Imported Upstream version 16.04
[deb_dpdk.git] / lib / librte_acl / acl_run_scalar.c
diff --git a/lib/librte_acl/acl_run_scalar.c b/lib/librte_acl/acl_run_scalar.c
new file mode 100644 (file)
index 0000000..5be216c
--- /dev/null
@@ -0,0 +1,192 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "acl_run.h"
+
+/*
+ * Resolve priority for multiple results (scalar version).
+ * This consists comparing the priority of the current traversal with the
+ * running set of results for the packet.
+ * For each result, keep a running array of the result (rule number) and
+ * its priority for each category.
+ */
+static inline void
+resolve_priority_scalar(uint64_t transition, int n,
+       const struct rte_acl_ctx *ctx, struct parms *parms,
+       const struct rte_acl_match_results *p, uint32_t categories)
+{
+       uint32_t i;
+       int32_t *saved_priority;
+       uint32_t *saved_results;
+       const int32_t *priority;
+       const uint32_t *results;
+
+       saved_results = parms[n].cmplt->results;
+       saved_priority = parms[n].cmplt->priority;
+
+       /* results and priorities for completed trie */
+       results = p[transition].results;
+       priority = p[transition].priority;
+
+       /* if this is not the first completed trie */
+       if (parms[n].cmplt->count != ctx->num_tries) {
+               for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
+
+                       if (saved_priority[i] <= priority[i]) {
+                               saved_priority[i] = priority[i];
+                               saved_results[i] = results[i];
+                       }
+                       if (saved_priority[i + 1] <= priority[i + 1]) {
+                               saved_priority[i + 1] = priority[i + 1];
+                               saved_results[i + 1] = results[i + 1];
+                       }
+                       if (saved_priority[i + 2] <= priority[i + 2]) {
+                               saved_priority[i + 2] = priority[i + 2];
+                               saved_results[i + 2] = results[i + 2];
+                       }
+                       if (saved_priority[i + 3] <= priority[i + 3]) {
+                               saved_priority[i + 3] = priority[i + 3];
+                               saved_results[i + 3] = results[i + 3];
+                       }
+               }
+       } else {
+               for (i = 0; i < categories; i += RTE_ACL_RESULTS_MULTIPLIER) {
+                       saved_priority[i] = priority[i];
+                       saved_priority[i + 1] = priority[i + 1];
+                       saved_priority[i + 2] = priority[i + 2];
+                       saved_priority[i + 3] = priority[i + 3];
+
+                       saved_results[i] = results[i];
+                       saved_results[i + 1] = results[i + 1];
+                       saved_results[i + 2] = results[i + 2];
+                       saved_results[i + 3] = results[i + 3];
+               }
+       }
+}
+
+static inline uint32_t
+scan_forward(uint32_t input, uint32_t max)
+{
+       return (input == 0) ? max : rte_bsf32(input);
+}
+
+static inline uint64_t
+scalar_transition(const uint64_t *trans_table, uint64_t transition,
+       uint8_t input)
+{
+       uint32_t addr, index, ranges, x, a, b, c;
+
+       /* break transition into component parts */
+       ranges = transition >> (sizeof(index) * CHAR_BIT);
+       index = transition & ~RTE_ACL_NODE_INDEX;
+       addr = transition ^ index;
+
+       if (index != RTE_ACL_NODE_DFA) {
+               /* calc address for a QRANGE/SINGLE node */
+               c = (uint32_t)input * SCALAR_QRANGE_MULT;
+               a = ranges | SCALAR_QRANGE_MIN;
+               a -= (c & SCALAR_QRANGE_MASK);
+               b = c & SCALAR_QRANGE_MIN;
+               a &= SCALAR_QRANGE_MIN;
+               a ^= (ranges ^ b) & (a ^ b);
+               x = scan_forward(a, 32) >> 3;
+       } else {
+               /* calc address for a DFA node */
+               x = ranges >> (input /
+                       RTE_ACL_DFA_GR64_SIZE * RTE_ACL_DFA_GR64_BIT);
+               x &= UINT8_MAX;
+               x = input - x;
+       }
+
+       addr += x;
+
+       /* pickup next transition */
+       transition = *(trans_table + addr);
+       return transition;
+}
+
+int
+rte_acl_classify_scalar(const struct rte_acl_ctx *ctx, const uint8_t **data,
+       uint32_t *results, uint32_t num, uint32_t categories)
+{
+       int n;
+       uint64_t transition0, transition1;
+       uint32_t input0, input1;
+       struct acl_flow_data flows;
+       uint64_t index_array[MAX_SEARCHES_SCALAR];
+       struct completion cmplt[MAX_SEARCHES_SCALAR];
+       struct parms parms[MAX_SEARCHES_SCALAR];
+
+       acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results, num,
+               categories, ctx->trans_table);
+
+       for (n = 0; n < MAX_SEARCHES_SCALAR; n++) {
+               cmplt[n].count = 0;
+               index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+       }
+
+       transition0 = index_array[0];
+       transition1 = index_array[1];
+
+       while ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
+               transition0 = acl_match_check(transition0,
+                       0, ctx, parms, &flows, resolve_priority_scalar);
+               transition1 = acl_match_check(transition1,
+                       1, ctx, parms, &flows, resolve_priority_scalar);
+       }
+
+       while (flows.started > 0) {
+
+               input0 = GET_NEXT_4BYTES(parms, 0);
+               input1 = GET_NEXT_4BYTES(parms, 1);
+
+               for (n = 0; n < 4; n++) {
+
+                       transition0 = scalar_transition(flows.trans,
+                               transition0, (uint8_t)input0);
+                       input0 >>= CHAR_BIT;
+
+                       transition1 = scalar_transition(flows.trans,
+                               transition1, (uint8_t)input1);
+                       input1 >>= CHAR_BIT;
+               }
+
+               while ((transition0 | transition1) & RTE_ACL_NODE_MATCH) {
+                       transition0 = acl_match_check(transition0,
+                               0, ctx, parms, &flows, resolve_priority_scalar);
+                       transition1 = acl_match_check(transition1,
+                               1, ctx, parms, &flows, resolve_priority_scalar);
+               }
+       }
+       return 0;
+}