Imported Upstream version 16.04
[deb_dpdk.git] / drivers / net / i40e / i40e_rxtx.c
diff --git a/drivers/net/i40e/i40e_rxtx.c b/drivers/net/i40e/i40e_rxtx.c
new file mode 100644 (file)
index 0000000..4d35d83
--- /dev/null
@@ -0,0 +1,3319 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <errno.h>
+#include <stdint.h>
+#include <stdarg.h>
+#include <unistd.h>
+#include <inttypes.h>
+#include <sys/queue.h>
+
+#include <rte_string_fns.h>
+#include <rte_memzone.h>
+#include <rte_mbuf.h>
+#include <rte_malloc.h>
+#include <rte_ether.h>
+#include <rte_ethdev.h>
+#include <rte_tcp.h>
+#include <rte_sctp.h>
+#include <rte_udp.h>
+
+#include "i40e_logs.h"
+#include "base/i40e_prototype.h"
+#include "base/i40e_type.h"
+#include "i40e_ethdev.h"
+#include "i40e_rxtx.h"
+
+#define DEFAULT_TX_RS_THRESH   32
+#define DEFAULT_TX_FREE_THRESH 32
+#define I40E_MAX_PKT_TYPE      256
+
+#define I40E_TX_MAX_BURST  32
+
+#define I40E_DMA_MEM_ALIGN 4096
+
+/* Base address of the HW descriptor ring should be 128B aligned. */
+#define I40E_RING_BASE_ALIGN   128
+
+#define I40E_SIMPLE_FLAGS ((uint32_t)ETH_TXQ_FLAGS_NOMULTSEGS | \
+                                       ETH_TXQ_FLAGS_NOOFFLOADS)
+
+#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
+
+#define I40E_TX_CKSUM_OFFLOAD_MASK (            \
+               PKT_TX_IP_CKSUM |                \
+               PKT_TX_L4_MASK |                 \
+               PKT_TX_TCP_SEG |                 \
+               PKT_TX_OUTER_IP_CKSUM)
+
+static uint16_t i40e_xmit_pkts_simple(void *tx_queue,
+                                     struct rte_mbuf **tx_pkts,
+                                     uint16_t nb_pkts);
+
+static inline void
+i40e_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union i40e_rx_desc *rxdp)
+{
+       if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
+               (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
+               mb->ol_flags |= PKT_RX_VLAN_PKT;
+               mb->vlan_tci =
+                       rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
+               PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
+                          rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
+       } else {
+               mb->vlan_tci = 0;
+       }
+#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
+       if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
+               (1 << I40E_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) {
+               mb->ol_flags |= PKT_RX_QINQ_PKT;
+               mb->vlan_tci_outer = mb->vlan_tci;
+               mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
+               PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
+                          rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
+                          rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
+       } else {
+               mb->vlan_tci_outer = 0;
+       }
+#endif
+       PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
+                  mb->vlan_tci, mb->vlan_tci_outer);
+}
+
+/* Translate the rx descriptor status to pkt flags */
+static inline uint64_t
+i40e_rxd_status_to_pkt_flags(uint64_t qword)
+{
+       uint64_t flags;
+
+       /* Check if RSS_HASH */
+       flags = (((qword >> I40E_RX_DESC_STATUS_FLTSTAT_SHIFT) &
+                                       I40E_RX_DESC_FLTSTAT_RSS_HASH) ==
+                       I40E_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
+
+       /* Check if FDIR Match */
+       flags |= (qword & (1 << I40E_RX_DESC_STATUS_FLM_SHIFT) ?
+                                                       PKT_RX_FDIR : 0);
+
+       return flags;
+}
+
+static inline uint64_t
+i40e_rxd_error_to_pkt_flags(uint64_t qword)
+{
+       uint64_t flags = 0;
+       uint64_t error_bits = (qword >> I40E_RXD_QW1_ERROR_SHIFT);
+
+#define I40E_RX_ERR_BITS 0x3f
+       if (likely((error_bits & I40E_RX_ERR_BITS) == 0))
+               return flags;
+       /* If RXE bit set, all other status bits are meaningless */
+       if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
+               flags |= PKT_RX_MAC_ERR;
+               return flags;
+       }
+
+       /* If RECIPE bit set, all other status indications should be ignored */
+       if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_RECIPE_SHIFT))) {
+               flags |= PKT_RX_RECIP_ERR;
+               return flags;
+       }
+       if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT)))
+               flags |= PKT_RX_HBUF_OVERFLOW;
+       if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_IPE_SHIFT)))
+               flags |= PKT_RX_IP_CKSUM_BAD;
+       if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT)))
+               flags |= PKT_RX_L4_CKSUM_BAD;
+       if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT)))
+               flags |= PKT_RX_EIP_CKSUM_BAD;
+       if (unlikely(error_bits & (1 << I40E_RX_DESC_ERROR_OVERSIZE_SHIFT)))
+               flags |= PKT_RX_OVERSIZE;
+
+       return flags;
+}
+
+/* Function to check and set the ieee1588 timesync index and get the
+ * appropriate flags.
+ */
+#ifdef RTE_LIBRTE_IEEE1588
+static inline uint64_t
+i40e_get_iee15888_flags(struct rte_mbuf *mb, uint64_t qword)
+{
+       uint64_t pkt_flags = 0;
+       uint16_t tsyn = (qword & (I40E_RXD_QW1_STATUS_TSYNVALID_MASK
+                                 | I40E_RXD_QW1_STATUS_TSYNINDX_MASK))
+                                   >> I40E_RX_DESC_STATUS_TSYNINDX_SHIFT;
+
+       if ((mb->packet_type & RTE_PTYPE_L2_MASK)
+                       == RTE_PTYPE_L2_ETHER_TIMESYNC)
+               pkt_flags = PKT_RX_IEEE1588_PTP;
+       if (tsyn & 0x04) {
+               pkt_flags |= PKT_RX_IEEE1588_TMST;
+               mb->timesync = tsyn & 0x03;
+       }
+
+       return pkt_flags;
+}
+#endif
+
+/* For each value it means, datasheet of hardware can tell more details
+ *
+ * @note: fix i40e_dev_supported_ptypes_get() if any change here.
+ */
+static inline uint32_t
+i40e_rxd_pkt_type_mapping(uint8_t ptype)
+{
+       static const uint32_t type_table[UINT8_MAX + 1] __rte_cache_aligned = {
+               /* L2 types */
+               /* [0] reserved */
+               [1] = RTE_PTYPE_L2_ETHER,
+               [2] = RTE_PTYPE_L2_ETHER_TIMESYNC,
+               /* [3] - [5] reserved */
+               [6] = RTE_PTYPE_L2_ETHER_LLDP,
+               /* [7] - [10] reserved */
+               [11] = RTE_PTYPE_L2_ETHER_ARP,
+               /* [12] - [21] reserved */
+
+               /* Non tunneled IPv4 */
+               [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_L4_FRAG,
+               [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_L4_NONFRAG,
+               [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_L4_UDP,
+               /* [25] reserved */
+               [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_L4_TCP,
+               [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_L4_SCTP,
+               [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_L4_ICMP,
+
+               /* IPv4 --> IPv4 */
+               [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_FRAG,
+               [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_NONFRAG,
+               [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_UDP,
+               /* [32] reserved */
+               [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_TCP,
+               [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_SCTP,
+               [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_ICMP,
+
+               /* IPv4 --> IPv6 */
+               [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_FRAG,
+               [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_NONFRAG,
+               [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_UDP,
+               /* [39] reserved */
+               [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_TCP,
+               [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_SCTP,
+               [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_ICMP,
+
+               /* IPv4 --> GRE/Teredo/VXLAN */
+               [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT,
+
+               /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
+               [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_FRAG,
+               [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_NONFRAG,
+               [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_UDP,
+               /* [47] reserved */
+               [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_TCP,
+               [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_SCTP,
+               [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_ICMP,
+
+               /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
+               [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_FRAG,
+               [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_NONFRAG,
+               [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_UDP,
+               /* [54] reserved */
+               [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_TCP,
+               [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_SCTP,
+               [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_ICMP,
+
+               /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
+               [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
+
+               /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
+               [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_FRAG,
+               [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_NONFRAG,
+               [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_UDP,
+               /* [62] reserved */
+               [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_TCP,
+               [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_SCTP,
+               [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_ICMP,
+
+               /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
+               [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_FRAG,
+               [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_NONFRAG,
+               [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_UDP,
+               /* [69] reserved */
+               [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_TCP,
+               [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_SCTP,
+               [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_ICMP,
+
+               /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN */
+               [73] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN,
+
+               /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
+               [74] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_FRAG,
+               [75] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_NONFRAG,
+               [76] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_UDP,
+               /* [77] reserved */
+               [78] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_TCP,
+               [79] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_SCTP,
+               [80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_ICMP,
+
+               /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
+               [81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_FRAG,
+               [82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_NONFRAG,
+               [83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_UDP,
+               /* [84] reserved */
+               [85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_TCP,
+               [86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_SCTP,
+               [87] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_ICMP,
+
+               /* Non tunneled IPv6 */
+               [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_L4_FRAG,
+               [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_L4_NONFRAG,
+               [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_L4_UDP,
+               /* [91] reserved */
+               [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_L4_TCP,
+               [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_L4_SCTP,
+               [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_L4_ICMP,
+
+               /* IPv6 --> IPv4 */
+               [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_FRAG,
+               [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_NONFRAG,
+               [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_UDP,
+               /* [98] reserved */
+               [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_TCP,
+               [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_SCTP,
+               [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_ICMP,
+
+               /* IPv6 --> IPv6 */
+               [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_FRAG,
+               [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_NONFRAG,
+               [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_UDP,
+               /* [105] reserved */
+               [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_TCP,
+               [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_SCTP,
+               [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_IP |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_ICMP,
+
+               /* IPv6 --> GRE/Teredo/VXLAN */
+               [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT,
+
+               /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
+               [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_FRAG,
+               [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_NONFRAG,
+               [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_UDP,
+               /* [113] reserved */
+               [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_TCP,
+               [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_SCTP,
+               [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_ICMP,
+
+               /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
+               [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_FRAG,
+               [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_NONFRAG,
+               [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_UDP,
+               /* [120] reserved */
+               [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_TCP,
+               [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_SCTP,
+               [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_ICMP,
+
+               /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
+               [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
+
+               /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
+               [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_FRAG,
+               [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_NONFRAG,
+               [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_UDP,
+               /* [128] reserved */
+               [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_TCP,
+               [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_SCTP,
+               [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_ICMP,
+
+               /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
+               [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_FRAG,
+               [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_NONFRAG,
+               [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_UDP,
+               /* [135] reserved */
+               [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_TCP,
+               [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_SCTP,
+               [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_ICMP,
+
+               /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN */
+               [139] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN,
+
+               /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
+               [140] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_FRAG,
+               [141] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_NONFRAG,
+               [142] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_UDP,
+               /* [143] reserved */
+               [144] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_TCP,
+               [145] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_SCTP,
+               [146] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_ICMP,
+
+               /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
+               [147] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_FRAG,
+               [148] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_NONFRAG,
+               [149] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_UDP,
+               /* [150] reserved */
+               [151] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_TCP,
+               [152] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_SCTP,
+               [153] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_TUNNEL_GRENAT |
+                       RTE_PTYPE_INNER_L2_ETHER_VLAN |
+                       RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+                       RTE_PTYPE_INNER_L4_ICMP,
+
+               /* All others reserved */
+       };
+
+       return type_table[ptype];
+}
+
+#define I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK   0x03
+#define I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID  0x01
+#define I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX   0x02
+#define I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK   0x03
+#define I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX   0x01
+
+static inline uint64_t
+i40e_rxd_build_fdir(volatile union i40e_rx_desc *rxdp, struct rte_mbuf *mb)
+{
+       uint64_t flags = 0;
+#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
+       uint16_t flexbh, flexbl;
+
+       flexbh = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
+               I40E_RX_DESC_EXT_STATUS_FLEXBH_SHIFT) &
+               I40E_RX_DESC_EXT_STATUS_FLEXBH_MASK;
+       flexbl = (rte_le_to_cpu_32(rxdp->wb.qword2.ext_status) >>
+               I40E_RX_DESC_EXT_STATUS_FLEXBL_SHIFT) &
+               I40E_RX_DESC_EXT_STATUS_FLEXBL_MASK;
+
+
+       if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FD_ID) {
+               mb->hash.fdir.hi =
+                       rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.fd_id);
+               flags |= PKT_RX_FDIR_ID;
+       } else if (flexbh == I40E_RX_DESC_EXT_STATUS_FLEXBH_FLEX) {
+               mb->hash.fdir.hi =
+                       rte_le_to_cpu_32(rxdp->wb.qword3.hi_dword.flex_bytes_hi);
+               flags |= PKT_RX_FDIR_FLX;
+       }
+       if (flexbl == I40E_RX_DESC_EXT_STATUS_FLEXBL_FLEX) {
+               mb->hash.fdir.lo =
+                       rte_le_to_cpu_32(rxdp->wb.qword3.lo_dword.flex_bytes_lo);
+               flags |= PKT_RX_FDIR_FLX;
+       }
+#else
+       mb->hash.fdir.hi =
+               rte_le_to_cpu_32(rxdp->wb.qword0.hi_dword.fd_id);
+       flags |= PKT_RX_FDIR_ID;
+#endif
+       return flags;
+}
+static inline void
+i40e_txd_enable_checksum(uint64_t ol_flags,
+                       uint32_t *td_cmd,
+                       uint32_t *td_offset,
+                       union i40e_tx_offload tx_offload,
+                       uint32_t *cd_tunneling)
+{
+       /* UDP tunneling packet TX checksum offload */
+       if (ol_flags & PKT_TX_OUTER_IP_CKSUM) {
+
+               *td_offset |= (tx_offload.outer_l2_len >> 1)
+                               << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
+
+               if (ol_flags & PKT_TX_OUTER_IP_CKSUM)
+                       *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
+               else if (ol_flags & PKT_TX_OUTER_IPV4)
+                       *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
+               else if (ol_flags & PKT_TX_OUTER_IPV6)
+                       *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
+
+               /* Now set the ctx descriptor fields */
+               *cd_tunneling |= (tx_offload.outer_l3_len >> 2) <<
+                               I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
+                               (tx_offload.l2_len >> 1) <<
+                               I40E_TXD_CTX_QW0_NATLEN_SHIFT;
+
+       } else
+               *td_offset |= (tx_offload.l2_len >> 1)
+                       << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
+
+       /* Enable L3 checksum offloads */
+       if (ol_flags & PKT_TX_IP_CKSUM) {
+               *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
+               *td_offset |= (tx_offload.l3_len >> 2)
+                               << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
+       } else if (ol_flags & PKT_TX_IPV4) {
+               *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
+               *td_offset |= (tx_offload.l3_len >> 2)
+                               << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
+       } else if (ol_flags & PKT_TX_IPV6) {
+               *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
+               *td_offset |= (tx_offload.l3_len >> 2)
+                               << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
+       }
+
+       if (ol_flags & PKT_TX_TCP_SEG) {
+               *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
+               *td_offset |= (tx_offload.l4_len >> 2)
+                       << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
+               return;
+       }
+
+       /* Enable L4 checksum offloads */
+       switch (ol_flags & PKT_TX_L4_MASK) {
+       case PKT_TX_TCP_CKSUM:
+               *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
+               *td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
+                               I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
+               break;
+       case PKT_TX_SCTP_CKSUM:
+               *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
+               *td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
+                               I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
+               break;
+       case PKT_TX_UDP_CKSUM:
+               *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
+               *td_offset |= (sizeof(struct udp_hdr) >> 2) <<
+                               I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
+               break;
+       default:
+               break;
+       }
+}
+
+static inline struct rte_mbuf *
+rte_rxmbuf_alloc(struct rte_mempool *mp)
+{
+       struct rte_mbuf *m;
+
+       m = __rte_mbuf_raw_alloc(mp);
+       __rte_mbuf_sanity_check_raw(m, 0);
+
+       return m;
+}
+
+/* Construct the tx flags */
+static inline uint64_t
+i40e_build_ctob(uint32_t td_cmd,
+               uint32_t td_offset,
+               unsigned int size,
+               uint32_t td_tag)
+{
+       return rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DATA |
+                       ((uint64_t)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
+                       ((uint64_t)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
+                       ((uint64_t)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
+                       ((uint64_t)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
+}
+
+static inline int
+i40e_xmit_cleanup(struct i40e_tx_queue *txq)
+{
+       struct i40e_tx_entry *sw_ring = txq->sw_ring;
+       volatile struct i40e_tx_desc *txd = txq->tx_ring;
+       uint16_t last_desc_cleaned = txq->last_desc_cleaned;
+       uint16_t nb_tx_desc = txq->nb_tx_desc;
+       uint16_t desc_to_clean_to;
+       uint16_t nb_tx_to_clean;
+
+       desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
+       if (desc_to_clean_to >= nb_tx_desc)
+               desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
+
+       desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
+       if ((txd[desc_to_clean_to].cmd_type_offset_bsz &
+                       rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
+                       rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE)) {
+               PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
+                       "(port=%d queue=%d)", desc_to_clean_to,
+                               txq->port_id, txq->queue_id);
+               return -1;
+       }
+
+       if (last_desc_cleaned > desc_to_clean_to)
+               nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
+                                                       desc_to_clean_to);
+       else
+               nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
+                                       last_desc_cleaned);
+
+       txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
+
+       txq->last_desc_cleaned = desc_to_clean_to;
+       txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
+
+       return 0;
+}
+
+static inline int
+#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
+check_rx_burst_bulk_alloc_preconditions(struct i40e_rx_queue *rxq)
+#else
+check_rx_burst_bulk_alloc_preconditions(__rte_unused struct i40e_rx_queue *rxq)
+#endif
+{
+       int ret = 0;
+
+#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
+       if (!(rxq->rx_free_thresh >= RTE_PMD_I40E_RX_MAX_BURST)) {
+               PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
+                            "rxq->rx_free_thresh=%d, "
+                            "RTE_PMD_I40E_RX_MAX_BURST=%d",
+                            rxq->rx_free_thresh, RTE_PMD_I40E_RX_MAX_BURST);
+               ret = -EINVAL;
+       } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
+               PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
+                            "rxq->rx_free_thresh=%d, "
+                            "rxq->nb_rx_desc=%d",
+                            rxq->rx_free_thresh, rxq->nb_rx_desc);
+               ret = -EINVAL;
+       } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
+               PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
+                            "rxq->nb_rx_desc=%d, "
+                            "rxq->rx_free_thresh=%d",
+                            rxq->nb_rx_desc, rxq->rx_free_thresh);
+               ret = -EINVAL;
+       } else if (!(rxq->nb_rx_desc < (I40E_MAX_RING_DESC -
+                               RTE_PMD_I40E_RX_MAX_BURST))) {
+               PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
+                            "rxq->nb_rx_desc=%d, "
+                            "I40E_MAX_RING_DESC=%d, "
+                            "RTE_PMD_I40E_RX_MAX_BURST=%d",
+                            rxq->nb_rx_desc, I40E_MAX_RING_DESC,
+                            RTE_PMD_I40E_RX_MAX_BURST);
+               ret = -EINVAL;
+       }
+#else
+       ret = -EINVAL;
+#endif
+
+       return ret;
+}
+
+#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
+#define I40E_LOOK_AHEAD 8
+#if (I40E_LOOK_AHEAD != 8)
+#error "PMD I40E: I40E_LOOK_AHEAD must be 8\n"
+#endif
+static inline int
+i40e_rx_scan_hw_ring(struct i40e_rx_queue *rxq)
+{
+       volatile union i40e_rx_desc *rxdp;
+       struct i40e_rx_entry *rxep;
+       struct rte_mbuf *mb;
+       uint16_t pkt_len;
+       uint64_t qword1;
+       uint32_t rx_status;
+       int32_t s[I40E_LOOK_AHEAD], nb_dd;
+       int32_t i, j, nb_rx = 0;
+       uint64_t pkt_flags;
+
+       rxdp = &rxq->rx_ring[rxq->rx_tail];
+       rxep = &rxq->sw_ring[rxq->rx_tail];
+
+       qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
+       rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
+                               I40E_RXD_QW1_STATUS_SHIFT;
+
+       /* Make sure there is at least 1 packet to receive */
+       if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
+               return 0;
+
+       /**
+        * Scan LOOK_AHEAD descriptors at a time to determine which
+        * descriptors reference packets that are ready to be received.
+        */
+       for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; i+=I40E_LOOK_AHEAD,
+                       rxdp += I40E_LOOK_AHEAD, rxep += I40E_LOOK_AHEAD) {
+               /* Read desc statuses backwards to avoid race condition */
+               for (j = I40E_LOOK_AHEAD - 1; j >= 0; j--) {
+                       qword1 = rte_le_to_cpu_64(\
+                               rxdp[j].wb.qword1.status_error_len);
+                       s[j] = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
+                                       I40E_RXD_QW1_STATUS_SHIFT;
+               }
+
+               /* Compute how many status bits were set */
+               for (j = 0, nb_dd = 0; j < I40E_LOOK_AHEAD; j++)
+                       nb_dd += s[j] & (1 << I40E_RX_DESC_STATUS_DD_SHIFT);
+
+               nb_rx += nb_dd;
+
+               /* Translate descriptor info to mbuf parameters */
+               for (j = 0; j < nb_dd; j++) {
+                       mb = rxep[j].mbuf;
+                       qword1 = rte_le_to_cpu_64(\
+                               rxdp[j].wb.qword1.status_error_len);
+                       pkt_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
+                               I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
+                       mb->data_len = pkt_len;
+                       mb->pkt_len = pkt_len;
+                       mb->ol_flags = 0;
+                       i40e_rxd_to_vlan_tci(mb, &rxdp[j]);
+                       pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
+                       pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
+                       mb->packet_type =
+                               i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
+                                               I40E_RXD_QW1_PTYPE_MASK) >>
+                                               I40E_RXD_QW1_PTYPE_SHIFT));
+                       if (pkt_flags & PKT_RX_RSS_HASH)
+                               mb->hash.rss = rte_le_to_cpu_32(\
+                                       rxdp[j].wb.qword0.hi_dword.rss);
+                       if (pkt_flags & PKT_RX_FDIR)
+                               pkt_flags |= i40e_rxd_build_fdir(&rxdp[j], mb);
+
+#ifdef RTE_LIBRTE_IEEE1588
+                       pkt_flags |= i40e_get_iee15888_flags(mb, qword1);
+#endif
+                       mb->ol_flags |= pkt_flags;
+
+               }
+
+               for (j = 0; j < I40E_LOOK_AHEAD; j++)
+                       rxq->rx_stage[i + j] = rxep[j].mbuf;
+
+               if (nb_dd != I40E_LOOK_AHEAD)
+                       break;
+       }
+
+       /* Clear software ring entries */
+       for (i = 0; i < nb_rx; i++)
+               rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
+
+       return nb_rx;
+}
+
+static inline uint16_t
+i40e_rx_fill_from_stage(struct i40e_rx_queue *rxq,
+                       struct rte_mbuf **rx_pkts,
+                       uint16_t nb_pkts)
+{
+       uint16_t i;
+       struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
+
+       nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
+
+       for (i = 0; i < nb_pkts; i++)
+               rx_pkts[i] = stage[i];
+
+       rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
+       rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
+
+       return nb_pkts;
+}
+
+static inline int
+i40e_rx_alloc_bufs(struct i40e_rx_queue *rxq)
+{
+       volatile union i40e_rx_desc *rxdp;
+       struct i40e_rx_entry *rxep;
+       struct rte_mbuf *mb;
+       uint16_t alloc_idx, i;
+       uint64_t dma_addr;
+       int diag;
+
+       /* Allocate buffers in bulk */
+       alloc_idx = (uint16_t)(rxq->rx_free_trigger -
+                               (rxq->rx_free_thresh - 1));
+       rxep = &(rxq->sw_ring[alloc_idx]);
+       diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
+                                       rxq->rx_free_thresh);
+       if (unlikely(diag != 0)) {
+               PMD_DRV_LOG(ERR, "Failed to get mbufs in bulk");
+               return -ENOMEM;
+       }
+
+       rxdp = &rxq->rx_ring[alloc_idx];
+       for (i = 0; i < rxq->rx_free_thresh; i++) {
+               if (likely(i < (rxq->rx_free_thresh - 1)))
+                       /* Prefetch next mbuf */
+                       rte_prefetch0(rxep[i + 1].mbuf);
+
+               mb = rxep[i].mbuf;
+               rte_mbuf_refcnt_set(mb, 1);
+               mb->next = NULL;
+               mb->data_off = RTE_PKTMBUF_HEADROOM;
+               mb->nb_segs = 1;
+               mb->port = rxq->port_id;
+               dma_addr = rte_cpu_to_le_64(\
+                       rte_mbuf_data_dma_addr_default(mb));
+               rxdp[i].read.hdr_addr = 0;
+               rxdp[i].read.pkt_addr = dma_addr;
+       }
+
+       /* Update rx tail regsiter */
+       rte_wmb();
+       I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
+
+       rxq->rx_free_trigger =
+               (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
+       if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
+               rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
+
+       return 0;
+}
+
+static inline uint16_t
+rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
+{
+       struct i40e_rx_queue *rxq = (struct i40e_rx_queue *)rx_queue;
+       uint16_t nb_rx = 0;
+
+       if (!nb_pkts)
+               return 0;
+
+       if (rxq->rx_nb_avail)
+               return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
+
+       nb_rx = (uint16_t)i40e_rx_scan_hw_ring(rxq);
+       rxq->rx_next_avail = 0;
+       rxq->rx_nb_avail = nb_rx;
+       rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
+
+       if (rxq->rx_tail > rxq->rx_free_trigger) {
+               if (i40e_rx_alloc_bufs(rxq) != 0) {
+                       uint16_t i, j;
+
+                       PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
+                                  "port_id=%u, queue_id=%u",
+                                  rxq->port_id, rxq->queue_id);
+                       rxq->rx_nb_avail = 0;
+                       rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
+                       for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
+                               rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
+
+                       return 0;
+               }
+       }
+
+       if (rxq->rx_tail >= rxq->nb_rx_desc)
+               rxq->rx_tail = 0;
+
+       if (rxq->rx_nb_avail)
+               return i40e_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
+
+       return 0;
+}
+
+static uint16_t
+i40e_recv_pkts_bulk_alloc(void *rx_queue,
+                         struct rte_mbuf **rx_pkts,
+                         uint16_t nb_pkts)
+{
+       uint16_t nb_rx = 0, n, count;
+
+       if (unlikely(nb_pkts == 0))
+               return 0;
+
+       if (likely(nb_pkts <= RTE_PMD_I40E_RX_MAX_BURST))
+               return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
+
+       while (nb_pkts) {
+               n = RTE_MIN(nb_pkts, RTE_PMD_I40E_RX_MAX_BURST);
+               count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
+               nb_rx = (uint16_t)(nb_rx + count);
+               nb_pkts = (uint16_t)(nb_pkts - count);
+               if (count < n)
+                       break;
+       }
+
+       return nb_rx;
+}
+#else
+static uint16_t
+i40e_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
+                         struct rte_mbuf __rte_unused **rx_pkts,
+                         uint16_t __rte_unused nb_pkts)
+{
+       return 0;
+}
+#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
+
+uint16_t
+i40e_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
+{
+       struct i40e_rx_queue *rxq;
+       volatile union i40e_rx_desc *rx_ring;
+       volatile union i40e_rx_desc *rxdp;
+       union i40e_rx_desc rxd;
+       struct i40e_rx_entry *sw_ring;
+       struct i40e_rx_entry *rxe;
+       struct rte_mbuf *rxm;
+       struct rte_mbuf *nmb;
+       uint16_t nb_rx;
+       uint32_t rx_status;
+       uint64_t qword1;
+       uint16_t rx_packet_len;
+       uint16_t rx_id, nb_hold;
+       uint64_t dma_addr;
+       uint64_t pkt_flags;
+
+       nb_rx = 0;
+       nb_hold = 0;
+       rxq = rx_queue;
+       rx_id = rxq->rx_tail;
+       rx_ring = rxq->rx_ring;
+       sw_ring = rxq->sw_ring;
+
+       while (nb_rx < nb_pkts) {
+               rxdp = &rx_ring[rx_id];
+               qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
+               rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK)
+                               >> I40E_RXD_QW1_STATUS_SHIFT;
+
+               /* Check the DD bit first */
+               if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
+                       break;
+
+               nmb = rte_rxmbuf_alloc(rxq->mp);
+               if (unlikely(!nmb))
+                       break;
+               rxd = *rxdp;
+
+               nb_hold++;
+               rxe = &sw_ring[rx_id];
+               rx_id++;
+               if (unlikely(rx_id == rxq->nb_rx_desc))
+                       rx_id = 0;
+
+               /* Prefetch next mbuf */
+               rte_prefetch0(sw_ring[rx_id].mbuf);
+
+               /**
+                * When next RX descriptor is on a cache line boundary,
+                * prefetch the next 4 RX descriptors and next 8 pointers
+                * to mbufs.
+                */
+               if ((rx_id & 0x3) == 0) {
+                       rte_prefetch0(&rx_ring[rx_id]);
+                       rte_prefetch0(&sw_ring[rx_id]);
+               }
+               rxm = rxe->mbuf;
+               rxe->mbuf = nmb;
+               dma_addr =
+                       rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb));
+               rxdp->read.hdr_addr = 0;
+               rxdp->read.pkt_addr = dma_addr;
+
+               rx_packet_len = ((qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
+                               I40E_RXD_QW1_LENGTH_PBUF_SHIFT) - rxq->crc_len;
+
+               rxm->data_off = RTE_PKTMBUF_HEADROOM;
+               rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
+               rxm->nb_segs = 1;
+               rxm->next = NULL;
+               rxm->pkt_len = rx_packet_len;
+               rxm->data_len = rx_packet_len;
+               rxm->port = rxq->port_id;
+               rxm->ol_flags = 0;
+               i40e_rxd_to_vlan_tci(rxm, &rxd);
+               pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
+               pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
+               rxm->packet_type =
+                       i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
+                       I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT));
+               if (pkt_flags & PKT_RX_RSS_HASH)
+                       rxm->hash.rss =
+                               rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
+               if (pkt_flags & PKT_RX_FDIR)
+                       pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
+
+#ifdef RTE_LIBRTE_IEEE1588
+               pkt_flags |= i40e_get_iee15888_flags(rxm, qword1);
+#endif
+               rxm->ol_flags |= pkt_flags;
+
+               rx_pkts[nb_rx++] = rxm;
+       }
+       rxq->rx_tail = rx_id;
+
+       /**
+        * If the number of free RX descriptors is greater than the RX free
+        * threshold of the queue, advance the receive tail register of queue.
+        * Update that register with the value of the last processed RX
+        * descriptor minus 1.
+        */
+       nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
+       if (nb_hold > rxq->rx_free_thresh) {
+               rx_id = (uint16_t) ((rx_id == 0) ?
+                       (rxq->nb_rx_desc - 1) : (rx_id - 1));
+               I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
+               nb_hold = 0;
+       }
+       rxq->nb_rx_hold = nb_hold;
+
+       return nb_rx;
+}
+
+uint16_t
+i40e_recv_scattered_pkts(void *rx_queue,
+                        struct rte_mbuf **rx_pkts,
+                        uint16_t nb_pkts)
+{
+       struct i40e_rx_queue *rxq = rx_queue;
+       volatile union i40e_rx_desc *rx_ring = rxq->rx_ring;
+       volatile union i40e_rx_desc *rxdp;
+       union i40e_rx_desc rxd;
+       struct i40e_rx_entry *sw_ring = rxq->sw_ring;
+       struct i40e_rx_entry *rxe;
+       struct rte_mbuf *first_seg = rxq->pkt_first_seg;
+       struct rte_mbuf *last_seg = rxq->pkt_last_seg;
+       struct rte_mbuf *nmb, *rxm;
+       uint16_t rx_id = rxq->rx_tail;
+       uint16_t nb_rx = 0, nb_hold = 0, rx_packet_len;
+       uint32_t rx_status;
+       uint64_t qword1;
+       uint64_t dma_addr;
+       uint64_t pkt_flags;
+
+       while (nb_rx < nb_pkts) {
+               rxdp = &rx_ring[rx_id];
+               qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
+               rx_status = (qword1 & I40E_RXD_QW1_STATUS_MASK) >>
+                                       I40E_RXD_QW1_STATUS_SHIFT;
+
+               /* Check the DD bit */
+               if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
+                       break;
+
+               nmb = rte_rxmbuf_alloc(rxq->mp);
+               if (unlikely(!nmb))
+                       break;
+               rxd = *rxdp;
+               nb_hold++;
+               rxe = &sw_ring[rx_id];
+               rx_id++;
+               if (rx_id == rxq->nb_rx_desc)
+                       rx_id = 0;
+
+               /* Prefetch next mbuf */
+               rte_prefetch0(sw_ring[rx_id].mbuf);
+
+               /**
+                * When next RX descriptor is on a cache line boundary,
+                * prefetch the next 4 RX descriptors and next 8 pointers
+                * to mbufs.
+                */
+               if ((rx_id & 0x3) == 0) {
+                       rte_prefetch0(&rx_ring[rx_id]);
+                       rte_prefetch0(&sw_ring[rx_id]);
+               }
+
+               rxm = rxe->mbuf;
+               rxe->mbuf = nmb;
+               dma_addr =
+                       rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(nmb));
+
+               /* Set data buffer address and data length of the mbuf */
+               rxdp->read.hdr_addr = 0;
+               rxdp->read.pkt_addr = dma_addr;
+               rx_packet_len = (qword1 & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
+                                       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
+               rxm->data_len = rx_packet_len;
+               rxm->data_off = RTE_PKTMBUF_HEADROOM;
+
+               /**
+                * If this is the first buffer of the received packet, set the
+                * pointer to the first mbuf of the packet and initialize its
+                * context. Otherwise, update the total length and the number
+                * of segments of the current scattered packet, and update the
+                * pointer to the last mbuf of the current packet.
+                */
+               if (!first_seg) {
+                       first_seg = rxm;
+                       first_seg->nb_segs = 1;
+                       first_seg->pkt_len = rx_packet_len;
+               } else {
+                       first_seg->pkt_len =
+                               (uint16_t)(first_seg->pkt_len +
+                                               rx_packet_len);
+                       first_seg->nb_segs++;
+                       last_seg->next = rxm;
+               }
+
+               /**
+                * If this is not the last buffer of the received packet,
+                * update the pointer to the last mbuf of the current scattered
+                * packet and continue to parse the RX ring.
+                */
+               if (!(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT))) {
+                       last_seg = rxm;
+                       continue;
+               }
+
+               /**
+                * This is the last buffer of the received packet. If the CRC
+                * is not stripped by the hardware:
+                *  - Subtract the CRC length from the total packet length.
+                *  - If the last buffer only contains the whole CRC or a part
+                *  of it, free the mbuf associated to the last buffer. If part
+                *  of the CRC is also contained in the previous mbuf, subtract
+                *  the length of that CRC part from the data length of the
+                *  previous mbuf.
+                */
+               rxm->next = NULL;
+               if (unlikely(rxq->crc_len > 0)) {
+                       first_seg->pkt_len -= ETHER_CRC_LEN;
+                       if (rx_packet_len <= ETHER_CRC_LEN) {
+                               rte_pktmbuf_free_seg(rxm);
+                               first_seg->nb_segs--;
+                               last_seg->data_len =
+                                       (uint16_t)(last_seg->data_len -
+                                       (ETHER_CRC_LEN - rx_packet_len));
+                               last_seg->next = NULL;
+                       } else
+                               rxm->data_len = (uint16_t)(rx_packet_len -
+                                                               ETHER_CRC_LEN);
+               }
+
+               first_seg->port = rxq->port_id;
+               first_seg->ol_flags = 0;
+               i40e_rxd_to_vlan_tci(first_seg, &rxd);
+               pkt_flags = i40e_rxd_status_to_pkt_flags(qword1);
+               pkt_flags |= i40e_rxd_error_to_pkt_flags(qword1);
+               first_seg->packet_type =
+                       i40e_rxd_pkt_type_mapping((uint8_t)((qword1 &
+                       I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT));
+               if (pkt_flags & PKT_RX_RSS_HASH)
+                       rxm->hash.rss =
+                               rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
+               if (pkt_flags & PKT_RX_FDIR)
+                       pkt_flags |= i40e_rxd_build_fdir(&rxd, rxm);
+
+#ifdef RTE_LIBRTE_IEEE1588
+               pkt_flags |= i40e_get_iee15888_flags(first_seg, qword1);
+#endif
+               first_seg->ol_flags |= pkt_flags;
+
+               /* Prefetch data of first segment, if configured to do so. */
+               rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
+                       first_seg->data_off));
+               rx_pkts[nb_rx++] = first_seg;
+               first_seg = NULL;
+       }
+
+       /* Record index of the next RX descriptor to probe. */
+       rxq->rx_tail = rx_id;
+       rxq->pkt_first_seg = first_seg;
+       rxq->pkt_last_seg = last_seg;
+
+       /**
+        * If the number of free RX descriptors is greater than the RX free
+        * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+        * register. Update the RDT with the value of the last processed RX
+        * descriptor minus 1, to guarantee that the RDT register is never
+        * equal to the RDH register, which creates a "full" ring situtation
+        * from the hardware point of view.
+        */
+       nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
+       if (nb_hold > rxq->rx_free_thresh) {
+               rx_id = (uint16_t)(rx_id == 0 ?
+                       (rxq->nb_rx_desc - 1) : (rx_id - 1));
+               I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
+               nb_hold = 0;
+       }
+       rxq->nb_rx_hold = nb_hold;
+
+       return nb_rx;
+}
+
+/* Check if the context descriptor is needed for TX offloading */
+static inline uint16_t
+i40e_calc_context_desc(uint64_t flags)
+{
+       static uint64_t mask = PKT_TX_OUTER_IP_CKSUM |
+               PKT_TX_TCP_SEG |
+               PKT_TX_QINQ_PKT;
+
+#ifdef RTE_LIBRTE_IEEE1588
+       mask |= PKT_TX_IEEE1588_TMST;
+#endif
+
+       return (flags & mask) ? 1 : 0;
+}
+
+/* set i40e TSO context descriptor */
+static inline uint64_t
+i40e_set_tso_ctx(struct rte_mbuf *mbuf, union i40e_tx_offload tx_offload)
+{
+       uint64_t ctx_desc = 0;
+       uint32_t cd_cmd, hdr_len, cd_tso_len;
+
+       if (!tx_offload.l4_len) {
+               PMD_DRV_LOG(DEBUG, "L4 length set to 0");
+               return ctx_desc;
+       }
+
+       /**
+        * in case of tunneling packet, the outer_l2_len and
+        * outer_l3_len must be 0.
+        */
+       hdr_len = tx_offload.outer_l2_len +
+               tx_offload.outer_l3_len +
+               tx_offload.l2_len +
+               tx_offload.l3_len +
+               tx_offload.l4_len;
+
+       cd_cmd = I40E_TX_CTX_DESC_TSO;
+       cd_tso_len = mbuf->pkt_len - hdr_len;
+       ctx_desc |= ((uint64_t)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
+               ((uint64_t)cd_tso_len <<
+                I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
+               ((uint64_t)mbuf->tso_segsz <<
+                I40E_TXD_CTX_QW1_MSS_SHIFT);
+
+       return ctx_desc;
+}
+
+uint16_t
+i40e_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
+{
+       struct i40e_tx_queue *txq;
+       struct i40e_tx_entry *sw_ring;
+       struct i40e_tx_entry *txe, *txn;
+       volatile struct i40e_tx_desc *txd;
+       volatile struct i40e_tx_desc *txr;
+       struct rte_mbuf *tx_pkt;
+       struct rte_mbuf *m_seg;
+       uint32_t cd_tunneling_params;
+       uint16_t tx_id;
+       uint16_t nb_tx;
+       uint32_t td_cmd;
+       uint32_t td_offset;
+       uint32_t tx_flags;
+       uint32_t td_tag;
+       uint64_t ol_flags;
+       uint16_t nb_used;
+       uint16_t nb_ctx;
+       uint16_t tx_last;
+       uint16_t slen;
+       uint64_t buf_dma_addr;
+       union i40e_tx_offload tx_offload = {0};
+
+       txq = tx_queue;
+       sw_ring = txq->sw_ring;
+       txr = txq->tx_ring;
+       tx_id = txq->tx_tail;
+       txe = &sw_ring[tx_id];
+
+       /* Check if the descriptor ring needs to be cleaned. */
+       if (txq->nb_tx_free < txq->tx_free_thresh)
+               i40e_xmit_cleanup(txq);
+
+       for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
+               td_cmd = 0;
+               td_tag = 0;
+               td_offset = 0;
+               tx_flags = 0;
+
+               tx_pkt = *tx_pkts++;
+               RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
+
+               ol_flags = tx_pkt->ol_flags;
+               tx_offload.l2_len = tx_pkt->l2_len;
+               tx_offload.l3_len = tx_pkt->l3_len;
+               tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
+               tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
+               tx_offload.l4_len = tx_pkt->l4_len;
+               tx_offload.tso_segsz = tx_pkt->tso_segsz;
+
+               /* Calculate the number of context descriptors needed. */
+               nb_ctx = i40e_calc_context_desc(ol_flags);
+
+               /**
+                * The number of descriptors that must be allocated for
+                * a packet equals to the number of the segments of that
+                * packet plus 1 context descriptor if needed.
+                */
+               nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
+               tx_last = (uint16_t)(tx_id + nb_used - 1);
+
+               /* Circular ring */
+               if (tx_last >= txq->nb_tx_desc)
+                       tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
+
+               if (nb_used > txq->nb_tx_free) {
+                       if (i40e_xmit_cleanup(txq) != 0) {
+                               if (nb_tx == 0)
+                                       return 0;
+                               goto end_of_tx;
+                       }
+                       if (unlikely(nb_used > txq->tx_rs_thresh)) {
+                               while (nb_used > txq->nb_tx_free) {
+                                       if (i40e_xmit_cleanup(txq) != 0) {
+                                               if (nb_tx == 0)
+                                                       return 0;
+                                               goto end_of_tx;
+                                       }
+                               }
+                       }
+               }
+
+               /* Descriptor based VLAN insertion */
+               if (ol_flags & (PKT_TX_VLAN_PKT | PKT_TX_QINQ_PKT)) {
+                       tx_flags |= tx_pkt->vlan_tci <<
+                               I40E_TX_FLAG_L2TAG1_SHIFT;
+                       tx_flags |= I40E_TX_FLAG_INSERT_VLAN;
+                       td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
+                       td_tag = (tx_flags & I40E_TX_FLAG_L2TAG1_MASK) >>
+                                               I40E_TX_FLAG_L2TAG1_SHIFT;
+               }
+
+               /* Always enable CRC offload insertion */
+               td_cmd |= I40E_TX_DESC_CMD_ICRC;
+
+               /* Enable checksum offloading */
+               cd_tunneling_params = 0;
+               if (ol_flags & I40E_TX_CKSUM_OFFLOAD_MASK) {
+                       i40e_txd_enable_checksum(ol_flags, &td_cmd, &td_offset,
+                               tx_offload, &cd_tunneling_params);
+               }
+
+               if (nb_ctx) {
+                       /* Setup TX context descriptor if required */
+                       volatile struct i40e_tx_context_desc *ctx_txd =
+                               (volatile struct i40e_tx_context_desc *)\
+                                                       &txr[tx_id];
+                       uint16_t cd_l2tag2 = 0;
+                       uint64_t cd_type_cmd_tso_mss =
+                               I40E_TX_DESC_DTYPE_CONTEXT;
+
+                       txn = &sw_ring[txe->next_id];
+                       RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
+                       if (txe->mbuf != NULL) {
+                               rte_pktmbuf_free_seg(txe->mbuf);
+                               txe->mbuf = NULL;
+                       }
+
+                       /* TSO enabled means no timestamp */
+                       if (ol_flags & PKT_TX_TCP_SEG)
+                               cd_type_cmd_tso_mss |=
+                                       i40e_set_tso_ctx(tx_pkt, tx_offload);
+                       else {
+#ifdef RTE_LIBRTE_IEEE1588
+                               if (ol_flags & PKT_TX_IEEE1588_TMST)
+                                       cd_type_cmd_tso_mss |=
+                                               ((uint64_t)I40E_TX_CTX_DESC_TSYN <<
+                                                I40E_TXD_CTX_QW1_CMD_SHIFT);
+#endif
+                       }
+
+                       ctx_txd->tunneling_params =
+                               rte_cpu_to_le_32(cd_tunneling_params);
+                       if (ol_flags & PKT_TX_QINQ_PKT) {
+                               cd_l2tag2 = tx_pkt->vlan_tci_outer;
+                               cd_type_cmd_tso_mss |=
+                                       ((uint64_t)I40E_TX_CTX_DESC_IL2TAG2 <<
+                                               I40E_TXD_CTX_QW1_CMD_SHIFT);
+                       }
+                       ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
+                       ctx_txd->type_cmd_tso_mss =
+                               rte_cpu_to_le_64(cd_type_cmd_tso_mss);
+
+                       PMD_TX_LOG(DEBUG, "mbuf: %p, TCD[%u]:\n"
+                               "tunneling_params: %#x;\n"
+                               "l2tag2: %#hx;\n"
+                               "rsvd: %#hx;\n"
+                               "type_cmd_tso_mss: %#"PRIx64";\n",
+                               tx_pkt, tx_id,
+                               ctx_txd->tunneling_params,
+                               ctx_txd->l2tag2,
+                               ctx_txd->rsvd,
+                               ctx_txd->type_cmd_tso_mss);
+
+                       txe->last_id = tx_last;
+                       tx_id = txe->next_id;
+                       txe = txn;
+               }
+
+               m_seg = tx_pkt;
+               do {
+                       txd = &txr[tx_id];
+                       txn = &sw_ring[txe->next_id];
+
+                       if (txe->mbuf)
+                               rte_pktmbuf_free_seg(txe->mbuf);
+                       txe->mbuf = m_seg;
+
+                       /* Setup TX Descriptor */
+                       slen = m_seg->data_len;
+                       buf_dma_addr = rte_mbuf_data_dma_addr(m_seg);
+
+                       PMD_TX_LOG(DEBUG, "mbuf: %p, TDD[%u]:\n"
+                               "buf_dma_addr: %#"PRIx64";\n"
+                               "td_cmd: %#x;\n"
+                               "td_offset: %#x;\n"
+                               "td_len: %u;\n"
+                               "td_tag: %#x;\n",
+                               tx_pkt, tx_id, buf_dma_addr,
+                               td_cmd, td_offset, slen, td_tag);
+
+                       txd->buffer_addr = rte_cpu_to_le_64(buf_dma_addr);
+                       txd->cmd_type_offset_bsz = i40e_build_ctob(td_cmd,
+                                               td_offset, slen, td_tag);
+                       txe->last_id = tx_last;
+                       tx_id = txe->next_id;
+                       txe = txn;
+                       m_seg = m_seg->next;
+               } while (m_seg != NULL);
+
+               /* The last packet data descriptor needs End Of Packet (EOP) */
+               td_cmd |= I40E_TX_DESC_CMD_EOP;
+               txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
+               txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
+
+               if (txq->nb_tx_used >= txq->tx_rs_thresh) {
+                       PMD_TX_FREE_LOG(DEBUG,
+                                       "Setting RS bit on TXD id="
+                                       "%4u (port=%d queue=%d)",
+                                       tx_last, txq->port_id, txq->queue_id);
+
+                       td_cmd |= I40E_TX_DESC_CMD_RS;
+
+                       /* Update txq RS bit counters */
+                       txq->nb_tx_used = 0;
+               }
+
+               txd->cmd_type_offset_bsz |=
+                       rte_cpu_to_le_64(((uint64_t)td_cmd) <<
+                                       I40E_TXD_QW1_CMD_SHIFT);
+       }
+
+end_of_tx:
+       rte_wmb();
+
+       PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
+                  (unsigned) txq->port_id, (unsigned) txq->queue_id,
+                  (unsigned) tx_id, (unsigned) nb_tx);
+
+       I40E_PCI_REG_WRITE(txq->qtx_tail, tx_id);
+       txq->tx_tail = tx_id;
+
+       return nb_tx;
+}
+
+static inline int __attribute__((always_inline))
+i40e_tx_free_bufs(struct i40e_tx_queue *txq)
+{
+       struct i40e_tx_entry *txep;
+       uint16_t i;
+
+       if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
+                       rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
+                       rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
+               return 0;
+
+       txep = &(txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)]);
+
+       for (i = 0; i < txq->tx_rs_thresh; i++)
+               rte_prefetch0((txep + i)->mbuf);
+
+       if (txq->txq_flags & (uint32_t)ETH_TXQ_FLAGS_NOREFCOUNT) {
+               for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
+                       rte_mempool_put(txep->mbuf->pool, txep->mbuf);
+                       txep->mbuf = NULL;
+               }
+       } else {
+               for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
+                       rte_pktmbuf_free_seg(txep->mbuf);
+                       txep->mbuf = NULL;
+               }
+       }
+
+       txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
+       txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
+       if (txq->tx_next_dd >= txq->nb_tx_desc)
+               txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
+
+       return txq->tx_rs_thresh;
+}
+
+/* Populate 4 descriptors with data from 4 mbufs */
+static inline void
+tx4(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
+{
+       uint64_t dma_addr;
+       uint32_t i;
+
+       for (i = 0; i < 4; i++, txdp++, pkts++) {
+               dma_addr = rte_mbuf_data_dma_addr(*pkts);
+               txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
+               txdp->cmd_type_offset_bsz =
+                       i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
+                                       (*pkts)->data_len, 0);
+       }
+}
+
+/* Populate 1 descriptor with data from 1 mbuf */
+static inline void
+tx1(volatile struct i40e_tx_desc *txdp, struct rte_mbuf **pkts)
+{
+       uint64_t dma_addr;
+
+       dma_addr = rte_mbuf_data_dma_addr(*pkts);
+       txdp->buffer_addr = rte_cpu_to_le_64(dma_addr);
+       txdp->cmd_type_offset_bsz =
+               i40e_build_ctob((uint32_t)I40E_TD_CMD, 0,
+                               (*pkts)->data_len, 0);
+}
+
+/* Fill hardware descriptor ring with mbuf data */
+static inline void
+i40e_tx_fill_hw_ring(struct i40e_tx_queue *txq,
+                    struct rte_mbuf **pkts,
+                    uint16_t nb_pkts)
+{
+       volatile struct i40e_tx_desc *txdp = &(txq->tx_ring[txq->tx_tail]);
+       struct i40e_tx_entry *txep = &(txq->sw_ring[txq->tx_tail]);
+       const int N_PER_LOOP = 4;
+       const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
+       int mainpart, leftover;
+       int i, j;
+
+       mainpart = (nb_pkts & ((uint32_t) ~N_PER_LOOP_MASK));
+       leftover = (nb_pkts & ((uint32_t)  N_PER_LOOP_MASK));
+       for (i = 0; i < mainpart; i += N_PER_LOOP) {
+               for (j = 0; j < N_PER_LOOP; ++j) {
+                       (txep + i + j)->mbuf = *(pkts + i + j);
+               }
+               tx4(txdp + i, pkts + i);
+       }
+       if (unlikely(leftover > 0)) {
+               for (i = 0; i < leftover; ++i) {
+                       (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
+                       tx1(txdp + mainpart + i, pkts + mainpart + i);
+               }
+       }
+}
+
+static inline uint16_t
+tx_xmit_pkts(struct i40e_tx_queue *txq,
+            struct rte_mbuf **tx_pkts,
+            uint16_t nb_pkts)
+{
+       volatile struct i40e_tx_desc *txr = txq->tx_ring;
+       uint16_t n = 0;
+
+       /**
+        * Begin scanning the H/W ring for done descriptors when the number
+        * of available descriptors drops below tx_free_thresh. For each done
+        * descriptor, free the associated buffer.
+        */
+       if (txq->nb_tx_free < txq->tx_free_thresh)
+               i40e_tx_free_bufs(txq);
+
+       /* Use available descriptor only */
+       nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
+       if (unlikely(!nb_pkts))
+               return 0;
+
+       txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
+       if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
+               n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
+               i40e_tx_fill_hw_ring(txq, tx_pkts, n);
+               txr[txq->tx_next_rs].cmd_type_offset_bsz |=
+                       rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
+                                               I40E_TXD_QW1_CMD_SHIFT);
+               txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
+               txq->tx_tail = 0;
+       }
+
+       /* Fill hardware descriptor ring with mbuf data */
+       i40e_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
+       txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
+
+       /* Determin if RS bit needs to be set */
+       if (txq->tx_tail > txq->tx_next_rs) {
+               txr[txq->tx_next_rs].cmd_type_offset_bsz |=
+                       rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
+                                               I40E_TXD_QW1_CMD_SHIFT);
+               txq->tx_next_rs =
+                       (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
+               if (txq->tx_next_rs >= txq->nb_tx_desc)
+                       txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
+       }
+
+       if (txq->tx_tail >= txq->nb_tx_desc)
+               txq->tx_tail = 0;
+
+       /* Update the tx tail register */
+       rte_wmb();
+       I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
+
+       return nb_pkts;
+}
+
+static uint16_t
+i40e_xmit_pkts_simple(void *tx_queue,
+                     struct rte_mbuf **tx_pkts,
+                     uint16_t nb_pkts)
+{
+       uint16_t nb_tx = 0;
+
+       if (likely(nb_pkts <= I40E_TX_MAX_BURST))
+               return tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
+                                               tx_pkts, nb_pkts);
+
+       while (nb_pkts) {
+               uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
+                                               I40E_TX_MAX_BURST);
+
+               ret = tx_xmit_pkts((struct i40e_tx_queue *)tx_queue,
+                                               &tx_pkts[nb_tx], num);
+               nb_tx = (uint16_t)(nb_tx + ret);
+               nb_pkts = (uint16_t)(nb_pkts - ret);
+               if (ret < num)
+                       break;
+       }
+
+       return nb_tx;
+}
+
+/*
+ * Find the VSI the queue belongs to. 'queue_idx' is the queue index
+ * application used, which assume having sequential ones. But from driver's
+ * perspective, it's different. For example, q0 belongs to FDIR VSI, q1-q64
+ * to MAIN VSI, , q65-96 to SRIOV VSIs, q97-128 to VMDQ VSIs. For application
+ * running on host, q1-64 and q97-128 can be used, total 96 queues. They can
+ * use queue_idx from 0 to 95 to access queues, while real queue would be
+ * different. This function will do a queue mapping to find VSI the queue
+ * belongs to.
+ */
+static struct i40e_vsi*
+i40e_pf_get_vsi_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
+{
+       /* the queue in MAIN VSI range */
+       if (queue_idx < pf->main_vsi->nb_qps)
+               return pf->main_vsi;
+
+       queue_idx -= pf->main_vsi->nb_qps;
+
+       /* queue_idx is greater than VMDQ VSIs range */
+       if (queue_idx > pf->nb_cfg_vmdq_vsi * pf->vmdq_nb_qps - 1) {
+               PMD_INIT_LOG(ERR, "queue_idx out of range. VMDQ configured?");
+               return NULL;
+       }
+
+       return pf->vmdq[queue_idx / pf->vmdq_nb_qps].vsi;
+}
+
+static uint16_t
+i40e_get_queue_offset_by_qindex(struct i40e_pf *pf, uint16_t queue_idx)
+{
+       /* the queue in MAIN VSI range */
+       if (queue_idx < pf->main_vsi->nb_qps)
+               return queue_idx;
+
+       /* It's VMDQ queues */
+       queue_idx -= pf->main_vsi->nb_qps;
+
+       if (pf->nb_cfg_vmdq_vsi)
+               return queue_idx % pf->vmdq_nb_qps;
+       else {
+               PMD_INIT_LOG(ERR, "Fail to get queue offset");
+               return (uint16_t)(-1);
+       }
+}
+
+int
+i40e_dev_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
+{
+       struct i40e_rx_queue *rxq;
+       int err = -1;
+       struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+       PMD_INIT_FUNC_TRACE();
+
+       if (rx_queue_id < dev->data->nb_rx_queues) {
+               rxq = dev->data->rx_queues[rx_queue_id];
+
+               err = i40e_alloc_rx_queue_mbufs(rxq);
+               if (err) {
+                       PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
+                       return err;
+               }
+
+               rte_wmb();
+
+               /* Init the RX tail regieter. */
+               I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
+
+               err = i40e_switch_rx_queue(hw, rxq->reg_idx, TRUE);
+
+               if (err) {
+                       PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
+                                   rx_queue_id);
+
+                       i40e_rx_queue_release_mbufs(rxq);
+                       i40e_reset_rx_queue(rxq);
+               } else
+                       dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
+       }
+
+       return err;
+}
+
+int
+i40e_dev_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
+{
+       struct i40e_rx_queue *rxq;
+       int err;
+       struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+       if (rx_queue_id < dev->data->nb_rx_queues) {
+               rxq = dev->data->rx_queues[rx_queue_id];
+
+               /*
+               * rx_queue_id is queue id aplication refers to, while
+               * rxq->reg_idx is the real queue index.
+               */
+               err = i40e_switch_rx_queue(hw, rxq->reg_idx, FALSE);
+
+               if (err) {
+                       PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
+                                   rx_queue_id);
+                       return err;
+               }
+               i40e_rx_queue_release_mbufs(rxq);
+               i40e_reset_rx_queue(rxq);
+               dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
+       }
+
+       return 0;
+}
+
+int
+i40e_dev_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
+{
+       int err = -1;
+       struct i40e_tx_queue *txq;
+       struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+       PMD_INIT_FUNC_TRACE();
+
+       if (tx_queue_id < dev->data->nb_tx_queues) {
+               txq = dev->data->tx_queues[tx_queue_id];
+
+               /*
+               * tx_queue_id is queue id aplication refers to, while
+               * rxq->reg_idx is the real queue index.
+               */
+               err = i40e_switch_tx_queue(hw, txq->reg_idx, TRUE);
+               if (err)
+                       PMD_DRV_LOG(ERR, "Failed to switch TX queue %u on",
+                                   tx_queue_id);
+               else
+                       dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
+       }
+
+       return err;
+}
+
+int
+i40e_dev_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
+{
+       struct i40e_tx_queue *txq;
+       int err;
+       struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+       if (tx_queue_id < dev->data->nb_tx_queues) {
+               txq = dev->data->tx_queues[tx_queue_id];
+
+               /*
+               * tx_queue_id is queue id aplication refers to, while
+               * txq->reg_idx is the real queue index.
+               */
+               err = i40e_switch_tx_queue(hw, txq->reg_idx, FALSE);
+
+               if (err) {
+                       PMD_DRV_LOG(ERR, "Failed to switch TX queue %u of",
+                                   tx_queue_id);
+                       return err;
+               }
+
+               i40e_tx_queue_release_mbufs(txq);
+               i40e_reset_tx_queue(txq);
+               dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
+       }
+
+       return 0;
+}
+
+const uint32_t *
+i40e_dev_supported_ptypes_get(struct rte_eth_dev *dev)
+{
+       static const uint32_t ptypes[] = {
+               /* refers to i40e_rxd_pkt_type_mapping() */
+               RTE_PTYPE_L2_ETHER,
+               RTE_PTYPE_L2_ETHER_TIMESYNC,
+               RTE_PTYPE_L2_ETHER_LLDP,
+               RTE_PTYPE_L2_ETHER_ARP,
+               RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
+               RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
+               RTE_PTYPE_L4_FRAG,
+               RTE_PTYPE_L4_ICMP,
+               RTE_PTYPE_L4_NONFRAG,
+               RTE_PTYPE_L4_SCTP,
+               RTE_PTYPE_L4_TCP,
+               RTE_PTYPE_L4_UDP,
+               RTE_PTYPE_TUNNEL_GRENAT,
+               RTE_PTYPE_TUNNEL_IP,
+               RTE_PTYPE_INNER_L2_ETHER,
+               RTE_PTYPE_INNER_L2_ETHER_VLAN,
+               RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
+               RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
+               RTE_PTYPE_INNER_L4_FRAG,
+               RTE_PTYPE_INNER_L4_ICMP,
+               RTE_PTYPE_INNER_L4_NONFRAG,
+               RTE_PTYPE_INNER_L4_SCTP,
+               RTE_PTYPE_INNER_L4_TCP,
+               RTE_PTYPE_INNER_L4_UDP,
+               RTE_PTYPE_UNKNOWN
+       };
+
+       if (dev->rx_pkt_burst == i40e_recv_pkts ||
+#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
+           dev->rx_pkt_burst == i40e_recv_pkts_bulk_alloc ||
+#endif
+           dev->rx_pkt_burst == i40e_recv_scattered_pkts)
+               return ptypes;
+       return NULL;
+}
+
+int
+i40e_dev_rx_queue_setup(struct rte_eth_dev *dev,
+                       uint16_t queue_idx,
+                       uint16_t nb_desc,
+                       unsigned int socket_id,
+                       const struct rte_eth_rxconf *rx_conf,
+                       struct rte_mempool *mp)
+{
+       struct i40e_vsi *vsi;
+       struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
+       struct i40e_adapter *ad =
+               I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
+       struct i40e_rx_queue *rxq;
+       const struct rte_memzone *rz;
+       uint32_t ring_size;
+       uint16_t len, i;
+       uint16_t base, bsf, tc_mapping;
+       int use_def_burst_func = 1;
+
+       if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
+               struct i40e_vf *vf =
+                       I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
+               vsi = &vf->vsi;
+       } else
+               vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
+
+       if (vsi == NULL) {
+               PMD_DRV_LOG(ERR, "VSI not available or queue "
+                           "index exceeds the maximum");
+               return I40E_ERR_PARAM;
+       }
+       if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
+                       (nb_desc > I40E_MAX_RING_DESC) ||
+                       (nb_desc < I40E_MIN_RING_DESC)) {
+               PMD_DRV_LOG(ERR, "Number (%u) of receive descriptors is "
+                           "invalid", nb_desc);
+               return I40E_ERR_PARAM;
+       }
+
+       /* Free memory if needed */
+       if (dev->data->rx_queues[queue_idx]) {
+               i40e_dev_rx_queue_release(dev->data->rx_queues[queue_idx]);
+               dev->data->rx_queues[queue_idx] = NULL;
+       }
+
+       /* Allocate the rx queue data structure */
+       rxq = rte_zmalloc_socket("i40e rx queue",
+                                sizeof(struct i40e_rx_queue),
+                                RTE_CACHE_LINE_SIZE,
+                                socket_id);
+       if (!rxq) {
+               PMD_DRV_LOG(ERR, "Failed to allocate memory for "
+                           "rx queue data structure");
+               return -ENOMEM;
+       }
+       rxq->mp = mp;
+       rxq->nb_rx_desc = nb_desc;
+       rxq->rx_free_thresh = rx_conf->rx_free_thresh;
+       rxq->queue_id = queue_idx;
+       if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF)
+               rxq->reg_idx = queue_idx;
+       else /* PF device */
+               rxq->reg_idx = vsi->base_queue +
+                       i40e_get_queue_offset_by_qindex(pf, queue_idx);
+
+       rxq->port_id = dev->data->port_id;
+       rxq->crc_len = (uint8_t) ((dev->data->dev_conf.rxmode.hw_strip_crc) ?
+                                                       0 : ETHER_CRC_LEN);
+       rxq->drop_en = rx_conf->rx_drop_en;
+       rxq->vsi = vsi;
+       rxq->rx_deferred_start = rx_conf->rx_deferred_start;
+
+       /* Allocate the maximun number of RX ring hardware descriptor. */
+       ring_size = sizeof(union i40e_rx_desc) * I40E_MAX_RING_DESC;
+       ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
+       rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
+                             ring_size, I40E_RING_BASE_ALIGN, socket_id);
+       if (!rz) {
+               i40e_dev_rx_queue_release(rxq);
+               PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX");
+               return -ENOMEM;
+       }
+
+       /* Zero all the descriptors in the ring. */
+       memset(rz->addr, 0, ring_size);
+
+       rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
+       rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
+
+#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
+       len = (uint16_t)(nb_desc + RTE_PMD_I40E_RX_MAX_BURST);
+#else
+       len = nb_desc;
+#endif
+
+       /* Allocate the software ring. */
+       rxq->sw_ring =
+               rte_zmalloc_socket("i40e rx sw ring",
+                                  sizeof(struct i40e_rx_entry) * len,
+                                  RTE_CACHE_LINE_SIZE,
+                                  socket_id);
+       if (!rxq->sw_ring) {
+               i40e_dev_rx_queue_release(rxq);
+               PMD_DRV_LOG(ERR, "Failed to allocate memory for SW ring");
+               return -ENOMEM;
+       }
+
+       i40e_reset_rx_queue(rxq);
+       rxq->q_set = TRUE;
+       dev->data->rx_queues[queue_idx] = rxq;
+
+       use_def_burst_func = check_rx_burst_bulk_alloc_preconditions(rxq);
+
+       if (!use_def_burst_func) {
+#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
+               PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
+                            "satisfied. Rx Burst Bulk Alloc function will be "
+                            "used on port=%d, queue=%d.",
+                            rxq->port_id, rxq->queue_id);
+#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
+       } else {
+               PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
+                            "not satisfied, Scattered Rx is requested, "
+                            "or RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC is "
+                            "not enabled on port=%d, queue=%d.",
+                            rxq->port_id, rxq->queue_id);
+               ad->rx_bulk_alloc_allowed = false;
+       }
+
+       for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
+               if (!(vsi->enabled_tc & (1 << i)))
+                       continue;
+               tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
+               base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
+                       I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
+               bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
+                       I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
+
+               if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
+                       rxq->dcb_tc = i;
+       }
+
+       return 0;
+}
+
+void
+i40e_dev_rx_queue_release(void *rxq)
+{
+       struct i40e_rx_queue *q = (struct i40e_rx_queue *)rxq;
+
+       if (!q) {
+               PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
+               return;
+       }
+
+       i40e_rx_queue_release_mbufs(q);
+       rte_free(q->sw_ring);
+       rte_free(q);
+}
+
+uint32_t
+i40e_dev_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
+{
+#define I40E_RXQ_SCAN_INTERVAL 4
+       volatile union i40e_rx_desc *rxdp;
+       struct i40e_rx_queue *rxq;
+       uint16_t desc = 0;
+
+       if (unlikely(rx_queue_id >= dev->data->nb_rx_queues)) {
+               PMD_DRV_LOG(ERR, "Invalid RX queue id %u", rx_queue_id);
+               return 0;
+       }
+
+       rxq = dev->data->rx_queues[rx_queue_id];
+       rxdp = &(rxq->rx_ring[rxq->rx_tail]);
+       while ((desc < rxq->nb_rx_desc) &&
+               ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
+               I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
+                               (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
+               /**
+                * Check the DD bit of a rx descriptor of each 4 in a group,
+                * to avoid checking too frequently and downgrading performance
+                * too much.
+                */
+               desc += I40E_RXQ_SCAN_INTERVAL;
+               rxdp += I40E_RXQ_SCAN_INTERVAL;
+               if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
+                       rxdp = &(rxq->rx_ring[rxq->rx_tail +
+                                       desc - rxq->nb_rx_desc]);
+       }
+
+       return desc;
+}
+
+int
+i40e_dev_rx_descriptor_done(void *rx_queue, uint16_t offset)
+{
+       volatile union i40e_rx_desc *rxdp;
+       struct i40e_rx_queue *rxq = rx_queue;
+       uint16_t desc;
+       int ret;
+
+       if (unlikely(offset >= rxq->nb_rx_desc)) {
+               PMD_DRV_LOG(ERR, "Invalid RX queue id %u", offset);
+               return 0;
+       }
+
+       desc = rxq->rx_tail + offset;
+       if (desc >= rxq->nb_rx_desc)
+               desc -= rxq->nb_rx_desc;
+
+       rxdp = &(rxq->rx_ring[desc]);
+
+       ret = !!(((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
+               I40E_RXD_QW1_STATUS_MASK) >> I40E_RXD_QW1_STATUS_SHIFT) &
+                               (1 << I40E_RX_DESC_STATUS_DD_SHIFT));
+
+       return ret;
+}
+
+int
+i40e_dev_tx_queue_setup(struct rte_eth_dev *dev,
+                       uint16_t queue_idx,
+                       uint16_t nb_desc,
+                       unsigned int socket_id,
+                       const struct rte_eth_txconf *tx_conf)
+{
+       struct i40e_vsi *vsi;
+       struct i40e_hw *hw = I40E_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+       struct i40e_pf *pf = I40E_DEV_PRIVATE_TO_PF(dev->data->dev_private);
+       struct i40e_tx_queue *txq;
+       const struct rte_memzone *tz;
+       uint32_t ring_size;
+       uint16_t tx_rs_thresh, tx_free_thresh;
+       uint16_t i, base, bsf, tc_mapping;
+
+       if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF) {
+               struct i40e_vf *vf =
+                       I40EVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
+               vsi = &vf->vsi;
+       } else
+               vsi = i40e_pf_get_vsi_by_qindex(pf, queue_idx);
+
+       if (vsi == NULL) {
+               PMD_DRV_LOG(ERR, "VSI is NULL, or queue index (%u) "
+                           "exceeds the maximum", queue_idx);
+               return I40E_ERR_PARAM;
+       }
+
+       if (nb_desc % I40E_ALIGN_RING_DESC != 0 ||
+                       (nb_desc > I40E_MAX_RING_DESC) ||
+                       (nb_desc < I40E_MIN_RING_DESC)) {
+               PMD_DRV_LOG(ERR, "Number (%u) of transmit descriptors is "
+                           "invalid", nb_desc);
+               return I40E_ERR_PARAM;
+       }
+
+       /**
+        * The following two parameters control the setting of the RS bit on
+        * transmit descriptors. TX descriptors will have their RS bit set
+        * after txq->tx_rs_thresh descriptors have been used. The TX
+        * descriptor ring will be cleaned after txq->tx_free_thresh
+        * descriptors are used or if the number of descriptors required to
+        * transmit a packet is greater than the number of free TX descriptors.
+        *
+        * The following constraints must be satisfied:
+        *  - tx_rs_thresh must be greater than 0.
+        *  - tx_rs_thresh must be less than the size of the ring minus 2.
+        *  - tx_rs_thresh must be less than or equal to tx_free_thresh.
+        *  - tx_rs_thresh must be a divisor of the ring size.
+        *  - tx_free_thresh must be greater than 0.
+        *  - tx_free_thresh must be less than the size of the ring minus 3.
+        *
+        * One descriptor in the TX ring is used as a sentinel to avoid a H/W
+        * race condition, hence the maximum threshold constraints. When set
+        * to zero use default values.
+        */
+       tx_rs_thresh = (uint16_t)((tx_conf->tx_rs_thresh) ?
+               tx_conf->tx_rs_thresh : DEFAULT_TX_RS_THRESH);
+       tx_free_thresh = (uint16_t)((tx_conf->tx_free_thresh) ?
+               tx_conf->tx_free_thresh : DEFAULT_TX_FREE_THRESH);
+       if (tx_rs_thresh >= (nb_desc - 2)) {
+               PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
+                            "number of TX descriptors minus 2. "
+                            "(tx_rs_thresh=%u port=%d queue=%d)",
+                            (unsigned int)tx_rs_thresh,
+                            (int)dev->data->port_id,
+                            (int)queue_idx);
+               return I40E_ERR_PARAM;
+       }
+       if (tx_free_thresh >= (nb_desc - 3)) {
+               PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
+                            "tx_free_thresh must be less than the "
+                            "number of TX descriptors minus 3. "
+                            "(tx_free_thresh=%u port=%d queue=%d)",
+                            (unsigned int)tx_free_thresh,
+                            (int)dev->data->port_id,
+                            (int)queue_idx);
+               return I40E_ERR_PARAM;
+       }
+       if (tx_rs_thresh > tx_free_thresh) {
+               PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
+                            "equal to tx_free_thresh. (tx_free_thresh=%u"
+                            " tx_rs_thresh=%u port=%d queue=%d)",
+                            (unsigned int)tx_free_thresh,
+                            (unsigned int)tx_rs_thresh,
+                            (int)dev->data->port_id,
+                            (int)queue_idx);
+               return I40E_ERR_PARAM;
+       }
+       if ((nb_desc % tx_rs_thresh) != 0) {
+               PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
+                            "number of TX descriptors. (tx_rs_thresh=%u"
+                            " port=%d queue=%d)",
+                            (unsigned int)tx_rs_thresh,
+                            (int)dev->data->port_id,
+                            (int)queue_idx);
+               return I40E_ERR_PARAM;
+       }
+       if ((tx_rs_thresh > 1) && (tx_conf->tx_thresh.wthresh != 0)) {
+               PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
+                            "tx_rs_thresh is greater than 1. "
+                            "(tx_rs_thresh=%u port=%d queue=%d)",
+                            (unsigned int)tx_rs_thresh,
+                            (int)dev->data->port_id,
+                            (int)queue_idx);
+               return I40E_ERR_PARAM;
+       }
+
+       /* Free memory if needed. */
+       if (dev->data->tx_queues[queue_idx]) {
+               i40e_dev_tx_queue_release(dev->data->tx_queues[queue_idx]);
+               dev->data->tx_queues[queue_idx] = NULL;
+       }
+
+       /* Allocate the TX queue data structure. */
+       txq = rte_zmalloc_socket("i40e tx queue",
+                                 sizeof(struct i40e_tx_queue),
+                                 RTE_CACHE_LINE_SIZE,
+                                 socket_id);
+       if (!txq) {
+               PMD_DRV_LOG(ERR, "Failed to allocate memory for "
+                           "tx queue structure");
+               return -ENOMEM;
+       }
+
+       /* Allocate TX hardware ring descriptors. */
+       ring_size = sizeof(struct i40e_tx_desc) * I40E_MAX_RING_DESC;
+       ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
+       tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
+                             ring_size, I40E_RING_BASE_ALIGN, socket_id);
+       if (!tz) {
+               i40e_dev_tx_queue_release(txq);
+               PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX");
+               return -ENOMEM;
+       }
+
+       txq->nb_tx_desc = nb_desc;
+       txq->tx_rs_thresh = tx_rs_thresh;
+       txq->tx_free_thresh = tx_free_thresh;
+       txq->pthresh = tx_conf->tx_thresh.pthresh;
+       txq->hthresh = tx_conf->tx_thresh.hthresh;
+       txq->wthresh = tx_conf->tx_thresh.wthresh;
+       txq->queue_id = queue_idx;
+       if (hw->mac.type == I40E_MAC_VF || hw->mac.type == I40E_MAC_X722_VF)
+               txq->reg_idx = queue_idx;
+       else /* PF device */
+               txq->reg_idx = vsi->base_queue +
+                       i40e_get_queue_offset_by_qindex(pf, queue_idx);
+
+       txq->port_id = dev->data->port_id;
+       txq->txq_flags = tx_conf->txq_flags;
+       txq->vsi = vsi;
+       txq->tx_deferred_start = tx_conf->tx_deferred_start;
+
+       txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
+       txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
+
+       /* Allocate software ring */
+       txq->sw_ring =
+               rte_zmalloc_socket("i40e tx sw ring",
+                                  sizeof(struct i40e_tx_entry) * nb_desc,
+                                  RTE_CACHE_LINE_SIZE,
+                                  socket_id);
+       if (!txq->sw_ring) {
+               i40e_dev_tx_queue_release(txq);
+               PMD_DRV_LOG(ERR, "Failed to allocate memory for SW TX ring");
+               return -ENOMEM;
+       }
+
+       i40e_reset_tx_queue(txq);
+       txq->q_set = TRUE;
+       dev->data->tx_queues[queue_idx] = txq;
+
+       /* Use a simple TX queue without offloads or multi segs if possible */
+       i40e_set_tx_function_flag(dev, txq);
+
+       for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
+               if (!(vsi->enabled_tc & (1 << i)))
+                       continue;
+               tc_mapping = rte_le_to_cpu_16(vsi->info.tc_mapping[i]);
+               base = (tc_mapping & I40E_AQ_VSI_TC_QUE_OFFSET_MASK) >>
+                       I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT;
+               bsf = (tc_mapping & I40E_AQ_VSI_TC_QUE_NUMBER_MASK) >>
+                       I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT;
+
+               if (queue_idx >= base && queue_idx < (base + BIT(bsf)))
+                       txq->dcb_tc = i;
+       }
+
+       return 0;
+}
+
+void
+i40e_dev_tx_queue_release(void *txq)
+{
+       struct i40e_tx_queue *q = (struct i40e_tx_queue *)txq;
+
+       if (!q) {
+               PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
+               return;
+       }
+
+       i40e_tx_queue_release_mbufs(q);
+       rte_free(q->sw_ring);
+       rte_free(q);
+}
+
+const struct rte_memzone *
+i40e_memzone_reserve(const char *name, uint32_t len, int socket_id)
+{
+       const struct rte_memzone *mz;
+
+       mz = rte_memzone_lookup(name);
+       if (mz)
+               return mz;
+
+       if (rte_xen_dom0_supported())
+               mz = rte_memzone_reserve_bounded(name, len,
+                               socket_id, 0, I40E_RING_BASE_ALIGN, RTE_PGSIZE_2M);
+       else
+               mz = rte_memzone_reserve_aligned(name, len,
+                               socket_id, 0, I40E_RING_BASE_ALIGN);
+       return mz;
+}
+
+void
+i40e_rx_queue_release_mbufs(struct i40e_rx_queue *rxq)
+{
+       uint16_t i;
+
+       /* SSE Vector driver has a different way of releasing mbufs. */
+       if (rxq->rx_using_sse) {
+               i40e_rx_queue_release_mbufs_vec(rxq);
+               return;
+       }
+
+       if (!rxq || !rxq->sw_ring) {
+               PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
+               return;
+       }
+
+       for (i = 0; i < rxq->nb_rx_desc; i++) {
+               if (rxq->sw_ring[i].mbuf) {
+                       rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
+                       rxq->sw_ring[i].mbuf = NULL;
+               }
+       }
+#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
+       if (rxq->rx_nb_avail == 0)
+               return;
+       for (i = 0; i < rxq->rx_nb_avail; i++) {
+               struct rte_mbuf *mbuf;
+
+               mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
+               rte_pktmbuf_free_seg(mbuf);
+       }
+       rxq->rx_nb_avail = 0;
+#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
+}
+
+void
+i40e_reset_rx_queue(struct i40e_rx_queue *rxq)
+{
+       unsigned i;
+       uint16_t len;
+
+       if (!rxq) {
+               PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
+               return;
+       }
+
+#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
+       if (check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
+               len = (uint16_t)(rxq->nb_rx_desc + RTE_PMD_I40E_RX_MAX_BURST);
+       else
+#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
+               len = rxq->nb_rx_desc;
+
+       for (i = 0; i < len * sizeof(union i40e_rx_desc); i++)
+               ((volatile char *)rxq->rx_ring)[i] = 0;
+
+#ifdef RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC
+       memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
+       for (i = 0; i < RTE_PMD_I40E_RX_MAX_BURST; ++i)
+               rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
+
+       rxq->rx_nb_avail = 0;
+       rxq->rx_next_avail = 0;
+       rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
+#endif /* RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC */
+       rxq->rx_tail = 0;
+       rxq->nb_rx_hold = 0;
+       rxq->pkt_first_seg = NULL;
+       rxq->pkt_last_seg = NULL;
+
+       rxq->rxrearm_start = 0;
+       rxq->rxrearm_nb = 0;
+}
+
+void
+i40e_tx_queue_release_mbufs(struct i40e_tx_queue *txq)
+{
+       uint16_t i;
+
+       if (!txq || !txq->sw_ring) {
+               PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
+               return;
+       }
+
+       for (i = 0; i < txq->nb_tx_desc; i++) {
+               if (txq->sw_ring[i].mbuf) {
+                       rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
+                       txq->sw_ring[i].mbuf = NULL;
+               }
+       }
+}
+
+void
+i40e_reset_tx_queue(struct i40e_tx_queue *txq)
+{
+       struct i40e_tx_entry *txe;
+       uint16_t i, prev, size;
+
+       if (!txq) {
+               PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
+               return;
+       }
+
+       txe = txq->sw_ring;
+       size = sizeof(struct i40e_tx_desc) * txq->nb_tx_desc;
+       for (i = 0; i < size; i++)
+               ((volatile char *)txq->tx_ring)[i] = 0;
+
+       prev = (uint16_t)(txq->nb_tx_desc - 1);
+       for (i = 0; i < txq->nb_tx_desc; i++) {
+               volatile struct i40e_tx_desc *txd = &txq->tx_ring[i];
+
+               txd->cmd_type_offset_bsz =
+                       rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE);
+               txe[i].mbuf =  NULL;
+               txe[i].last_id = i;
+               txe[prev].next_id = i;
+               prev = i;
+       }
+
+       txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
+       txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
+
+       txq->tx_tail = 0;
+       txq->nb_tx_used = 0;
+
+       txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
+       txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
+}
+
+/* Init the TX queue in hardware */
+int
+i40e_tx_queue_init(struct i40e_tx_queue *txq)
+{
+       enum i40e_status_code err = I40E_SUCCESS;
+       struct i40e_vsi *vsi = txq->vsi;
+       struct i40e_hw *hw = I40E_VSI_TO_HW(vsi);
+       uint16_t pf_q = txq->reg_idx;
+       struct i40e_hmc_obj_txq tx_ctx;
+       uint32_t qtx_ctl;
+
+       /* clear the context structure first */
+       memset(&tx_ctx, 0, sizeof(tx_ctx));
+       tx_ctx.new_context = 1;
+       tx_ctx.base = txq->tx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
+       tx_ctx.qlen = txq->nb_tx_desc;
+
+#ifdef RTE_LIBRTE_IEEE1588
+       tx_ctx.timesync_ena = 1;
+#endif
+       tx_ctx.rdylist = rte_le_to_cpu_16(vsi->info.qs_handle[txq->dcb_tc]);
+       if (vsi->type == I40E_VSI_FDIR)
+               tx_ctx.fd_ena = TRUE;
+
+       err = i40e_clear_lan_tx_queue_context(hw, pf_q);
+       if (err != I40E_SUCCESS) {
+               PMD_DRV_LOG(ERR, "Failure of clean lan tx queue context");
+               return err;
+       }
+
+       err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
+       if (err != I40E_SUCCESS) {
+               PMD_DRV_LOG(ERR, "Failure of set lan tx queue context");
+               return err;
+       }
+
+       /* Now associate this queue with this PCI function */
+       qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
+       qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
+                                       I40E_QTX_CTL_PF_INDX_MASK);
+       I40E_WRITE_REG(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
+       I40E_WRITE_FLUSH(hw);
+
+       txq->qtx_tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
+
+       return err;
+}
+
+int
+i40e_alloc_rx_queue_mbufs(struct i40e_rx_queue *rxq)
+{
+       struct i40e_rx_entry *rxe = rxq->sw_ring;
+       uint64_t dma_addr;
+       uint16_t i;
+
+       for (i = 0; i < rxq->nb_rx_desc; i++) {
+               volatile union i40e_rx_desc *rxd;
+               struct rte_mbuf *mbuf = rte_rxmbuf_alloc(rxq->mp);
+
+               if (unlikely(!mbuf)) {
+                       PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
+                       return -ENOMEM;
+               }
+
+               rte_mbuf_refcnt_set(mbuf, 1);
+               mbuf->next = NULL;
+               mbuf->data_off = RTE_PKTMBUF_HEADROOM;
+               mbuf->nb_segs = 1;
+               mbuf->port = rxq->port_id;
+
+               dma_addr =
+                       rte_cpu_to_le_64(rte_mbuf_data_dma_addr_default(mbuf));
+
+               rxd = &rxq->rx_ring[i];
+               rxd->read.pkt_addr = dma_addr;
+               rxd->read.hdr_addr = 0;
+#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
+               rxd->read.rsvd1 = 0;
+               rxd->read.rsvd2 = 0;
+#endif /* RTE_LIBRTE_I40E_16BYTE_RX_DESC */
+
+               rxe[i].mbuf = mbuf;
+       }
+
+       return 0;
+}
+
+/*
+ * Calculate the buffer length, and check the jumbo frame
+ * and maximum packet length.
+ */
+static int
+i40e_rx_queue_config(struct i40e_rx_queue *rxq)
+{
+       struct i40e_pf *pf = I40E_VSI_TO_PF(rxq->vsi);
+       struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
+       struct rte_eth_dev_data *data = pf->dev_data;
+       uint16_t buf_size, len;
+
+       buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
+               RTE_PKTMBUF_HEADROOM);
+
+       switch (pf->flags & (I40E_FLAG_HEADER_SPLIT_DISABLED |
+                       I40E_FLAG_HEADER_SPLIT_ENABLED)) {
+       case I40E_FLAG_HEADER_SPLIT_ENABLED: /* Not supported */
+               rxq->rx_hdr_len = RTE_ALIGN(I40E_RXBUF_SZ_1024,
+                               (1 << I40E_RXQ_CTX_HBUFF_SHIFT));
+               rxq->rx_buf_len = RTE_ALIGN(I40E_RXBUF_SZ_2048,
+                               (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
+               rxq->hs_mode = i40e_header_split_enabled;
+               break;
+       case I40E_FLAG_HEADER_SPLIT_DISABLED:
+       default:
+               rxq->rx_hdr_len = 0;
+               rxq->rx_buf_len = RTE_ALIGN(buf_size,
+                       (1 << I40E_RXQ_CTX_DBUFF_SHIFT));
+               rxq->hs_mode = i40e_header_split_none;
+               break;
+       }
+
+       len = hw->func_caps.rx_buf_chain_len * rxq->rx_buf_len;
+       rxq->max_pkt_len = RTE_MIN(len, data->dev_conf.rxmode.max_rx_pkt_len);
+       if (data->dev_conf.rxmode.jumbo_frame == 1) {
+               if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
+                       rxq->max_pkt_len > I40E_FRAME_SIZE_MAX) {
+                       PMD_DRV_LOG(ERR, "maximum packet length must "
+                                   "be larger than %u and smaller than %u,"
+                                   "as jumbo frame is enabled",
+                                   (uint32_t)ETHER_MAX_LEN,
+                                   (uint32_t)I40E_FRAME_SIZE_MAX);
+                       return I40E_ERR_CONFIG;
+               }
+       } else {
+               if (rxq->max_pkt_len < ETHER_MIN_LEN ||
+                       rxq->max_pkt_len > ETHER_MAX_LEN) {
+                       PMD_DRV_LOG(ERR, "maximum packet length must be "
+                                   "larger than %u and smaller than %u, "
+                                   "as jumbo frame is disabled",
+                                   (uint32_t)ETHER_MIN_LEN,
+                                   (uint32_t)ETHER_MAX_LEN);
+                       return I40E_ERR_CONFIG;
+               }
+       }
+
+       return 0;
+}
+
+/* Init the RX queue in hardware */
+int
+i40e_rx_queue_init(struct i40e_rx_queue *rxq)
+{
+       int err = I40E_SUCCESS;
+       struct i40e_hw *hw = I40E_VSI_TO_HW(rxq->vsi);
+       struct rte_eth_dev_data *dev_data = I40E_VSI_TO_DEV_DATA(rxq->vsi);
+       uint16_t pf_q = rxq->reg_idx;
+       uint16_t buf_size;
+       struct i40e_hmc_obj_rxq rx_ctx;
+
+       err = i40e_rx_queue_config(rxq);
+       if (err < 0) {
+               PMD_DRV_LOG(ERR, "Failed to config RX queue");
+               return err;
+       }
+
+       /* Clear the context structure first */
+       memset(&rx_ctx, 0, sizeof(struct i40e_hmc_obj_rxq));
+       rx_ctx.dbuff = rxq->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT;
+       rx_ctx.hbuff = rxq->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT;
+
+       rx_ctx.base = rxq->rx_ring_phys_addr / I40E_QUEUE_BASE_ADDR_UNIT;
+       rx_ctx.qlen = rxq->nb_rx_desc;
+#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
+       rx_ctx.dsize = 1;
+#endif
+       rx_ctx.dtype = rxq->hs_mode;
+       if (rxq->hs_mode)
+               rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_ALL;
+       else
+               rx_ctx.hsplit_0 = I40E_HEADER_SPLIT_NONE;
+       rx_ctx.rxmax = rxq->max_pkt_len;
+       rx_ctx.tphrdesc_ena = 1;
+       rx_ctx.tphwdesc_ena = 1;
+       rx_ctx.tphdata_ena = 1;
+       rx_ctx.tphhead_ena = 1;
+       rx_ctx.lrxqthresh = 2;
+       rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
+       rx_ctx.l2tsel = 1;
+       rx_ctx.showiv = 1;
+       rx_ctx.prefena = 1;
+
+       err = i40e_clear_lan_rx_queue_context(hw, pf_q);
+       if (err != I40E_SUCCESS) {
+               PMD_DRV_LOG(ERR, "Failed to clear LAN RX queue context");
+               return err;
+       }
+       err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
+       if (err != I40E_SUCCESS) {
+               PMD_DRV_LOG(ERR, "Failed to set LAN RX queue context");
+               return err;
+       }
+
+       rxq->qrx_tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
+
+       buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
+               RTE_PKTMBUF_HEADROOM);
+
+       /* Check if scattered RX needs to be used. */
+       if ((rxq->max_pkt_len + 2 * I40E_VLAN_TAG_SIZE) > buf_size) {
+               dev_data->scattered_rx = 1;
+       }
+
+       /* Init the RX tail regieter. */
+       I40E_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
+
+       return 0;
+}
+
+void
+i40e_dev_clear_queues(struct rte_eth_dev *dev)
+{
+       uint16_t i;
+
+       PMD_INIT_FUNC_TRACE();
+
+       for (i = 0; i < dev->data->nb_tx_queues; i++) {
+               i40e_tx_queue_release_mbufs(dev->data->tx_queues[i]);
+               i40e_reset_tx_queue(dev->data->tx_queues[i]);
+       }
+
+       for (i = 0; i < dev->data->nb_rx_queues; i++) {
+               i40e_rx_queue_release_mbufs(dev->data->rx_queues[i]);
+               i40e_reset_rx_queue(dev->data->rx_queues[i]);
+       }
+}
+
+void
+i40e_dev_free_queues(struct rte_eth_dev *dev)
+{
+       uint16_t i;
+
+       PMD_INIT_FUNC_TRACE();
+
+       for (i = 0; i < dev->data->nb_rx_queues; i++) {
+               i40e_dev_rx_queue_release(dev->data->rx_queues[i]);
+               dev->data->rx_queues[i] = NULL;
+       }
+       dev->data->nb_rx_queues = 0;
+
+       for (i = 0; i < dev->data->nb_tx_queues; i++) {
+               i40e_dev_tx_queue_release(dev->data->tx_queues[i]);
+               dev->data->tx_queues[i] = NULL;
+       }
+       dev->data->nb_tx_queues = 0;
+}
+
+#define I40E_FDIR_NUM_TX_DESC  I40E_MIN_RING_DESC
+#define I40E_FDIR_NUM_RX_DESC  I40E_MIN_RING_DESC
+
+enum i40e_status_code
+i40e_fdir_setup_tx_resources(struct i40e_pf *pf)
+{
+       struct i40e_tx_queue *txq;
+       const struct rte_memzone *tz = NULL;
+       uint32_t ring_size;
+       struct rte_eth_dev *dev = pf->adapter->eth_dev;
+
+       if (!pf) {
+               PMD_DRV_LOG(ERR, "PF is not available");
+               return I40E_ERR_BAD_PTR;
+       }
+
+       /* Allocate the TX queue data structure. */
+       txq = rte_zmalloc_socket("i40e fdir tx queue",
+                                 sizeof(struct i40e_tx_queue),
+                                 RTE_CACHE_LINE_SIZE,
+                                 SOCKET_ID_ANY);
+       if (!txq) {
+               PMD_DRV_LOG(ERR, "Failed to allocate memory for "
+                                       "tx queue structure.");
+               return I40E_ERR_NO_MEMORY;
+       }
+
+       /* Allocate TX hardware ring descriptors. */
+       ring_size = sizeof(struct i40e_tx_desc) * I40E_FDIR_NUM_TX_DESC;
+       ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
+
+       tz = rte_eth_dma_zone_reserve(dev, "fdir_tx_ring",
+                                     I40E_FDIR_QUEUE_ID, ring_size,
+                                     I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
+       if (!tz) {
+               i40e_dev_tx_queue_release(txq);
+               PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for TX.");
+               return I40E_ERR_NO_MEMORY;
+       }
+
+       txq->nb_tx_desc = I40E_FDIR_NUM_TX_DESC;
+       txq->queue_id = I40E_FDIR_QUEUE_ID;
+       txq->reg_idx = pf->fdir.fdir_vsi->base_queue;
+       txq->vsi = pf->fdir.fdir_vsi;
+
+       txq->tx_ring_phys_addr = rte_mem_phy2mch(tz->memseg_id, tz->phys_addr);
+       txq->tx_ring = (struct i40e_tx_desc *)tz->addr;
+       /*
+        * don't need to allocate software ring and reset for the fdir
+        * program queue just set the queue has been configured.
+        */
+       txq->q_set = TRUE;
+       pf->fdir.txq = txq;
+
+       return I40E_SUCCESS;
+}
+
+enum i40e_status_code
+i40e_fdir_setup_rx_resources(struct i40e_pf *pf)
+{
+       struct i40e_rx_queue *rxq;
+       const struct rte_memzone *rz = NULL;
+       uint32_t ring_size;
+       struct rte_eth_dev *dev = pf->adapter->eth_dev;
+
+       if (!pf) {
+               PMD_DRV_LOG(ERR, "PF is not available");
+               return I40E_ERR_BAD_PTR;
+       }
+
+       /* Allocate the RX queue data structure. */
+       rxq = rte_zmalloc_socket("i40e fdir rx queue",
+                                 sizeof(struct i40e_rx_queue),
+                                 RTE_CACHE_LINE_SIZE,
+                                 SOCKET_ID_ANY);
+       if (!rxq) {
+               PMD_DRV_LOG(ERR, "Failed to allocate memory for "
+                                       "rx queue structure.");
+               return I40E_ERR_NO_MEMORY;
+       }
+
+       /* Allocate RX hardware ring descriptors. */
+       ring_size = sizeof(union i40e_rx_desc) * I40E_FDIR_NUM_RX_DESC;
+       ring_size = RTE_ALIGN(ring_size, I40E_DMA_MEM_ALIGN);
+
+       rz = rte_eth_dma_zone_reserve(dev, "fdir_rx_ring",
+                                     I40E_FDIR_QUEUE_ID, ring_size,
+                                     I40E_RING_BASE_ALIGN, SOCKET_ID_ANY);
+       if (!rz) {
+               i40e_dev_rx_queue_release(rxq);
+               PMD_DRV_LOG(ERR, "Failed to reserve DMA memory for RX.");
+               return I40E_ERR_NO_MEMORY;
+       }
+
+       rxq->nb_rx_desc = I40E_FDIR_NUM_RX_DESC;
+       rxq->queue_id = I40E_FDIR_QUEUE_ID;
+       rxq->reg_idx = pf->fdir.fdir_vsi->base_queue;
+       rxq->vsi = pf->fdir.fdir_vsi;
+
+       rxq->rx_ring_phys_addr = rte_mem_phy2mch(rz->memseg_id, rz->phys_addr);
+       rxq->rx_ring = (union i40e_rx_desc *)rz->addr;
+
+       /*
+        * Don't need to allocate software ring and reset for the fdir
+        * rx queue, just set the queue has been configured.
+        */
+       rxq->q_set = TRUE;
+       pf->fdir.rxq = rxq;
+
+       return I40E_SUCCESS;
+}
+
+void
+i40e_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
+       struct rte_eth_rxq_info *qinfo)
+{
+       struct i40e_rx_queue *rxq;
+
+       rxq = dev->data->rx_queues[queue_id];
+
+       qinfo->mp = rxq->mp;
+       qinfo->scattered_rx = dev->data->scattered_rx;
+       qinfo->nb_desc = rxq->nb_rx_desc;
+
+       qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
+       qinfo->conf.rx_drop_en = rxq->drop_en;
+       qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
+}
+
+void
+i40e_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
+       struct rte_eth_txq_info *qinfo)
+{
+       struct i40e_tx_queue *txq;
+
+       txq = dev->data->tx_queues[queue_id];
+
+       qinfo->nb_desc = txq->nb_tx_desc;
+
+       qinfo->conf.tx_thresh.pthresh = txq->pthresh;
+       qinfo->conf.tx_thresh.hthresh = txq->hthresh;
+       qinfo->conf.tx_thresh.wthresh = txq->wthresh;
+
+       qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
+       qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
+       qinfo->conf.txq_flags = txq->txq_flags;
+       qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
+}
+
+void __attribute__((cold))
+i40e_set_rx_function(struct rte_eth_dev *dev)
+{
+       struct i40e_adapter *ad =
+               I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
+       uint16_t rx_using_sse, i;
+       /* In order to allow Vector Rx there are a few configuration
+        * conditions to be met and Rx Bulk Allocation should be allowed.
+        */
+       if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
+               if (i40e_rx_vec_dev_conf_condition_check(dev) ||
+                   !ad->rx_bulk_alloc_allowed) {
+                       PMD_INIT_LOG(DEBUG, "Port[%d] doesn't meet"
+                                    " Vector Rx preconditions",
+                                    dev->data->port_id);
+
+                       ad->rx_vec_allowed = false;
+               }
+               if (ad->rx_vec_allowed) {
+                       for (i = 0; i < dev->data->nb_rx_queues; i++) {
+                               struct i40e_rx_queue *rxq =
+                                       dev->data->rx_queues[i];
+
+                               if (i40e_rxq_vec_setup(rxq)) {
+                                       ad->rx_vec_allowed = false;
+                                       break;
+                               }
+                       }
+               }
+       }
+
+       if (dev->data->scattered_rx) {
+               /* Set the non-LRO scattered callback: there are Vector and
+                * single allocation versions.
+                */
+               if (ad->rx_vec_allowed) {
+                       PMD_INIT_LOG(DEBUG, "Using Vector Scattered Rx "
+                                           "callback (port=%d).",
+                                    dev->data->port_id);
+
+                       dev->rx_pkt_burst = i40e_recv_scattered_pkts_vec;
+               } else {
+                       PMD_INIT_LOG(DEBUG, "Using a Scattered with bulk "
+                                          "allocation callback (port=%d).",
+                                    dev->data->port_id);
+                       dev->rx_pkt_burst = i40e_recv_scattered_pkts;
+               }
+       /* If parameters allow we are going to choose between the following
+        * callbacks:
+        *    - Vector
+        *    - Bulk Allocation
+        *    - Single buffer allocation (the simplest one)
+        */
+       } else if (ad->rx_vec_allowed) {
+               PMD_INIT_LOG(DEBUG, "Vector rx enabled, please make sure RX "
+                                   "burst size no less than %d (port=%d).",
+                            RTE_I40E_DESCS_PER_LOOP,
+                            dev->data->port_id);
+
+               dev->rx_pkt_burst = i40e_recv_pkts_vec;
+       } else if (ad->rx_bulk_alloc_allowed) {
+               PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
+                                   "satisfied. Rx Burst Bulk Alloc function "
+                                   "will be used on port=%d.",
+                            dev->data->port_id);
+
+               dev->rx_pkt_burst = i40e_recv_pkts_bulk_alloc;
+       } else {
+               PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are not "
+                                   "satisfied, or Scattered Rx is requested "
+                                   "(port=%d).",
+                            dev->data->port_id);
+
+               dev->rx_pkt_burst = i40e_recv_pkts;
+       }
+
+       /* Propagate information about RX function choice through all queues. */
+       if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
+               rx_using_sse =
+                       (dev->rx_pkt_burst == i40e_recv_scattered_pkts_vec ||
+                        dev->rx_pkt_burst == i40e_recv_pkts_vec);
+
+               for (i = 0; i < dev->data->nb_rx_queues; i++) {
+                       struct i40e_rx_queue *rxq = dev->data->rx_queues[i];
+
+                       rxq->rx_using_sse = rx_using_sse;
+               }
+       }
+}
+
+void __attribute__((cold))
+i40e_set_tx_function_flag(struct rte_eth_dev *dev, struct i40e_tx_queue *txq)
+{
+       struct i40e_adapter *ad =
+               I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
+
+       /* Use a simple Tx queue (no offloads, no multi segs) if possible */
+       if (((txq->txq_flags & I40E_SIMPLE_FLAGS) == I40E_SIMPLE_FLAGS)
+                       && (txq->tx_rs_thresh >= RTE_PMD_I40E_TX_MAX_BURST)) {
+               if (txq->tx_rs_thresh <= RTE_I40E_TX_MAX_FREE_BUF_SZ) {
+                       PMD_INIT_LOG(DEBUG, "Vector tx"
+                                    " can be enabled on this txq.");
+
+               } else {
+                       ad->tx_vec_allowed = false;
+               }
+       } else {
+               ad->tx_simple_allowed = false;
+       }
+}
+
+void __attribute__((cold))
+i40e_set_tx_function(struct rte_eth_dev *dev)
+{
+       struct i40e_adapter *ad =
+               I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
+       int i;
+
+       if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
+               if (ad->tx_vec_allowed) {
+                       for (i = 0; i < dev->data->nb_tx_queues; i++) {
+                               struct i40e_tx_queue *txq =
+                                       dev->data->tx_queues[i];
+
+                               if (i40e_txq_vec_setup(txq)) {
+                                       ad->tx_vec_allowed = false;
+                                       break;
+                               }
+                       }
+               }
+       }
+
+       if (ad->tx_simple_allowed) {
+               if (ad->tx_vec_allowed) {
+                       PMD_INIT_LOG(DEBUG, "Vector tx finally be used.");
+                       dev->tx_pkt_burst = i40e_xmit_pkts_vec;
+               } else {
+                       PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
+                       dev->tx_pkt_burst = i40e_xmit_pkts_simple;
+               }
+       } else {
+               PMD_INIT_LOG(DEBUG, "Xmit tx finally be used.");
+               dev->tx_pkt_burst = i40e_xmit_pkts;
+       }
+}
+
+/* Stubs needed for linkage when CONFIG_RTE_I40E_INC_VECTOR is set to 'n' */
+int __attribute__((weak))
+i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev __rte_unused *dev)
+{
+       return -1;
+}
+
+uint16_t __attribute__((weak))
+i40e_recv_pkts_vec(
+       void __rte_unused *rx_queue,
+       struct rte_mbuf __rte_unused **rx_pkts,
+       uint16_t __rte_unused nb_pkts)
+{
+       return 0;
+}
+
+uint16_t __attribute__((weak))
+i40e_recv_scattered_pkts_vec(
+       void __rte_unused *rx_queue,
+       struct rte_mbuf __rte_unused **rx_pkts,
+       uint16_t __rte_unused nb_pkts)
+{
+       return 0;
+}
+
+int __attribute__((weak))
+i40e_rxq_vec_setup(struct i40e_rx_queue __rte_unused *rxq)
+{
+       return -1;
+}
+
+int __attribute__((weak))
+i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused *txq)
+{
+       return -1;
+}
+
+void __attribute__((weak))
+i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue __rte_unused*rxq)
+{
+       return;
+}
+
+uint16_t __attribute__((weak))
+i40e_xmit_pkts_vec(void __rte_unused *tx_queue,
+                  struct rte_mbuf __rte_unused **tx_pkts,
+                  uint16_t __rte_unused nb_pkts)
+{
+       return 0;
+}