_to_complete) {
+               DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
+
+               ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+                                                    100000, &link);
+               if (ret_val)
+                       return ret_val;
+
+               if (!link)
+                       DEBUGOUT("Link taking longer than expected.\n");
+
+               /* Try once more */
+               ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+                                                    100000, &link);
+       }
+
+       return ret_val;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the PHY setup function to force speed and duplex.  Clears the
+ *  auto-crossover to force MDI manually.  Resets the PHY to commit the
+ *  changes.  If time expires while waiting for link up, we reset the DSP.
+ *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
+ *  successful completion, else return corresponding error code.
+ **/
+s32 e1000_phy_force_speed_duplex_m88(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 phy_data;
+       bool link;
+
+       DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
+
+       /* I210 and I211 devices support Auto-Crossover in forced operation. */
+       if (phy->type != e1000_phy_i210) {
+               /* Clear Auto-Crossover to force MDI manually.  M88E1000
+                * requires MDI forced whenever speed and duplex are forced.
+                */
+               ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
+                                           &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
+               ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
+                                            phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data);
+       }
+
+       ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
+       if (ret_val)
+               return ret_val;
+
+       e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+       ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
+       if (ret_val)
+               return ret_val;
+
+       /* Reset the phy to commit changes. */
+       ret_val = hw->phy.ops.commit(hw);
+       if (ret_val)
+               return ret_val;
+
+       if (phy->autoneg_wait_to_complete) {
+               DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
+
+               ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+                                                    100000, &link);
+               if (ret_val)
+                       return ret_val;
+
+               if (!link) {
+                       bool reset_dsp = true;
+
+                       switch (hw->phy.id) {
+                       case I347AT4_E_PHY_ID:
+                       case M88E1340M_E_PHY_ID:
+                       case M88E1112_E_PHY_ID:
+                       case M88E1543_E_PHY_ID:
+                       case M88E1512_E_PHY_ID:
+                       case I210_I_PHY_ID:
+                               reset_dsp = false;
+                               break;
+                       default:
+                               if (hw->phy.type != e1000_phy_m88)
+                                       reset_dsp = false;
+                               break;
+                       }
+
+                       if (!reset_dsp) {
+                               DEBUGOUT("Link taking longer than expected.\n");
+                       } else {
+                               /* We didn't get link.
+                                * Reset the DSP and cross our fingers.
+                                */
+                               ret_val = phy->ops.write_reg(hw,
+                                               M88E1000_PHY_PAGE_SELECT,
+                                               0x001d);
+                               if (ret_val)
+                                       return ret_val;
+                               ret_val = e1000_phy_reset_dsp_generic(hw);
+                               if (ret_val)
+                                       return ret_val;
+                       }
+               }
+
+               /* Try once more */
+               ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+                                                    100000, &link);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       if (hw->phy.type != e1000_phy_m88)
+               return E1000_SUCCESS;
+
+       if (hw->phy.id == I347AT4_E_PHY_ID ||
+               hw->phy.id == M88E1340M_E_PHY_ID ||
+               hw->phy.id == M88E1112_E_PHY_ID)
+               return E1000_SUCCESS;
+       if (hw->phy.id == I210_I_PHY_ID)
+               return E1000_SUCCESS;
+       if ((hw->phy.id == M88E1543_E_PHY_ID) ||
+           (hw->phy.id == M88E1512_E_PHY_ID))
+               return E1000_SUCCESS;
+       ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
+       if (ret_val)
+               return ret_val;
+
+       /* Resetting the phy means we need to re-force TX_CLK in the
+        * Extended PHY Specific Control Register to 25MHz clock from
+        * the reset value of 2.5MHz.
+        */
+       phy_data |= M88E1000_EPSCR_TX_CLK_25;
+       ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
+       if (ret_val)
+               return ret_val;
+
+       /* In addition, we must re-enable CRS on Tx for both half and full
+        * duplex.
+        */
+       ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+       if (ret_val)
+               return ret_val;
+
+       phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
+       ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
+
+       return ret_val;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
+ *  @hw: pointer to the HW structure
+ *
+ *  Forces the speed and duplex settings of the PHY.
+ *  This is a function pointer entry point only called by
+ *  PHY setup routines.
+ **/
+s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 data;
+       bool link;
+
+       DEBUGFUNC("e1000_phy_force_speed_duplex_ife");
+
+       ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &data);
+       if (ret_val)
+               return ret_val;
+
+       e1000_phy_force_speed_duplex_setup(hw, &data);
+
+       ret_val = phy->ops.write_reg(hw, PHY_CONTROL, data);
+       if (ret_val)
+               return ret_val;
+
+       /* Disable MDI-X support for 10/100 */
+       ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
+       if (ret_val)
+               return ret_val;
+
+       data &= ~IFE_PMC_AUTO_MDIX;
+       data &= ~IFE_PMC_FORCE_MDIX;
+
+       ret_val = phy->ops.write_reg(hw, IFE_PHY_MDIX_CONTROL, data);
+       if (ret_val)
+               return ret_val;
+
+       DEBUGOUT1("IFE PMC: %X\n", data);
+
+       usec_delay(1);
+
+       if (phy->autoneg_wait_to_complete) {
+               DEBUGOUT("Waiting for forced speed/duplex link on IFE phy.\n");
+
+               ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+                                                    100000, &link);
+               if (ret_val)
+                       return ret_val;
+
+               if (!link)
+                       DEBUGOUT("Link taking longer than expected.\n");
+
+               /* Try once more */
+               ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+                                                    100000, &link);
+               if (ret_val)
+                       return ret_val;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
+ *  @hw: pointer to the HW structure
+ *  @phy_ctrl: pointer to current value of PHY_CONTROL
+ *
+ *  Forces speed and duplex on the PHY by doing the following: disable flow
+ *  control, force speed/duplex on the MAC, disable auto speed detection,
+ *  disable auto-negotiation, configure duplex, configure speed, configure
+ *  the collision distance, write configuration to CTRL register.  The
+ *  caller must write to the PHY_CONTROL register for these settings to
+ *  take affect.
+ **/
+void e1000_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
+{
+       struct e1000_mac_info *mac = &hw->mac;
+       u32 ctrl;
+
+       DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
+
+       /* Turn off flow control when forcing speed/duplex */
+       hw->fc.current_mode = e1000_fc_none;
+
+       /* Force speed/duplex on the mac */
+       ctrl = E1000_READ_REG(hw, E1000_CTRL);
+       ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
+       ctrl &= ~E1000_CTRL_SPD_SEL;
+
+       /* Disable Auto Speed Detection */
+       ctrl &= ~E1000_CTRL_ASDE;
+
+       /* Disable autoneg on the phy */
+       *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
+
+       /* Forcing Full or Half Duplex? */
+       if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
+               ctrl &= ~E1000_CTRL_FD;
+               *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
+               DEBUGOUT("Half Duplex\n");
+       } else {
+               ctrl |= E1000_CTRL_FD;
+               *phy_ctrl |= MII_CR_FULL_DUPLEX;
+               DEBUGOUT("Full Duplex\n");
+       }
+
+       /* Forcing 10mb or 100mb? */
+       if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
+               ctrl |= E1000_CTRL_SPD_100;
+               *phy_ctrl |= MII_CR_SPEED_100;
+               *phy_ctrl &= ~MII_CR_SPEED_1000;
+               DEBUGOUT("Forcing 100mb\n");
+       } else {
+               ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
+               *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
+               DEBUGOUT("Forcing 10mb\n");
+       }
+
+       hw->mac.ops.config_collision_dist(hw);
+
+       E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+}
+
+/**
+ *  e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
+ *  @hw: pointer to the HW structure
+ *  @active: boolean used to enable/disable lplu
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  The low power link up (lplu) state is set to the power management level D3
+ *  and SmartSpeed is disabled when active is true, else clear lplu for D3
+ *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
+ *  is used during Dx states where the power conservation is most important.
+ *  During driver activity, SmartSpeed should be enabled so performance is
+ *  maintained.
+ **/
+s32 e1000_set_d3_lplu_state_generic(struct e1000_hw *hw, bool active)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 data;
+
+       DEBUGFUNC("e1000_set_d3_lplu_state_generic");
+
+       if (!hw->phy.ops.read_reg)
+               return E1000_SUCCESS;
+
+       ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
+       if (ret_val)
+               return ret_val;
+
+       if (!active) {
+               data &= ~IGP02E1000_PM_D3_LPLU;
+               ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+                                            data);
+               if (ret_val)
+                       return ret_val;
+               /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
+                * during Dx states where the power conservation is most
+                * important.  During driver activity we should enable
+                * SmartSpeed, so performance is maintained.
+                */
+               if (phy->smart_speed == e1000_smart_speed_on) {
+                       ret_val = phy->ops.read_reg(hw,
+                                                   IGP01E1000_PHY_PORT_CONFIG,
+                                                   &data);
+                       if (ret_val)
+                               return ret_val;
+
+                       data |= IGP01E1000_PSCFR_SMART_SPEED;
+                       ret_val = phy->ops.write_reg(hw,
+                                                    IGP01E1000_PHY_PORT_CONFIG,
+                                                    data);
+                       if (ret_val)
+                               return ret_val;
+               } else if (phy->smart_speed == e1000_smart_speed_off) {
+                       ret_val = phy->ops.read_reg(hw,
+                                                   IGP01E1000_PHY_PORT_CONFIG,
+                                                   &data);
+                       if (ret_val)
+                               return ret_val;
+
+                       data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+                       ret_val = phy->ops.write_reg(hw,
+                                                    IGP01E1000_PHY_PORT_CONFIG,
+                                                    data);
+                       if (ret_val)
+                               return ret_val;
+               }
+       } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
+                  (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
+                  (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
+               data |= IGP02E1000_PM_D3_LPLU;
+               ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
+                                            data);
+               if (ret_val)
+                       return ret_val;
+
+               /* When LPLU is enabled, we should disable SmartSpeed */
+               ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+                                           &data);
+               if (ret_val)
+                       return ret_val;
+
+               data &= ~IGP01E1000_PSCFR_SMART_SPEED;
+               ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
+                                            data);
+       }
+
+       return ret_val;
+}
+
+/**
+ *  e1000_check_downshift_generic - Checks whether a downshift in speed occurred
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns 1
+ *
+ *  A downshift is detected by querying the PHY link health.
+ **/
+s32 e1000_check_downshift_generic(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 phy_data, offset, mask;
+
+       DEBUGFUNC("e1000_check_downshift_generic");
+
+       switch (phy->type) {
+       case e1000_phy_i210:
+       case e1000_phy_m88:
+       case e1000_phy_gg82563:
+       case e1000_phy_bm:
+       case e1000_phy_82578:
+               offset = M88E1000_PHY_SPEC_STATUS;
+               mask = M88E1000_PSSR_DOWNSHIFT;
+               break;
+       case e1000_phy_igp:
+       case e1000_phy_igp_2:
+       case e1000_phy_igp_3:
+               offset = IGP01E1000_PHY_LINK_HEALTH;
+               mask = IGP01E1000_PLHR_SS_DOWNGRADE;
+               break;
+       default:
+               /* speed downshift not supported */
+               phy->speed_downgraded = false;
+               return E1000_SUCCESS;
+       }
+
+       ret_val = phy->ops.read_reg(hw, offset, &phy_data);
+
+       if (!ret_val)
+               phy->speed_downgraded = !!(phy_data & mask);
+
+       return ret_val;
+}
+
+/**
+ *  e1000_check_polarity_m88 - Checks the polarity.
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ *  Polarity is determined based on the PHY specific status register.
+ **/
+s32 e1000_check_polarity_m88(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 data;
+
+       DEBUGFUNC("e1000_check_polarity_m88");
+
+       ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
+
+       if (!ret_val)
+               phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
+                                      ? e1000_rev_polarity_reversed
+                                      : e1000_rev_polarity_normal);
+
+       return ret_val;
+}
+
+/**
+ *  e1000_check_polarity_igp - Checks the polarity.
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ *  Polarity is determined based on the PHY port status register, and the
+ *  current speed (since there is no polarity at 100Mbps).
+ **/
+s32 e1000_check_polarity_igp(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 data, offset, mask;
+
+       DEBUGFUNC("e1000_check_polarity_igp");
+
+       /* Polarity is determined based on the speed of
+        * our connection.
+        */
+       ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+       if (ret_val)
+               return ret_val;
+
+       if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+           IGP01E1000_PSSR_SPEED_1000MBPS) {
+               offset = IGP01E1000_PHY_PCS_INIT_REG;
+               mask = IGP01E1000_PHY_POLARITY_MASK;
+       } else {
+               /* This really only applies to 10Mbps since
+                * there is no polarity for 100Mbps (always 0).
+                */
+               offset = IGP01E1000_PHY_PORT_STATUS;
+               mask = IGP01E1000_PSSR_POLARITY_REVERSED;
+       }
+
+       ret_val = phy->ops.read_reg(hw, offset, &data);
+
+       if (!ret_val)
+               phy->cable_polarity = ((data & mask)
+                                      ? e1000_rev_polarity_reversed
+                                      : e1000_rev_polarity_normal);
+
+       return ret_val;
+}
+
+/**
+ *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Polarity is determined on the polarity reversal feature being enabled.
+ **/
+s32 e1000_check_polarity_ife(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 phy_data, offset, mask;
+
+       DEBUGFUNC("e1000_check_polarity_ife");
+
+       /* Polarity is determined based on the reversal feature being enabled.
+        */
+       if (phy->polarity_correction) {
+               offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
+               mask = IFE_PESC_POLARITY_REVERSED;
+       } else {
+               offset = IFE_PHY_SPECIAL_CONTROL;
+               mask = IFE_PSC_FORCE_POLARITY;
+       }
+
+       ret_val = phy->ops.read_reg(hw, offset, &phy_data);
+
+       if (!ret_val)
+               phy->cable_polarity = ((phy_data & mask)
+                                      ? e1000_rev_polarity_reversed
+                                      : e1000_rev_polarity_normal);
+
+       return ret_val;
+}
+
+/**
+ *  e1000_wait_autoneg - Wait for auto-neg completion
+ *  @hw: pointer to the HW structure
+ *
+ *  Waits for auto-negotiation to complete or for the auto-negotiation time
+ *  limit to expire, which ever happens first.
+ **/
+STATIC s32 e1000_wait_autoneg(struct e1000_hw *hw)
+{
+       s32 ret_val = E1000_SUCCESS;
+       u16 i, phy_status;
+
+       DEBUGFUNC("e1000_wait_autoneg");
+
+       if (!hw->phy.ops.read_reg)
+               return E1000_SUCCESS;
+
+       /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
+       for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
+               ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+               if (ret_val)
+                       break;
+               ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+               if (ret_val)
+                       break;
+               if (phy_status & MII_SR_AUTONEG_COMPLETE)
+                       break;
+               msec_delay(100);
+       }
+
+       /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
+        * has completed.
+        */
+       return ret_val;
+}
+
+/**
+ *  e1000_phy_has_link_generic - Polls PHY for link
+ *  @hw: pointer to the HW structure
+ *  @iterations: number of times to poll for link
+ *  @usec_interval: delay between polling attempts
+ *  @success: pointer to whether polling was successful or not
+ *
+ *  Polls the PHY status register for link, 'iterations' number of times.
+ **/
+s32 e1000_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
+                              u32 usec_interval, bool *success)
+{
+       s32 ret_val = E1000_SUCCESS;
+       u16 i, phy_status;
+
+       DEBUGFUNC("e1000_phy_has_link_generic");
+
+       if (!hw->phy.ops.read_reg)
+               return E1000_SUCCESS;
+
+       for (i = 0; i < iterations; i++) {
+               /* Some PHYs require the PHY_STATUS register to be read
+                * twice due to the link bit being sticky.  No harm doing
+                * it across the board.
+                */
+               ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+               if (ret_val) {
+                       /* If the first read fails, another entity may have
+                        * ownership of the resources, wait and try again to
+                        * see if they have relinquished the resources yet.
+                        */
+                       if (usec_interval >= 1000)
+                               msec_delay(usec_interval/1000);
+                       else
+                               usec_delay(usec_interval);
+               }
+               ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
+               if (ret_val)
+                       break;
+               if (phy_status & MII_SR_LINK_STATUS)
+                       break;
+               if (usec_interval >= 1000)
+                       msec_delay(usec_interval/1000);
+               else
+                       usec_delay(usec_interval);
+       }
+
+       *success = (i < iterations);
+
+       return ret_val;
+}
+
+/**
+ *  e1000_get_cable_length_m88 - Determine cable length for m88 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the PHY specific status register to retrieve the cable length
+ *  information.  The cable length is determined by averaging the minimum and
+ *  maximum values to get the "average" cable length.  The m88 PHY has four
+ *  possible cable length values, which are:
+ *     Register Value          Cable Length
+ *     0                       < 50 meters
+ *     1                       50 - 80 meters
+ *     2                       80 - 110 meters
+ *     3                       110 - 140 meters
+ *     4                       > 140 meters
+ **/
+s32 e1000_get_cable_length_m88(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 phy_data, index;
+
+       DEBUGFUNC("e1000_get_cable_length_m88");
+
+       ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+       if (ret_val)
+               return ret_val;
+
+       index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+                M88E1000_PSSR_CABLE_LENGTH_SHIFT);
+
+       if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
+               return -E1000_ERR_PHY;
+
+       phy->min_cable_length = e1000_m88_cable_length_table[index];
+       phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
+
+       phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+       return E1000_SUCCESS;
+}
+
+s32 e1000_get_cable_length_m88_gen2(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 phy_data, phy_data2, is_cm;
+       u16 index, default_page;
+
+       DEBUGFUNC("e1000_get_cable_length_m88_gen2");
+
+       switch (hw->phy.id) {
+       case I210_I_PHY_ID:
+               /* Get cable length from PHY Cable Diagnostics Control Reg */
+               ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
+                                           (I347AT4_PCDL + phy->addr),
+                                           &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               /* Check if the unit of cable length is meters or cm */
+               ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
+                                           I347AT4_PCDC, &phy_data2);
+               if (ret_val)
+                       return ret_val;
+
+               is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
+
+               /* Populate the phy structure with cable length in meters */
+               phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
+               phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
+               phy->cable_length = phy_data / (is_cm ? 100 : 1);
+               break;
+       case M88E1543_E_PHY_ID:
+       case M88E1512_E_PHY_ID:
+       case M88E1340M_E_PHY_ID:
+       case I347AT4_E_PHY_ID:
+               /* Remember the original page select and set it to 7 */
+               ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
+                                           &default_page);
+               if (ret_val)
+                       return ret_val;
+
+               ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
+               if (ret_val)
+                       return ret_val;
+
+               /* Get cable length from PHY Cable Diagnostics Control Reg */
+               ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
+                                           &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               /* Check if the unit of cable length is meters or cm */
+               ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
+               if (ret_val)
+                       return ret_val;
+
+               is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
+
+               /* Populate the phy structure with cable length in meters */
+               phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
+               phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
+               phy->cable_length = phy_data / (is_cm ? 100 : 1);
+
+               /* Reset the page select to its original value */
+               ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
+                                            default_page);
+               if (ret_val)
+                       return ret_val;
+               break;
+
+       case M88E1112_E_PHY_ID:
+               /* Remember the original page select and set it to 5 */
+               ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
+                                           &default_page);
+               if (ret_val)
+                       return ret_val;
+
+               ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
+               if (ret_val)
+                       return ret_val;
+
+               ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
+                                           &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
+                       M88E1000_PSSR_CABLE_LENGTH_SHIFT;
+
+               if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
+                       return -E1000_ERR_PHY;
+
+               phy->min_cable_length = e1000_m88_cable_length_table[index];
+               phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
+
+               phy->cable_length = (phy->min_cable_length +
+                                    phy->max_cable_length) / 2;
+
+               /* Reset the page select to its original value */
+               ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
+                                            default_page);
+               if (ret_val)
+                       return ret_val;
+
+               break;
+       default:
+               return -E1000_ERR_PHY;
+       }
+
+       return ret_val;
+}
+
+/**
+ *  e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  The automatic gain control (agc) normalizes the amplitude of the
+ *  received signal, adjusting for the attenuation produced by the
+ *  cable.  By reading the AGC registers, which represent the
+ *  combination of coarse and fine gain value, the value can be put
+ *  into a lookup table to obtain the approximate cable length
+ *  for each channel.
+ **/
+s32 e1000_get_cable_length_igp_2(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 phy_data, i, agc_value = 0;
+       u16 cur_agc_index, max_agc_index = 0;
+       u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
+       static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
+               IGP02E1000_PHY_AGC_A,
+               IGP02E1000_PHY_AGC_B,
+               IGP02E1000_PHY_AGC_C,
+               IGP02E1000_PHY_AGC_D
+       };
+
+       DEBUGFUNC("e1000_get_cable_length_igp_2");
+
+       /* Read the AGC registers for all channels */
+       for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
+               ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               /* Getting bits 15:9, which represent the combination of
+                * coarse and fine gain values.  The result is a number
+                * that can be put into the lookup table to obtain the
+                * approximate cable length.
+                */
+               cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
+                                IGP02E1000_AGC_LENGTH_MASK);
+
+               /* Array index bound check. */
+               if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
+                   (cur_agc_index == 0))
+                       return -E1000_ERR_PHY;
+
+               /* Remove min & max AGC values from calculation. */
+               if (e1000_igp_2_cable_length_table[min_agc_index] >
+                   e1000_igp_2_cable_length_table[cur_agc_index])
+                       min_agc_index = cur_agc_index;
+               if (e1000_igp_2_cable_length_table[max_agc_index] <
+                   e1000_igp_2_cable_length_table[cur_agc_index])
+                       max_agc_index = cur_agc_index;
+
+               agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
+       }
+
+       agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
+                     e1000_igp_2_cable_length_table[max_agc_index]);
+       agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
+
+       /* Calculate cable length with the error range of +/- 10 meters. */
+       phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
+                                (agc_value - IGP02E1000_AGC_RANGE) : 0);
+       phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
+
+       phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_phy_info_m88 - Retrieve PHY information
+ *  @hw: pointer to the HW structure
+ *
+ *  Valid for only copper links.  Read the PHY status register (sticky read)
+ *  to verify that link is up.  Read the PHY special control register to
+ *  determine the polarity and 10base-T extended distance.  Read the PHY
+ *  special status register to determine MDI/MDIx and current speed.  If
+ *  speed is 1000, then determine cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_m88(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32  ret_val;
+       u16 phy_data;
+       bool link;
+
+       DEBUGFUNC("e1000_get_phy_info_m88");
+
+       if (phy->media_type != e1000_media_type_copper) {
+               DEBUGOUT("Phy info is only valid for copper media\n");
+               return -E1000_ERR_CONFIG;
+       }
+
+       ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+       if (ret_val)
+               return ret_val;
+
+       if (!link) {
+               DEBUGOUT("Phy info is only valid if link is up\n");
+               return -E1000_ERR_CONFIG;
+       }
+
+       ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
+       if (ret_val)
+               return ret_val;
+
+       phy->polarity_correction = !!(phy_data &
+                                     M88E1000_PSCR_POLARITY_REVERSAL);
+
+       ret_val = e1000_check_polarity_m88(hw);
+       if (ret_val)
+               return ret_val;
+
+       ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
+       if (ret_val)
+               return ret_val;
+
+       phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
+
+       if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
+               ret_val = hw->phy.ops.get_cable_length(hw);
+               if (ret_val)
+                       return ret_val;
+
+               ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
+               if (ret_val)
+                       return ret_val;
+
+               phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
+                               ? e1000_1000t_rx_status_ok
+                               : e1000_1000t_rx_status_not_ok;
+
+               phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
+                                ? e1000_1000t_rx_status_ok
+                                : e1000_1000t_rx_status_not_ok;
+       } else {
+               /* Set values to "undefined" */
+               phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+               phy->local_rx = e1000_1000t_rx_status_undefined;
+               phy->remote_rx = e1000_1000t_rx_status_undefined;
+       }
+
+       return ret_val;
+}
+
+/**
+ *  e1000_get_phy_info_igp - Retrieve igp PHY information
+ *  @hw: pointer to the HW structure
+ *
+ *  Read PHY status to determine if link is up.  If link is up, then
+ *  set/determine 10base-T extended distance and polarity correction.  Read
+ *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
+ *  determine on the cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_igp(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 data;
+       bool link;
+
+       DEBUGFUNC("e1000_get_phy_info_igp");
+
+       ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+       if (ret_val)
+               return ret_val;
+
+       if (!link) {
+               DEBUGOUT("Phy info is only valid if link is up\n");
+               return -E1000_ERR_CONFIG;
+       }
+
+       phy->polarity_correction = true;
+
+       ret_val = e1000_check_polarity_igp(hw);
+       if (ret_val)
+               return ret_val;
+
+       ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
+       if (ret_val)
+               return ret_val;
+
+       phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
+
+       if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
+           IGP01E1000_PSSR_SPEED_1000MBPS) {
+               ret_val = phy->ops.get_cable_length(hw);
+               if (ret_val)
+                       return ret_val;
+
+               ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
+               if (ret_val)
+                       return ret_val;
+
+               phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+                               ? e1000_1000t_rx_status_ok
+                               : e1000_1000t_rx_status_not_ok;
+
+               phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
+                                ? e1000_1000t_rx_status_ok
+                                : e1000_1000t_rx_status_not_ok;
+       } else {
+               phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+               phy->local_rx = e1000_1000t_rx_status_undefined;
+               phy->remote_rx = e1000_1000t_rx_status_undefined;
+       }
+
+       return ret_val;
+}
+
+/**
+ *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
+ *  @hw: pointer to the HW structure
+ *
+ *  Populates "phy" structure with various feature states.
+ **/
+s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 data;
+       bool link;
+
+       DEBUGFUNC("e1000_get_phy_info_ife");
+
+       ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+       if (ret_val)
+               return ret_val;
+
+       if (!link) {
+               DEBUGOUT("Phy info is only valid if link is up\n");
+               return -E1000_ERR_CONFIG;
+       }
+
+       ret_val = phy->ops.read_reg(hw, IFE_PHY_SPECIAL_CONTROL, &data);
+       if (ret_val)
+               return ret_val;
+       phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
+
+       if (phy->polarity_correction) {
+               ret_val = e1000_check_polarity_ife(hw);
+               if (ret_val)
+                       return ret_val;
+       } else {
+               /* Polarity is forced */
+               phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
+                                      ? e1000_rev_polarity_reversed
+                                      : e1000_rev_polarity_normal);
+       }
+
+       ret_val = phy->ops.read_reg(hw, IFE_PHY_MDIX_CONTROL, &data);
+       if (ret_val)
+               return ret_val;
+
+       phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
+
+       /* The following parameters are undefined for 10/100 operation. */
+       phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+       phy->local_rx = e1000_1000t_rx_status_undefined;
+       phy->remote_rx = e1000_1000t_rx_status_undefined;
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_phy_sw_reset_generic - PHY software reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Does a software reset of the PHY by reading the PHY control register and
+ *  setting/write the control register reset bit to the PHY.
+ **/
+s32 e1000_phy_sw_reset_generic(struct e1000_hw *hw)
+{
+       s32 ret_val;
+       u16 phy_ctrl;
+
+       DEBUGFUNC("e1000_phy_sw_reset_generic");
+
+       if (!hw->phy.ops.read_reg)
+               return E1000_SUCCESS;
+
+       ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
+       if (ret_val)
+               return ret_val;
+
+       phy_ctrl |= MII_CR_RESET;
+       ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
+       if (ret_val)
+               return ret_val;
+
+       usec_delay(1);
+
+       return ret_val;
+}
+
+/**
+ *  e1000_phy_hw_reset_generic - PHY hardware reset
+ *  @hw: pointer to the HW structure
+ *
+ *  Verify the reset block is not blocking us from resetting.  Acquire
+ *  semaphore (if necessary) and read/set/write the device control reset
+ *  bit in the PHY.  Wait the appropriate delay time for the device to
+ *  reset and release the semaphore (if necessary).
+ **/
+s32 e1000_phy_hw_reset_generic(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u32 ctrl;
+
+       DEBUGFUNC("e1000_phy_hw_reset_generic");
+
+       if (phy->ops.check_reset_block) {
+               ret_val = phy->ops.check_reset_block(hw);
+               if (ret_val)
+                       return E1000_SUCCESS;
+       }
+
+       ret_val = phy->ops.acquire(hw);
+       if (ret_val)
+               return ret_val;
+
+       ctrl = E1000_READ_REG(hw, E1000_CTRL);
+       E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
+       E1000_WRITE_FLUSH(hw);
+
+       usec_delay(phy->reset_delay_us);
+
+       E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
+       E1000_WRITE_FLUSH(hw);
+
+       usec_delay(150);
+
+       phy->ops.release(hw);
+
+       return phy->ops.get_cfg_done(hw);
+}
+
+/**
+ *  e1000_get_cfg_done_generic - Generic configuration done
+ *  @hw: pointer to the HW structure
+ *
+ *  Generic function to wait 10 milli-seconds for configuration to complete
+ *  and return success.
+ **/
+s32 e1000_get_cfg_done_generic(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+       DEBUGFUNC("e1000_get_cfg_done_generic");
+       UNREFERENCED_1PARAMETER(hw);
+
+       msec_delay_irq(10);
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_phy_init_script_igp3 - Inits the IGP3 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
+ **/
+s32 e1000_phy_init_script_igp3(struct e1000_hw *hw)
+{
+       DEBUGOUT("Running IGP 3 PHY init script\n");
+
+       /* PHY init IGP 3 */
+       /* Enable rise/fall, 10-mode work in class-A */
+       hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
+       /* Remove all caps from Replica path filter */
+       hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
+       /* Bias trimming for ADC, AFE and Driver (Default) */
+       hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
+       /* Increase Hybrid poly bias */
+       hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
+       /* Add 4% to Tx amplitude in Gig mode */
+       hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
+       /* Disable trimming (TTT) */
+       hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
+       /* Poly DC correction to 94.6% + 2% for all channels */
+       hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
+       /* ABS DC correction to 95.9% */
+       hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
+       /* BG temp curve trim */
+       hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
+       /* Increasing ADC OPAMP stage 1 currents to max */
+       hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
+       /* Force 1000 ( required for enabling PHY regs configuration) */
+       hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
+       /* Set upd_freq to 6 */
+       hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
+       /* Disable NPDFE */
+       hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
+       /* Disable adaptive fixed FFE (Default) */
+       hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
+       /* Enable FFE hysteresis */
+       hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
+       /* Fixed FFE for short cable lengths */
+       hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
+       /* Fixed FFE for medium cable lengths */
+       hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
+       /* Fixed FFE for long cable lengths */
+       hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
+       /* Enable Adaptive Clip Threshold */
+       hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
+       /* AHT reset limit to 1 */
+       hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
+       /* Set AHT master delay to 127 msec */
+       hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
+       /* Set scan bits for AHT */
+       hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
+       /* Set AHT Preset bits */
+       hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
+       /* Change integ_factor of channel A to 3 */
+       hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
+       /* Change prop_factor of channels BCD to 8 */
+       hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
+       /* Change cg_icount + enable integbp for channels BCD */
+       hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
+       /* Change cg_icount + enable integbp + change prop_factor_master
+        * to 8 for channel A
+        */
+       hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
+       /* Disable AHT in Slave mode on channel A */
+       hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
+       /* Enable LPLU and disable AN to 1000 in non-D0a states,
+        * Enable SPD+B2B
+        */
+       hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
+       /* Enable restart AN on an1000_dis change */
+       hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
+       /* Enable wh_fifo read clock in 10/100 modes */
+       hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
+       /* Restart AN, Speed selection is 1000 */
+       hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_phy_type_from_id - Get PHY type from id
+ *  @phy_id: phy_id read from the phy
+ *
+ *  Returns the phy type from the id.
+ **/
+enum e1000_phy_type e1000_get_phy_type_from_id(u32 phy_id)
+{
+       enum e1000_phy_type phy_type = e1000_phy_unknown;
+
+       switch (phy_id) {
+       case M88E1000_I_PHY_ID:
+       case M88E1000_E_PHY_ID:
+       case M88E1111_I_PHY_ID:
+       case M88E1011_I_PHY_ID:
+       case M88E1543_E_PHY_ID:
+       case M88E1512_E_PHY_ID:
+       case I347AT4_E_PHY_ID:
+       case M88E1112_E_PHY_ID:
+       case M88E1340M_E_PHY_ID:
+               phy_type = e1000_phy_m88;
+               break;
+       case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
+               phy_type = e1000_phy_igp_2;
+               break;
+       case GG82563_E_PHY_ID:
+               phy_type = e1000_phy_gg82563;
+               break;
+       case IGP03E1000_E_PHY_ID:
+               phy_type = e1000_phy_igp_3;
+               break;
+       case IFE_E_PHY_ID:
+       case IFE_PLUS_E_PHY_ID:
+       case IFE_C_E_PHY_ID:
+               phy_type = e1000_phy_ife;
+               break;
+       case BME1000_E_PHY_ID:
+       case BME1000_E_PHY_ID_R2:
+               phy_type = e1000_phy_bm;
+               break;
+       case I82578_E_PHY_ID:
+               phy_type = e1000_phy_82578;
+               break;
+       case I82577_E_PHY_ID:
+               phy_type = e1000_phy_82577;
+               break;
+       case I82579_E_PHY_ID:
+               phy_type = e1000_phy_82579;
+               break;
+       case I217_E_PHY_ID:
+               phy_type = e1000_phy_i217;
+               break;
+       case I82580_I_PHY_ID:
+               phy_type = e1000_phy_82580;
+               break;
+       case I210_I_PHY_ID:
+               phy_type = e1000_phy_i210;
+               break;
+       default:
+               phy_type = e1000_phy_unknown;
+               break;
+       }
+       return phy_type;
+}
+
+/**
+ *  e1000_determine_phy_address - Determines PHY address.
+ *  @hw: pointer to the HW structure
+ *
+ *  This uses a trial and error method to loop through possible PHY
+ *  addresses. It tests each by reading the PHY ID registers and
+ *  checking for a match.
+ **/
+s32 e1000_determine_phy_address(struct e1000_hw *hw)
+{
+       u32 phy_addr = 0;
+       u32 i;
+       enum e1000_phy_type phy_type = e1000_phy_unknown;
+
+       hw->phy.id = phy_type;
+
+       for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
+               hw->phy.addr = phy_addr;
+               i = 0;
+
+               do {
+                       e1000_get_phy_id(hw);
+                       phy_type = e1000_get_phy_type_from_id(hw->phy.id);
+
+                       /* If phy_type is valid, break - we found our
+                        * PHY address
+                        */
+                       if (phy_type != e1000_phy_unknown)
+                               return E1000_SUCCESS;
+
+                       msec_delay(1);
+                       i++;
+               } while (i < 10);
+       }
+
+       return -E1000_ERR_PHY_TYPE;
+}
+
+/**
+ *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
+ *  @page: page to access
+ *
+ *  Returns the phy address for the page requested.
+ **/
+STATIC u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
+{
+       u32 phy_addr = 2;
+
+       if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
+               phy_addr = 1;
+
+       return phy_addr;
+}
+
+/**
+ *  e1000_write_phy_reg_bm - Write BM PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
+{
+       s32 ret_val;
+       u32 page = offset >> IGP_PAGE_SHIFT;
+
+       DEBUGFUNC("e1000_write_phy_reg_bm");
+
+       ret_val = hw->phy.ops.acquire(hw);
+       if (ret_val)
+               return ret_val;
+
+       /* Page 800 works differently than the rest so it has its own func */
+       if (page == BM_WUC_PAGE) {
+               ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+                                                        false, false);
+               goto release;
+       }
+
+       hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+       if (offset > MAX_PHY_MULTI_PAGE_REG) {
+               u32 page_shift, page_select;
+
+               /* Page select is register 31 for phy address 1 and 22 for
+                * phy address 2 and 3. Page select is shifted only for
+                * phy address 1.
+                */
+               if (hw->phy.addr == 1) {
+                       page_shift = IGP_PAGE_SHIFT;
+                       page_select = IGP01E1000_PHY_PAGE_SELECT;
+               } else {
+                       page_shift = 0;
+                       page_select = BM_PHY_PAGE_SELECT;
+               }
+
+               /* Page is shifted left, PHY expects (page x 32) */
+               ret_val = e1000_write_phy_reg_mdic(hw, page_select,
+                                                  (page << page_shift));
+               if (ret_val)
+                       goto release;
+       }
+
+       ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+                                          data);
+
+release:
+       hw->phy.ops.release(hw);
+       return ret_val;
+}
+
+/**
+ *  e1000_read_phy_reg_bm - Read BM PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and storing the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+       s32 ret_val;
+       u32 page = offset >> IGP_PAGE_SHIFT;
+
+       DEBUGFUNC("e1000_read_phy_reg_bm");
+
+       ret_val = hw->phy.ops.acquire(hw);
+       if (ret_val)
+               return ret_val;
+
+       /* Page 800 works differently than the rest so it has its own func */
+       if (page == BM_WUC_PAGE) {
+               ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+                                                        true, false);
+               goto release;
+       }
+
+       hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
+
+       if (offset > MAX_PHY_MULTI_PAGE_REG) {
+               u32 page_shift, page_select;
+
+               /* Page select is register 31 for phy address 1 and 22 for
+                * phy address 2 and 3. Page select is shifted only for
+                * phy address 1.
+                */
+               if (hw->phy.addr == 1) {
+                       page_shift = IGP_PAGE_SHIFT;
+                       page_select = IGP01E1000_PHY_PAGE_SELECT;
+               } else {
+                       page_shift = 0;
+                       page_select = BM_PHY_PAGE_SELECT;
+               }
+
+               /* Page is shifted left, PHY expects (page x 32) */
+               ret_val = e1000_write_phy_reg_mdic(hw, page_select,
+                                                  (page << page_shift));
+               if (ret_val)
+                       goto release;
+       }
+
+       ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+                                         data);
+release:
+       hw->phy.ops.release(hw);
+       return ret_val;
+}
+
+/**
+ *  e1000_read_phy_reg_bm2 - Read BM PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and storing the retrieved information in data.  Release any acquired
+ *  semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+       s32 ret_val;
+       u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
+
+       DEBUGFUNC("e1000_read_phy_reg_bm2");
+
+       ret_val = hw->phy.ops.acquire(hw);
+       if (ret_val)
+               return ret_val;
+
+       /* Page 800 works differently than the rest so it has its own func */
+       if (page == BM_WUC_PAGE) {
+               ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+                                                        true, false);
+               goto release;
+       }
+
+       hw->phy.addr = 1;
+
+       if (offset > MAX_PHY_MULTI_PAGE_REG) {
+               /* Page is shifted left, PHY expects (page x 32) */
+               ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
+                                                  page);
+
+               if (ret_val)
+                       goto release;
+       }
+
+       ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+                                         data);
+release:
+       hw->phy.ops.release(hw);
+       return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_bm2 - Write BM PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
+{
+       s32 ret_val;
+       u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
+
+       DEBUGFUNC("e1000_write_phy_reg_bm2");
+
+       ret_val = hw->phy.ops.acquire(hw);
+       if (ret_val)
+               return ret_val;
+
+       /* Page 800 works differently than the rest so it has its own func */
+       if (page == BM_WUC_PAGE) {
+               ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+                                                        false, false);
+               goto release;
+       }
+
+       hw->phy.addr = 1;
+
+       if (offset > MAX_PHY_MULTI_PAGE_REG) {
+               /* Page is shifted left, PHY expects (page x 32) */
+               ret_val = e1000_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
+                                                  page);
+
+               if (ret_val)
+                       goto release;
+       }
+
+       ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
+                                          data);
+
+release:
+       hw->phy.ops.release(hw);
+       return ret_val;
+}
+
+/**
+ *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
+ *  @hw: pointer to the HW structure
+ *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
+ *
+ *  Assumes semaphore already acquired and phy_reg points to a valid memory
+ *  address to store contents of the BM_WUC_ENABLE_REG register.
+ **/
+s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
+{
+       s32 ret_val;
+       u16 temp;
+
+       DEBUGFUNC("e1000_enable_phy_wakeup_reg_access_bm");
+
+       if (!phy_reg)
+               return -E1000_ERR_PARAM;
+
+       /* All page select, port ctrl and wakeup registers use phy address 1 */
+       hw->phy.addr = 1;
+
+       /* Select Port Control Registers page */
+       ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
+       if (ret_val) {
+               DEBUGOUT("Could not set Port Control page\n");
+               return ret_val;
+       }
+
+       ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
+       if (ret_val) {
+               DEBUGOUT2("Could not read PHY register %d.%d\n",
+                         BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
+               return ret_val;
+       }
+
+       /* Enable both PHY wakeup mode and Wakeup register page writes.
+        * Prevent a power state change by disabling ME and Host PHY wakeup.
+        */
+       temp = *phy_reg;
+       temp |= BM_WUC_ENABLE_BIT;
+       temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
+
+       ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
+       if (ret_val) {
+               DEBUGOUT2("Could not write PHY register %d.%d\n",
+                         BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
+               return ret_val;
+       }
+
+       /* Select Host Wakeup Registers page - caller now able to write
+        * registers on the Wakeup registers page
+        */
+       return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
+}
+
+/**
+ *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
+ *  @hw: pointer to the HW structure
+ *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
+ *
+ *  Restore BM_WUC_ENABLE_REG to its original value.
+ *
+ *  Assumes semaphore already acquired and *phy_reg is the contents of the
+ *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
+ *  caller.
+ **/
+s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
+{
+       s32 ret_val;
+
+       DEBUGFUNC("e1000_disable_phy_wakeup_reg_access_bm");
+
+       if (!phy_reg)
+               return -E1000_ERR_PARAM;
+
+       /* Select Port Control Registers page */
+       ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
+       if (ret_val) {
+               DEBUGOUT("Could not set Port Control page\n");
+               return ret_val;
+       }
+
+       /* Restore 769.17 to its original value */
+       ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
+       if (ret_val)
+               DEBUGOUT2("Could not restore PHY register %d.%d\n",
+                         BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
+
+       return ret_val;
+}
+
+/**
+ *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read or written
+ *  @data: pointer to the data to read or write
+ *  @read: determines if operation is read or write
+ *  @page_set: BM_WUC_PAGE already set and access enabled
+ *
+ *  Read the PHY register at offset and store the retrieved information in
+ *  data, or write data to PHY register at offset.  Note the procedure to
+ *  access the PHY wakeup registers is different than reading the other PHY
+ *  registers. It works as such:
+ *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
+ *  2) Set page to 800 for host (801 if we were manageability)
+ *  3) Write the address using the address opcode (0x11)
+ *  4) Read or write the data using the data opcode (0x12)
+ *  5) Restore 769.17.2 to its original value
+ *
+ *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
+ *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
+ *
+ *  Assumes semaphore is already acquired.  When page_set==true, assumes
+ *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
+ *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
+ **/
+STATIC s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
+                                         u16 *data, bool read, bool page_set)
+{
+       s32 ret_val;
+       u16 reg = BM_PHY_REG_NUM(offset);
+       u16 page = BM_PHY_REG_PAGE(offset);
+       u16 phy_reg = 0;
+
+       DEBUGFUNC("e1000_access_phy_wakeup_reg_bm");
+
+       /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
+       if ((hw->mac.type == e1000_pchlan) &&
+          (!(E1000_READ_REG(hw, E1000_PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
+               DEBUGOUT1("Attempting to access page %d while gig enabled.\n",
+                         page);
+
+       if (!page_set) {
+               /* Enable access to PHY wakeup registers */
+               ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+               if (ret_val) {
+                       DEBUGOUT("Could not enable PHY wakeup reg access\n");
+                       return ret_val;
+               }
+       }
+
+       DEBUGOUT2("Accessing PHY page %d reg 0x%x\n", page, reg);
+
+       /* Write the Wakeup register page offset value using opcode 0x11 */
+       ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
+       if (ret_val) {
+               DEBUGOUT1("Could not write address opcode to page %d\n", page);
+               return ret_val;
+       }
+
+       if (read) {
+               /* Read the Wakeup register page value using opcode 0x12 */
+               ret_val = e1000_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
+                                                 data);
+       } else {
+               /* Write the Wakeup register page value using opcode 0x12 */
+               ret_val = e1000_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
+                                                  *data);
+       }
+
+       if (ret_val) {
+               DEBUGOUT2("Could not access PHY reg %d.%d\n", page, reg);
+               return ret_val;
+       }
+
+       if (!page_set)
+               ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
+
+       return ret_val;
+}
+
+/**
+ * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_up_phy_copper(struct e1000_hw *hw)
+{
+       u16 mii_reg = 0;
+
+       /* The PHY will retain its settings across a power down/up cycle */
+       hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
+       mii_reg &= ~MII_CR_POWER_DOWN;
+       hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
+}
+
+/**
+ * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
+ * @hw: pointer to the HW structure
+ *
+ * In the case of a PHY power down to save power, or to turn off link during a
+ * driver unload, or wake on lan is not enabled, restore the link to previous
+ * settings.
+ **/
+void e1000_power_down_phy_copper(struct e1000_hw *hw)
+{
+       u16 mii_reg = 0;
+
+       /* The PHY will retain its settings across a power down/up cycle */
+       hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
+       mii_reg |= MII_CR_POWER_DOWN;
+       hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
+       msec_delay(1);
+}
+
+/**
+ *  __e1000_read_phy_reg_hv -  Read HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary, then reads the PHY register at offset
+ *  and stores the retrieved information in data.  Release any acquired
+ *  semaphore before exiting.
+ **/
+STATIC s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
+                                  bool locked, bool page_set)
+{
+       s32 ret_val;
+       u16 page = BM_PHY_REG_PAGE(offset);
+       u16 reg = BM_PHY_REG_NUM(offset);
+       u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
+
+       DEBUGFUNC("__e1000_read_phy_reg_hv");
+
+       if (!locked) {
+               ret_val = hw->phy.ops.acquire(hw);
+               if (ret_val)
+                       return ret_val;
+       }
+       /* Page 800 works differently than the rest so it has its own func */
+       if (page == BM_WUC_PAGE) {
+               ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
+                                                        true, page_set);
+               goto out;
+       }
+
+       if (page > 0 && page < HV_INTC_FC_PAGE_START) {
+               ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
+                                                        data, true);
+               goto out;
+       }
+
+       if (!page_set) {
+               if (page == HV_INTC_FC_PAGE_START)
+                       page = 0;
+
+               if (reg > MAX_PHY_MULTI_PAGE_REG) {
+                       /* Page is shifted left, PHY expects (page x 32) */
+                       ret_val = e1000_set_page_igp(hw,
+                                                    (page << IGP_PAGE_SHIFT));
+
+                       hw->phy.addr = phy_addr;
+
+                       if (ret_val)
+                               goto out;
+               }
+       }
+
+       DEBUGOUT3("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
+                 page << IGP_PAGE_SHIFT, reg);
+
+       ret_val = e1000_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
+                                         data);
+out:
+       if (!locked)
+               hw->phy.ops.release(hw);
+
+       return ret_val;
+}
+
+/**
+ *  e1000_read_phy_reg_hv -  Read HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Acquires semaphore then reads the PHY register at offset and stores
+ *  the retrieved information in data.  Release the acquired semaphore
+ *  before exiting.
+ **/
+s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+       return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
+}
+
+/**
+ *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the PHY register at offset and stores the retrieved information
+ *  in data.  Assumes semaphore already acquired.
+ **/
+s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+       return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
+}
+
+/**
+ *  e1000_read_phy_reg_page_hv - Read HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Reads the PHY register at offset and stores the retrieved information
+ *  in data.  Assumes semaphore already acquired and page already set.
+ **/
+s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+       return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
+}
+
+/**
+ *  __e1000_write_phy_reg_hv - Write HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *  @locked: semaphore has already been acquired or not
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+STATIC s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
+                                   bool locked, bool page_set)
+{
+       s32 ret_val;
+       u16 page = BM_PHY_REG_PAGE(offset);
+       u16 reg = BM_PHY_REG_NUM(offset);
+       u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
+
+       DEBUGFUNC("__e1000_write_phy_reg_hv");
+
+       if (!locked) {
+               ret_val = hw->phy.ops.acquire(hw);
+               if (ret_val)
+                       return ret_val;
+       }
+       /* Page 800 works differently than the rest so it has its own func */
+       if (page == BM_WUC_PAGE) {
+               ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
+                                                        false, page_set);
+               goto out;
+       }
+
+       if (page > 0 && page < HV_INTC_FC_PAGE_START) {
+               ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
+                                                        &data, false);
+               goto out;
+       }
+
+       if (!page_set) {
+               if (page == HV_INTC_FC_PAGE_START)
+                       page = 0;
+
+               /* Workaround MDIO accesses being disabled after entering IEEE
+                * Power Down (when bit 11 of the PHY Control register is set)
+                */
+               if ((hw->phy.type == e1000_phy_82578) &&
+                   (hw->phy.revision >= 1) &&
+                   (hw->phy.addr == 2) &&
+                   !(MAX_PHY_REG_ADDRESS & reg) &&
+                   (data & (1 << 11))) {
+                       u16 data2 = 0x7EFF;
+                       ret_val = e1000_access_phy_debug_regs_hv(hw,
+                                                                (1 << 6) | 0x3,
+                                                                &data2, false);
+                       if (ret_val)
+                               goto out;
+               }
+
+               if (reg > MAX_PHY_MULTI_PAGE_REG) {
+                       /* Page is shifted left, PHY expects (page x 32) */
+                       ret_val = e1000_set_page_igp(hw,
+                                                    (page << IGP_PAGE_SHIFT));
+
+                       hw->phy.addr = phy_addr;
+
+                       if (ret_val)
+                               goto out;
+               }
+       }
+
+       DEBUGOUT3("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
+                 page << IGP_PAGE_SHIFT, reg);
+
+       ret_val = e1000_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
+                                          data);
+
+out:
+       if (!locked)
+               hw->phy.ops.release(hw);
+
+       return ret_val;
+}
+
+/**
+ *  e1000_write_phy_reg_hv - Write HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore then writes the data to PHY register at the offset.
+ *  Release the acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
+{
+       return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
+}
+
+/**
+ *  e1000_write_phy_reg_hv_locked - Write HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Writes the data to PHY register at the offset.  Assumes semaphore
+ *  already acquired.
+ **/
+s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
+{
+       return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
+}
+
+/**
+ *  e1000_write_phy_reg_page_hv - Write HV PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Writes the data to PHY register at the offset.  Assumes semaphore
+ *  already acquired and page already set.
+ **/
+s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
+{
+       return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
+}
+
+/**
+ *  e1000_get_phy_addr_for_hv_page - Get PHY adrress based on page
+ *  @page: page to be accessed
+ **/
+STATIC u32 e1000_get_phy_addr_for_hv_page(u32 page)
+{
+       u32 phy_addr = 2;
+
+       if (page >= HV_INTC_FC_PAGE_START)
+               phy_addr = 1;
+
+       return phy_addr;
+}
+
+/**
+ *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to be read or written
+ *  @data: pointer to the data to be read or written
+ *  @read: determines if operation is read or write
+ *
+ *  Reads the PHY register at offset and stores the retreived information
+ *  in data.  Assumes semaphore already acquired.  Note that the procedure
+ *  to access these regs uses the address port and data port to read/write.
+ *  These accesses done with PHY address 2 and without using pages.
+ **/
+STATIC s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
+                                         u16 *data, bool read)
+{
+       s32 ret_val;
+       u32 addr_reg;
+       u32 data_reg;
+
+       DEBUGFUNC("e1000_access_phy_debug_regs_hv");
+
+       /* This takes care of the difference with desktop vs mobile phy */
+       addr_reg = ((hw->phy.type == e1000_phy_82578) ?
+                   I82578_ADDR_REG : I82577_ADDR_REG);
+       data_reg = addr_reg + 1;
+
+       /* All operations in this function are phy address 2 */
+       hw->phy.addr = 2;
+
+       /* masking with 0x3F to remove the page from offset */
+       ret_val = e1000_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
+       if (ret_val) {
+               DEBUGOUT("Could not write the Address Offset port register\n");
+               return ret_val;
+       }
+
+       /* Read or write the data value next */
+       if (read)
+               ret_val = e1000_read_phy_reg_mdic(hw, data_reg, data);
+       else
+               ret_val = e1000_write_phy_reg_mdic(hw, data_reg, *data);
+
+       if (ret_val)
+               DEBUGOUT("Could not access the Data port register\n");
+
+       return ret_val;
+}
+
+/**
+ *  e1000_link_stall_workaround_hv - Si workaround
+ *  @hw: pointer to the HW structure
+ *
+ *  This function works around a Si bug where the link partner can get
+ *  a link up indication before the PHY does.  If small packets are sent
+ *  by the link partner they can be placed in the packet buffer without
+ *  being properly accounted for by the PHY and will stall preventing
+ *  further packets from being received.  The workaround is to clear the
+ *  packet buffer after the PHY detects link up.
+ **/
+s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
+{
+       s32 ret_val = E1000_SUCCESS;
+       u16 data;
+
+       DEBUGFUNC("e1000_link_stall_workaround_hv");
+
+       if (hw->phy.type != e1000_phy_82578)
+               return E1000_SUCCESS;
+
+       /* Do not apply workaround if in PHY loopback bit 14 set */
+       hw->phy.ops.read_reg(hw, PHY_CONTROL, &data);
+       if (data & PHY_CONTROL_LB)
+               return E1000_SUCCESS;
+
+       /* check if link is up and at 1Gbps */
+       ret_val = hw->phy.ops.read_reg(hw, BM_CS_STATUS, &data);
+       if (ret_val)
+               return ret_val;
+
+       data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
+                BM_CS_STATUS_SPEED_MASK);
+
+       if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
+                    BM_CS_STATUS_SPEED_1000))
+               return E1000_SUCCESS;
+
+       msec_delay(200);
+
+       /* flush the packets in the fifo buffer */
+       ret_val = hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
+                                       (HV_MUX_DATA_CTRL_GEN_TO_MAC |
+                                        HV_MUX_DATA_CTRL_FORCE_SPEED));
+       if (ret_val)
+               return ret_val;
+
+       return hw->phy.ops.write_reg(hw, HV_MUX_DATA_CTRL,
+                                    HV_MUX_DATA_CTRL_GEN_TO_MAC);
+}
+
+/**
+ *  e1000_check_polarity_82577 - Checks the polarity.
+ *  @hw: pointer to the HW structure
+ *
+ *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
+ *
+ *  Polarity is determined based on the PHY specific status register.
+ **/
+s32 e1000_check_polarity_82577(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 data;
+
+       DEBUGFUNC("e1000_check_polarity_82577");
+
+       ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
+
+       if (!ret_val)
+               phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
+                                      ? e1000_rev_polarity_reversed
+                                      : e1000_rev_polarity_normal);
+
+       return ret_val;
+}
+
+/**
+ *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
+ *  @hw: pointer to the HW structure
+ *
+ *  Calls the PHY setup function to force speed and duplex.
+ **/
+s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 phy_data;
+       bool link;
+
+       DEBUGFUNC("e1000_phy_force_speed_duplex_82577");
+
+       ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
+       if (ret_val)
+               return ret_val;
+
+       e1000_phy_force_speed_duplex_setup(hw, &phy_data);
+
+       ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
+       if (ret_val)
+               return ret_val;
+
+       usec_delay(1);
+
+       if (phy->autoneg_wait_to_complete) {
+               DEBUGOUT("Waiting for forced speed/duplex link on 82577 phy\n");
+
+               ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+                                                    100000, &link);
+               if (ret_val)
+                       return ret_val;
+
+               if (!link)
+                       DEBUGOUT("Link taking longer than expected.\n");
+
+               /* Try once more */
+               ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
+                                                    100000, &link);
+       }
+
+       return ret_val;
+}
+
+/**
+ *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
+ *  @hw: pointer to the HW structure
+ *
+ *  Read PHY status to determine if link is up.  If link is up, then
+ *  set/determine 10base-T extended distance and polarity correction.  Read
+ *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
+ *  determine on the cable length, local and remote receiver.
+ **/
+s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 data;
+       bool link;
+
+       DEBUGFUNC("e1000_get_phy_info_82577");
+
+       ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
+       if (ret_val)
+               return ret_val;
+
+       if (!link) {
+               DEBUGOUT("Phy info is only valid if link is up\n");
+               return -E1000_ERR_CONFIG;
+       }
+
+       phy->polarity_correction = true;
+
+       ret_val = e1000_check_polarity_82577(hw);
+       if (ret_val)
+               return ret_val;
+
+       ret_val = phy->ops.read_reg(hw, I82577_PHY_STATUS_2, &data);
+       if (ret_val)
+               return ret_val;
+
+       phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
+
+       if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
+           I82577_PHY_STATUS2_SPEED_1000MBPS) {
+               ret_val = hw->phy.ops.get_cable_length(hw);
+               if (ret_val)
+                       return ret_val;
+
+               ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
+               if (ret_val)
+                       return ret_val;
+
+               phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
+                               ? e1000_1000t_rx_status_ok
+                               : e1000_1000t_rx_status_not_ok;
+
+               phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
+                                ? e1000_1000t_rx_status_ok
+                                : e1000_1000t_rx_status_not_ok;
+       } else {
+               phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
+               phy->local_rx = e1000_1000t_rx_status_undefined;
+               phy->remote_rx = e1000_1000t_rx_status_undefined;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
+ *  @hw: pointer to the HW structure
+ *
+ * Reads the diagnostic status register and verifies result is valid before
+ * placing it in the phy_cable_length field.
+ **/
+s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
+{
+       struct e1000_phy_info *phy = &hw->phy;
+       s32 ret_val;
+       u16 phy_data, length;
+
+       DEBUGFUNC("e1000_get_cable_length_82577");
+
+       ret_val = phy->ops.read_reg(hw, I82577_PHY_DIAG_STATUS, &phy_data);
+       if (ret_val)
+               return ret_val;
+
+       length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
+                 I82577_DSTATUS_CABLE_LENGTH_SHIFT);
+
+       if (length == E1000_CABLE_LENGTH_UNDEFINED)
+               return -E1000_ERR_PHY;
+
+       phy->cable_length = length;
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_phy_reg_gs40g - Write GS40G  PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: register offset to write to
+ *  @data: data to write at register offset
+ *
+ *  Acquires semaphore, if necessary, then writes the data to PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
+{
+       s32 ret_val;
+       u16 page = offset >> GS40G_PAGE_SHIFT;
+
+       DEBUGFUNC("e1000_write_phy_reg_gs40g");
+
+       offset = offset & GS40G_OFFSET_MASK;
+       ret_val = hw->phy.ops.acquire(hw);
+       if (ret_val)
+               return ret_val;
+
+       ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
+       if (ret_val)
+               goto release;
+       ret_val = e1000_write_phy_reg_mdic(hw, offset, data);
+
+release:
+       hw->phy.ops.release(hw);
+       return ret_val;
+}
+
+/**
+ *  e1000_read_phy_reg_gs40g - Read GS40G  PHY register
+ *  @hw: pointer to the HW structure
+ *  @offset: lower half is register offset to read to
+ *     upper half is page to use.
+ *  @data: data to read at register offset
+ *
+ *  Acquires semaphore, if necessary, then reads the data in the PHY register
+ *  at the offset.  Release any acquired semaphores before exiting.
+ **/
+s32 e1000_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
+{
+       s32 ret_val;
+       u16 page = offset >> GS40G_PAGE_SHIFT;
+
+       DEBUGFUNC("e1000_read_phy_reg_gs40g");
+
+       offset = offset & GS40G_OFFSET_MASK;
+       ret_val = hw->phy.ops.acquire(hw);
+       if (ret_val)
+               return ret_val;
+
+       ret_val = e1000_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
+       if (ret_val)
+               goto release;
+       ret_val = e1000_read_phy_reg_mdic(hw, offset, data);
+
+release:
+       hw->phy.ops.release(hw);
+       return ret_val;
+}
+
+/**
+ *  e1000_read_phy_reg_mphy - Read mPHY control register
+ *  @hw: pointer to the HW structure
+ *  @address: address to be read
+ *  @data: pointer to the read data
+ *
+ *  Reads the mPHY control register in the PHY at offset and stores the
+ *  information read to data.
+ **/
+s32 e1000_read_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 *data)
+{
+       u32 mphy_ctrl = 0;
+       bool locked = false;
+       bool ready;
+
+       DEBUGFUNC("e1000_read_phy_reg_mphy");
+
+       /* Check if mPHY is ready to read/write operations */
+       ready = e1000_is_mphy_ready(hw);
+       if (!ready)
+               return -E1000_ERR_PHY;
+
+       /* Check if mPHY access is disabled and enable it if so */
+       mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
+       if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) {
+               locked = true;
+               ready = e1000_is_mphy_ready(hw);
+               if (!ready)
+                       return -E1000_ERR_PHY;
+               mphy_ctrl |= E1000_MPHY_ENA_ACCESS;
+               E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
+       }
+
+       /* Set the address that we want to read */
+       ready = e1000_is_mphy_ready(hw);
+       if (!ready)
+               return -E1000_ERR_PHY;
+
+       /* We mask address, because we want to use only current lane */
+       mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK &
+               ~E1000_MPHY_ADDRESS_FNC_OVERRIDE) |
+               (address & E1000_MPHY_ADDRESS_MASK);
+       E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
+
+       /* Read data from the address */
+       ready = e1000_is_mphy_ready(hw);
+       if (!ready)
+               return -E1000_ERR_PHY;
+       *data = E1000_READ_REG(hw, E1000_MPHY_DATA);
+
+       /* Disable access to mPHY if it was originally disabled */
+       if (locked)
+               ready = e1000_is_mphy_ready(hw);
+               if (!ready)
+                       return -E1000_ERR_PHY;
+               E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL,
+                               E1000_MPHY_DIS_ACCESS);
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_write_phy_reg_mphy - Write mPHY control register
+ *  @hw: pointer to the HW structure
+ *  @address: address to write to
+ *  @data: data to write to register at offset
+ *  @line_override: used when we want to use different line than default one
+ *
+ *  Writes data to mPHY control register.
+ **/
+s32 e1000_write_phy_reg_mphy(struct e1000_hw *hw, u32 address, u32 data,
+                            bool line_override)
+{
+       u32 mphy_ctrl = 0;
+       bool locked = false;
+       bool ready;
+
+       DEBUGFUNC("e1000_write_phy_reg_mphy");
+
+       /* Check if mPHY is ready to read/write operations */
+       ready = e1000_is_mphy_ready(hw);
+       if (!ready)
+               return -E1000_ERR_PHY;
+
+       /* Check if mPHY access is disabled and enable it if so */
+       mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
+       if (mphy_ctrl & E1000_MPHY_DIS_ACCESS) {
+               locked = true;
+               ready = e1000_is_mphy_ready(hw);
+               if (!ready)
+                       return -E1000_ERR_PHY;
+               mphy_ctrl |= E1000_MPHY_ENA_ACCESS;
+               E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
+       }
+
+       /* Set the address that we want to read */
+       ready = e1000_is_mphy_ready(hw);
+       if (!ready)
+               return -E1000_ERR_PHY;
+
+       /* We mask address, because we want to use only current lane */
+       if (line_override)
+               mphy_ctrl |= E1000_MPHY_ADDRESS_FNC_OVERRIDE;
+       else
+               mphy_ctrl &= ~E1000_MPHY_ADDRESS_FNC_OVERRIDE;
+       mphy_ctrl = (mphy_ctrl & ~E1000_MPHY_ADDRESS_MASK) |
+               (address & E1000_MPHY_ADDRESS_MASK);
+       E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL, mphy_ctrl);
+
+       /* Read data from the address */
+       ready = e1000_is_mphy_ready(hw);
+       if (!ready)
+               return -E1000_ERR_PHY;
+       E1000_WRITE_REG(hw, E1000_MPHY_DATA, data);
+
+       /* Disable access to mPHY if it was originally disabled */
+       if (locked)
+               ready = e1000_is_mphy_ready(hw);
+               if (!ready)
+                       return -E1000_ERR_PHY;
+               E1000_WRITE_REG(hw, E1000_MPHY_ADDR_CTRL,
+                               E1000_MPHY_DIS_ACCESS);
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_is_mphy_ready - Check if mPHY control register is not busy
+ *  @hw: pointer to the HW structure
+ *
+ *  Returns mPHY control register status.
+ **/
+bool e1000_is_mphy_ready(struct e1000_hw *hw)
+{
+       u16 retry_count = 0;
+       u32 mphy_ctrl = 0;
+       bool ready = false;
+
+       while (retry_count < 2) {
+               mphy_ctrl = E1000_READ_REG(hw, E1000_MPHY_ADDR_CTRL);
+               if (mphy_ctrl & E1000_MPHY_BUSY) {
+                       usec_delay(20);
+                       retry_count++;
+                       continue;
+               }
+               ready = true;
+               break;
+       }
+
+       if (!ready)
+               DEBUGOUT("ERROR READING mPHY control register, phy is busy.\n");
+
+       return ready;
+}