Imported Upstream version 16.11
[deb_dpdk.git] / lib / librte_acl / acl_run_altivec.h
diff --git a/lib/librte_acl/acl_run_altivec.h b/lib/librte_acl/acl_run_altivec.h
new file mode 100644 (file)
index 0000000..7d329bc
--- /dev/null
@@ -0,0 +1,329 @@
+/*
+ *   BSD LICENSE
+ *
+ *   Copyright (C) IBM Corporation 2016.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of IBM Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#include "acl_run.h"
+#include "acl_vect.h"
+
+struct _altivec_acl_const {
+       rte_xmm_t xmm_shuffle_input;
+       rte_xmm_t xmm_index_mask;
+       rte_xmm_t xmm_ones_16;
+       rte_xmm_t range_base;
+} altivec_acl_const  __attribute__((aligned(RTE_CACHE_LINE_SIZE))) = {
+       {
+               .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c}
+       },
+       {
+               .u32 = {RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX,
+               RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX}
+       },
+       {
+               .u16 = {1, 1, 1, 1, 1, 1, 1, 1}
+       },
+       {
+               .u32 = {0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c}
+       },
+};
+
+/*
+ * Resolve priority for multiple results (altivec version).
+ * This consists comparing the priority of the current traversal with the
+ * running set of results for the packet.
+ * For each result, keep a running array of the result (rule number) and
+ * its priority for each category.
+ */
+static inline void
+resolve_priority_altivec(uint64_t transition, int n,
+       const struct rte_acl_ctx *ctx, struct parms *parms,
+       const struct rte_acl_match_results *p, uint32_t categories)
+{
+       uint32_t x;
+       xmm_t results, priority, results1, priority1;
+       vector bool int selector;
+       xmm_t *saved_results, *saved_priority;
+
+       for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
+
+               saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
+               saved_priority =
+                       (xmm_t *)(&parms[n].cmplt->priority[x]);
+
+               /* get results and priorities for completed trie */
+               results = *(const xmm_t *)&p[transition].results[x];
+               priority = *(const xmm_t *)&p[transition].priority[x];
+
+               /* if this is not the first completed trie */
+               if (parms[n].cmplt->count != ctx->num_tries) {
+
+                       /* get running best results and their priorities */
+                       results1 = *saved_results;
+                       priority1 = *saved_priority;
+
+                       /* select results that are highest priority */
+                       selector = vec_cmpgt(priority1, priority);
+                       results = vec_sel(results, results1, selector);
+                       priority = vec_sel(priority, priority1,
+                               selector);
+               }
+
+               /* save running best results and their priorities */
+               *saved_results = results;
+               *saved_priority = priority;
+       }
+}
+
+/*
+ * Check for any match in 4 transitions
+ */
+static inline __attribute__((always_inline)) uint32_t
+check_any_match_x4(uint64_t val[])
+{
+       return (val[0] | val[1] | val[2] | val[3]) & RTE_ACL_NODE_MATCH;
+}
+
+static inline __attribute__((always_inline)) void
+acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
+       struct acl_flow_data *flows, uint64_t transitions[])
+{
+       while (check_any_match_x4(transitions)) {
+               transitions[0] = acl_match_check(transitions[0], slot, ctx,
+                       parms, flows, resolve_priority_altivec);
+               transitions[1] = acl_match_check(transitions[1], slot + 1, ctx,
+                       parms, flows, resolve_priority_altivec);
+               transitions[2] = acl_match_check(transitions[2], slot + 2, ctx,
+                       parms, flows, resolve_priority_altivec);
+               transitions[3] = acl_match_check(transitions[3], slot + 3, ctx,
+                       parms, flows, resolve_priority_altivec);
+       }
+}
+
+/*
+ * Process 4 transitions (in 2 XMM registers) in parallel
+ */
+static inline __attribute__((optimize("O2"))) xmm_t
+transition4(xmm_t next_input, const uint64_t *trans,
+       xmm_t *indices1, xmm_t *indices2)
+{
+       xmm_t addr, tr_lo, tr_hi;
+       xmm_t in, node_type, r, t;
+       xmm_t dfa_ofs, quad_ofs;
+       xmm_t *index_mask, *tp;
+       vector bool int dfa_msk;
+       vector signed char zeroes = {};
+       union {
+               uint64_t d64[2];
+               uint32_t d32[4];
+       } v;
+
+       /* Move low 32 into tr_lo and high 32 into tr_hi */
+       tr_lo = (xmm_t){(*indices1)[0], (*indices1)[2],
+                       (*indices2)[0], (*indices2)[2]};
+       tr_hi = (xmm_t){(*indices1)[1], (*indices1)[3],
+                       (*indices2)[1], (*indices2)[3]};
+
+        /* Calculate the address (array index) for all 4 transitions. */
+       index_mask = (xmm_t *)&altivec_acl_const.xmm_index_mask.u32;
+       t = vec_xor(*index_mask, *index_mask);
+       in = vec_perm(next_input, (xmm_t){},
+               *(vector unsigned char *)&altivec_acl_const.xmm_shuffle_input);
+
+       /* Calc node type and node addr */
+       node_type = vec_and(vec_nor(*index_mask, *index_mask), tr_lo);
+       addr = vec_and(tr_lo, *index_mask);
+
+       /* mask for DFA type(0) nodes */
+       dfa_msk = vec_cmpeq(node_type, t);
+
+       /* DFA calculations. */
+       r = vec_sr(in, (vector unsigned int){30, 30, 30, 30});
+       tp = (xmm_t *)&altivec_acl_const.range_base.u32;
+       r = vec_add(r, *tp);
+       t = vec_sr(in, (vector unsigned int){24, 24, 24, 24});
+       r = vec_perm(tr_hi, (xmm_t){(uint16_t)0 << 16},
+               (vector unsigned char)r);
+
+       dfa_ofs = vec_sub(t, r);
+
+       /* QUAD/SINGLE caluclations. */
+       t = (xmm_t)vec_cmpgt((vector signed char)in, (vector signed char)tr_hi);
+       t = (xmm_t)vec_sel(
+               vec_sel(
+                       (vector signed char)vec_sub(
+                               zeroes, (vector signed char)t),
+                       (vector signed char)t,
+                       vec_cmpgt((vector signed char)t, zeroes)),
+               zeroes,
+               vec_cmpeq((vector signed char)t, zeroes));
+
+       t = (xmm_t)vec_msum((vector signed char)t,
+               (vector unsigned char)t, (xmm_t){});
+       quad_ofs = (xmm_t)vec_msum((vector signed short)t,
+               *(vector signed short *)&altivec_acl_const.xmm_ones_16.u16,
+               (xmm_t){});
+
+       /* blend DFA and QUAD/SINGLE. */
+       t = vec_sel(quad_ofs, dfa_ofs, dfa_msk);
+
+       /* calculate address for next transitions. */
+       addr = vec_add(addr, t);
+
+       v.d64[0] = (uint64_t)trans[addr[0]];
+       v.d64[1] = (uint64_t)trans[addr[1]];
+       *indices1 = (xmm_t){v.d32[0], v.d32[1], v.d32[2], v.d32[3]};
+       v.d64[0] = (uint64_t)trans[addr[2]];
+       v.d64[1] = (uint64_t)trans[addr[3]];
+       *indices2 = (xmm_t){v.d32[0], v.d32[1], v.d32[2], v.d32[3]};
+
+       return vec_sr(next_input,
+               (vector unsigned int){CHAR_BIT, CHAR_BIT, CHAR_BIT, CHAR_BIT});
+}
+
+/*
+ * Execute trie traversal with 8 traversals in parallel
+ */
+static inline int
+search_altivec_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
+       uint32_t *results, uint32_t total_packets, uint32_t categories)
+{
+       int n;
+       struct acl_flow_data flows;
+       uint64_t index_array[MAX_SEARCHES_ALTIVEC8];
+       struct completion cmplt[MAX_SEARCHES_ALTIVEC8];
+       struct parms parms[MAX_SEARCHES_ALTIVEC8];
+       xmm_t input0, input1;
+
+       acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+               total_packets, categories, ctx->trans_table);
+
+       for (n = 0; n < MAX_SEARCHES_ALTIVEC8; n++) {
+               cmplt[n].count = 0;
+               index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+       }
+
+        /* Check for any matches. */
+       acl_match_check_x4(0, ctx, parms, &flows, (uint64_t *)&index_array[0]);
+       acl_match_check_x4(4, ctx, parms, &flows, (uint64_t *)&index_array[4]);
+
+       while (flows.started > 0) {
+
+               /* Gather 4 bytes of input data for each stream. */
+               input0 = (xmm_t){GET_NEXT_4BYTES(parms, 0),
+                               GET_NEXT_4BYTES(parms, 1),
+                               GET_NEXT_4BYTES(parms, 2),
+                               GET_NEXT_4BYTES(parms, 3)};
+
+               input1 = (xmm_t){GET_NEXT_4BYTES(parms, 4),
+                               GET_NEXT_4BYTES(parms, 5),
+                               GET_NEXT_4BYTES(parms, 6),
+                               GET_NEXT_4BYTES(parms, 7)};
+
+                /* Process the 4 bytes of input on each stream. */
+
+               input0 = transition4(input0, flows.trans,
+                       (xmm_t *)&index_array[0], (xmm_t *)&index_array[2]);
+               input1 = transition4(input1, flows.trans,
+                       (xmm_t *)&index_array[4], (xmm_t *)&index_array[6]);
+
+               input0 = transition4(input0, flows.trans,
+                       (xmm_t *)&index_array[0], (xmm_t *)&index_array[2]);
+               input1 = transition4(input1, flows.trans,
+                       (xmm_t *)&index_array[4], (xmm_t *)&index_array[6]);
+
+               input0 = transition4(input0, flows.trans,
+                       (xmm_t *)&index_array[0], (xmm_t *)&index_array[2]);
+               input1 = transition4(input1, flows.trans,
+                       (xmm_t *)&index_array[4], (xmm_t *)&index_array[6]);
+
+               input0 = transition4(input0, flows.trans,
+                       (xmm_t *)&index_array[0], (xmm_t *)&index_array[2]);
+               input1 = transition4(input1, flows.trans,
+                       (xmm_t *)&index_array[4], (xmm_t *)&index_array[6]);
+
+                /* Check for any matches. */
+               acl_match_check_x4(0, ctx, parms, &flows,
+                       (uint64_t *)&index_array[0]);
+               acl_match_check_x4(4, ctx, parms, &flows,
+                       (uint64_t *)&index_array[4]);
+       }
+
+       return 0;
+}
+
+/*
+ * Execute trie traversal with 4 traversals in parallel
+ */
+static inline int
+search_altivec_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
+        uint32_t *results, int total_packets, uint32_t categories)
+{
+       int n;
+       struct acl_flow_data flows;
+       uint64_t index_array[MAX_SEARCHES_ALTIVEC4];
+       struct completion cmplt[MAX_SEARCHES_ALTIVEC4];
+       struct parms parms[MAX_SEARCHES_ALTIVEC4];
+       xmm_t input;
+
+       acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+               total_packets, categories, ctx->trans_table);
+
+       for (n = 0; n < MAX_SEARCHES_ALTIVEC4; n++) {
+               cmplt[n].count = 0;
+               index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+       }
+
+       /* Check for any matches. */
+       acl_match_check_x4(0, ctx, parms, &flows, index_array);
+
+       while (flows.started > 0) {
+
+               /* Gather 4 bytes of input data for each stream. */
+               input = (xmm_t){GET_NEXT_4BYTES(parms, 0),
+                               GET_NEXT_4BYTES(parms, 1),
+                               GET_NEXT_4BYTES(parms, 2),
+                               GET_NEXT_4BYTES(parms, 3)};
+
+               /* Process the 4 bytes of input on each stream. */
+               input = transition4(input, flows.trans,
+                       (xmm_t *)&index_array[0], (xmm_t *)&index_array[2]);
+               input = transition4(input, flows.trans,
+                       (xmm_t *)&index_array[0], (xmm_t *)&index_array[2]);
+               input = transition4(input, flows.trans,
+                       (xmm_t *)&index_array[0], (xmm_t *)&index_array[2]);
+               input = transition4(input, flows.trans,
+                       (xmm_t *)&index_array[0], (xmm_t *)&index_array[2]);
+
+               /* Check for any matches. */
+               acl_match_check_x4(0, ctx, parms, &flows, index_array);
+       }
+
+       return 0;
+}