Imported Upstream version 16.04
[deb_dpdk.git] / lib / librte_acl / acl_run_neon.h
diff --git a/lib/librte_acl/acl_run_neon.h b/lib/librte_acl/acl_run_neon.h
new file mode 100644 (file)
index 0000000..d233ff0
--- /dev/null
@@ -0,0 +1,289 @@
+/*
+ *   BSD LICENSE
+ *
+ *   Copyright (C) Cavium networks Ltd. 2015.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Cavium networks nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#include "acl_run.h"
+#include "acl_vect.h"
+
+struct _neon_acl_const {
+       rte_xmm_t xmm_shuffle_input;
+       rte_xmm_t xmm_index_mask;
+       rte_xmm_t range_base;
+} neon_acl_const  __attribute__((aligned(RTE_CACHE_LINE_SIZE))) = {
+       {
+               .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c}
+       },
+       {
+               .u32 = {RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX,
+               RTE_ACL_NODE_INDEX, RTE_ACL_NODE_INDEX}
+       },
+       {
+               .u32 = {0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c}
+       },
+};
+
+/*
+ * Resolve priority for multiple results (neon version).
+ * This consists comparing the priority of the current traversal with the
+ * running set of results for the packet.
+ * For each result, keep a running array of the result (rule number) and
+ * its priority for each category.
+ */
+static inline void
+resolve_priority_neon(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
+                     struct parms *parms,
+                     const struct rte_acl_match_results *p,
+                     uint32_t categories)
+{
+       uint32_t x;
+       int32x4_t results, priority, results1, priority1;
+       uint32x4_t selector;
+       int32_t *saved_results, *saved_priority;
+
+       for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
+               saved_results = (int32_t *)(&parms[n].cmplt->results[x]);
+               saved_priority = (int32_t *)(&parms[n].cmplt->priority[x]);
+
+               /* get results and priorities for completed trie */
+               results = vld1q_s32(
+                       (const int32_t *)&p[transition].results[x]);
+               priority = vld1q_s32(
+                       (const int32_t *)&p[transition].priority[x]);
+
+               /* if this is not the first completed trie */
+               if (parms[n].cmplt->count != ctx->num_tries) {
+                       /* get running best results and their priorities */
+                       results1 = vld1q_s32(saved_results);
+                       priority1 = vld1q_s32(saved_priority);
+
+                       /* select results that are highest priority */
+                       selector = vcgtq_s32(priority1, priority);
+                       results = vbslq_s32(selector, results1, results);
+                       priority = vbslq_s32(selector, priority1, priority);
+               }
+
+               /* save running best results and their priorities */
+               vst1q_s32(saved_results, results);
+               vst1q_s32(saved_priority, priority);
+       }
+}
+
+/*
+ * Check for any match in 4 transitions
+ */
+static inline __attribute__((always_inline)) uint32_t
+check_any_match_x4(uint64_t val[])
+{
+       return (val[0] | val[1] | val[2] | val[3]) & RTE_ACL_NODE_MATCH;
+}
+
+static inline __attribute__((always_inline)) void
+acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
+                  struct acl_flow_data *flows, uint64_t transitions[])
+{
+       while (check_any_match_x4(transitions)) {
+               transitions[0] = acl_match_check(transitions[0], slot, ctx,
+                       parms, flows, resolve_priority_neon);
+               transitions[1] = acl_match_check(transitions[1], slot + 1, ctx,
+                       parms, flows, resolve_priority_neon);
+               transitions[2] = acl_match_check(transitions[2], slot + 2, ctx,
+                       parms, flows, resolve_priority_neon);
+               transitions[3] = acl_match_check(transitions[3], slot + 3, ctx,
+                       parms, flows, resolve_priority_neon);
+       }
+}
+
+/*
+ * Process 4 transitions (in 2 NEON Q registers) in parallel
+ */
+static inline __attribute__((always_inline)) int32x4_t
+transition4(int32x4_t next_input, const uint64_t *trans, uint64_t transitions[])
+{
+       int32x4x2_t tr_hi_lo;
+       int32x4_t t, in, r;
+       uint32x4_t index_msk, node_type, addr;
+       uint32x4_t dfa_msk, mask, quad_ofs, dfa_ofs;
+
+       /* Move low 32 into tr_hi_lo.val[0] and high 32 into tr_hi_lo.val[1] */
+       tr_hi_lo = vld2q_s32((const int32_t *)transitions);
+
+       /* Calculate the address (array index) for all 4 transitions. */
+
+       index_msk = vld1q_u32((const uint32_t *)&neon_acl_const.xmm_index_mask);
+
+       /* Calc node type and node addr */
+       node_type = vbicq_s32(tr_hi_lo.val[0], index_msk);
+       addr = vandq_s32(tr_hi_lo.val[0], index_msk);
+
+       /* t = 0 */
+       t = veorq_s32(node_type, node_type);
+
+       /* mask for DFA type(0) nodes */
+       dfa_msk = vceqq_u32(node_type, t);
+
+       mask = vld1q_s32((const int32_t *)&neon_acl_const.xmm_shuffle_input);
+       in = vqtbl1q_u8((uint8x16_t)next_input, (uint8x16_t)mask);
+
+       /* DFA calculations. */
+       r = vshrq_n_u32(in, 30); /* div by 64 */
+       mask = vld1q_s32((const int32_t *)&neon_acl_const.range_base);
+       r = vaddq_u8(r, mask);
+       t = vshrq_n_u32(in, 24);
+       r = vqtbl1q_u8((uint8x16_t)tr_hi_lo.val[1], (uint8x16_t)r);
+       dfa_ofs = vsubq_s32(t, r);
+
+       /* QUAD/SINGLE calculations. */
+       t = vcgtq_s8(in, tr_hi_lo.val[1]);
+       t = vabsq_s8(t);
+       t = vpaddlq_u8(t);
+       quad_ofs = vpaddlq_u16(t);
+
+       /* blend DFA and QUAD/SINGLE. */
+       t = vbslq_u8(dfa_msk, dfa_ofs, quad_ofs);
+
+       /* calculate address for next transitions */
+       addr = vaddq_u32(addr, t);
+
+       /* Fill next transitions */
+       transitions[0] = trans[vgetq_lane_u32(addr, 0)];
+       transitions[1] = trans[vgetq_lane_u32(addr, 1)];
+       transitions[2] = trans[vgetq_lane_u32(addr, 2)];
+       transitions[3] = trans[vgetq_lane_u32(addr, 3)];
+
+       return vshrq_n_u32(next_input, CHAR_BIT);
+}
+
+/*
+ * Execute trie traversal with 8 traversals in parallel
+ */
+static inline int
+search_neon_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
+             uint32_t *results, uint32_t total_packets, uint32_t categories)
+{
+       int n;
+       struct acl_flow_data flows;
+       uint64_t index_array[8];
+       struct completion cmplt[8];
+       struct parms parms[8];
+       int32x4_t input0, input1;
+
+       acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+                    total_packets, categories, ctx->trans_table);
+
+       for (n = 0; n < 8; n++) {
+               cmplt[n].count = 0;
+               index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+       }
+
+        /* Check for any matches. */
+       acl_match_check_x4(0, ctx, parms, &flows, &index_array[0]);
+       acl_match_check_x4(4, ctx, parms, &flows, &index_array[4]);
+
+       while (flows.started > 0) {
+               /* Gather 4 bytes of input data for each stream. */
+               input0 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 0), input0, 0);
+               input1 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 4), input1, 0);
+
+               input0 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 1), input0, 1);
+               input1 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 5), input1, 1);
+
+               input0 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 2), input0, 2);
+               input1 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 6), input1, 2);
+
+               input0 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 3), input0, 3);
+               input1 = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 7), input1, 3);
+
+               /* Process the 4 bytes of input on each stream. */
+
+               input0 = transition4(input0, flows.trans, &index_array[0]);
+               input1 = transition4(input1, flows.trans, &index_array[4]);
+
+               input0 = transition4(input0, flows.trans, &index_array[0]);
+               input1 = transition4(input1, flows.trans, &index_array[4]);
+
+               input0 = transition4(input0, flows.trans, &index_array[0]);
+               input1 = transition4(input1, flows.trans, &index_array[4]);
+
+               input0 = transition4(input0, flows.trans, &index_array[0]);
+               input1 = transition4(input1, flows.trans, &index_array[4]);
+
+                /* Check for any matches. */
+               acl_match_check_x4(0, ctx, parms, &flows, &index_array[0]);
+               acl_match_check_x4(4, ctx, parms, &flows, &index_array[4]);
+       }
+
+       return 0;
+}
+
+/*
+ * Execute trie traversal with 4 traversals in parallel
+ */
+static inline int
+search_neon_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
+             uint32_t *results, int total_packets, uint32_t categories)
+{
+       int n;
+       struct acl_flow_data flows;
+       uint64_t index_array[4];
+       struct completion cmplt[4];
+       struct parms parms[4];
+       int32x4_t input;
+
+       acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+                    total_packets, categories, ctx->trans_table);
+
+       for (n = 0; n < 4; n++) {
+               cmplt[n].count = 0;
+               index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+       }
+
+       /* Check for any matches. */
+       acl_match_check_x4(0, ctx, parms, &flows, index_array);
+
+       while (flows.started > 0) {
+               /* Gather 4 bytes of input data for each stream. */
+               input = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 0), input, 0);
+               input = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 1), input, 1);
+               input = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 2), input, 2);
+               input = vsetq_lane_s32(GET_NEXT_4BYTES(parms, 3), input, 3);
+
+               /* Process the 4 bytes of input on each stream. */
+               input = transition4(input, flows.trans, index_array);
+               input = transition4(input, flows.trans, index_array);
+               input = transition4(input, flows.trans, index_array);
+               input = transition4(input, flows.trans, index_array);
+
+               /* Check for any matches. */
+               acl_match_check_x4(0, ctx, parms, &flows, index_array);
+       }
+
+       return 0;
+}