Imported Upstream version 16.04
[deb_dpdk.git] / lib / librte_acl / acl_run_sse.h
diff --git a/lib/librte_acl/acl_run_sse.h b/lib/librte_acl/acl_run_sse.h
new file mode 100644 (file)
index 0000000..ad40a67
--- /dev/null
@@ -0,0 +1,357 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "acl_run.h"
+#include "acl_vect.h"
+
+enum {
+       SHUFFLE32_SLOT1 = 0xe5,
+       SHUFFLE32_SLOT2 = 0xe6,
+       SHUFFLE32_SLOT3 = 0xe7,
+       SHUFFLE32_SWAP64 = 0x4e,
+};
+
+static const rte_xmm_t xmm_shuffle_input = {
+       .u32 = {0x00000000, 0x04040404, 0x08080808, 0x0c0c0c0c},
+};
+
+static const rte_xmm_t xmm_ones_16 = {
+       .u16 = {1, 1, 1, 1, 1, 1, 1, 1},
+};
+
+static const rte_xmm_t xmm_match_mask = {
+       .u32 = {
+               RTE_ACL_NODE_MATCH,
+               RTE_ACL_NODE_MATCH,
+               RTE_ACL_NODE_MATCH,
+               RTE_ACL_NODE_MATCH,
+       },
+};
+
+static const rte_xmm_t xmm_index_mask = {
+       .u32 = {
+               RTE_ACL_NODE_INDEX,
+               RTE_ACL_NODE_INDEX,
+               RTE_ACL_NODE_INDEX,
+               RTE_ACL_NODE_INDEX,
+       },
+};
+
+static const rte_xmm_t xmm_range_base = {
+       .u32 = {
+               0xffffff00, 0xffffff04, 0xffffff08, 0xffffff0c,
+       },
+};
+
+/*
+ * Resolve priority for multiple results (sse version).
+ * This consists comparing the priority of the current traversal with the
+ * running set of results for the packet.
+ * For each result, keep a running array of the result (rule number) and
+ * its priority for each category.
+ */
+static inline void
+resolve_priority_sse(uint64_t transition, int n, const struct rte_acl_ctx *ctx,
+       struct parms *parms, const struct rte_acl_match_results *p,
+       uint32_t categories)
+{
+       uint32_t x;
+       xmm_t results, priority, results1, priority1, selector;
+       xmm_t *saved_results, *saved_priority;
+
+       for (x = 0; x < categories; x += RTE_ACL_RESULTS_MULTIPLIER) {
+
+               saved_results = (xmm_t *)(&parms[n].cmplt->results[x]);
+               saved_priority =
+                       (xmm_t *)(&parms[n].cmplt->priority[x]);
+
+               /* get results and priorities for completed trie */
+               results = _mm_loadu_si128(
+                       (const xmm_t *)&p[transition].results[x]);
+               priority = _mm_loadu_si128(
+                       (const xmm_t *)&p[transition].priority[x]);
+
+               /* if this is not the first completed trie */
+               if (parms[n].cmplt->count != ctx->num_tries) {
+
+                       /* get running best results and their priorities */
+                       results1 = _mm_loadu_si128(saved_results);
+                       priority1 = _mm_loadu_si128(saved_priority);
+
+                       /* select results that are highest priority */
+                       selector = _mm_cmpgt_epi32(priority1, priority);
+                       results = _mm_blendv_epi8(results, results1, selector);
+                       priority = _mm_blendv_epi8(priority, priority1,
+                               selector);
+               }
+
+               /* save running best results and their priorities */
+               _mm_storeu_si128(saved_results, results);
+               _mm_storeu_si128(saved_priority, priority);
+       }
+}
+
+/*
+ * Extract transitions from an XMM register and check for any matches
+ */
+static void
+acl_process_matches(xmm_t *indices, int slot, const struct rte_acl_ctx *ctx,
+       struct parms *parms, struct acl_flow_data *flows)
+{
+       uint64_t transition1, transition2;
+
+       /* extract transition from low 64 bits. */
+       transition1 = _mm_cvtsi128_si64(*indices);
+
+       /* extract transition from high 64 bits. */
+       *indices = _mm_shuffle_epi32(*indices, SHUFFLE32_SWAP64);
+       transition2 = _mm_cvtsi128_si64(*indices);
+
+       transition1 = acl_match_check(transition1, slot, ctx,
+               parms, flows, resolve_priority_sse);
+       transition2 = acl_match_check(transition2, slot + 1, ctx,
+               parms, flows, resolve_priority_sse);
+
+       /* update indices with new transitions. */
+       *indices = _mm_set_epi64x(transition2, transition1);
+}
+
+/*
+ * Check for any match in 4 transitions (contained in 2 SSE registers)
+ */
+static inline __attribute__((always_inline)) void
+acl_match_check_x4(int slot, const struct rte_acl_ctx *ctx, struct parms *parms,
+       struct acl_flow_data *flows, xmm_t *indices1, xmm_t *indices2,
+       xmm_t match_mask)
+{
+       xmm_t temp;
+
+       /* put low 32 bits of each transition into one register */
+       temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1, (__m128)*indices2,
+               0x88);
+       /* test for match node */
+       temp = _mm_and_si128(match_mask, temp);
+
+       while (!_mm_testz_si128(temp, temp)) {
+               acl_process_matches(indices1, slot, ctx, parms, flows);
+               acl_process_matches(indices2, slot + 2, ctx, parms, flows);
+
+               temp = (xmm_t)_mm_shuffle_ps((__m128)*indices1,
+                                       (__m128)*indices2,
+                                       0x88);
+               temp = _mm_and_si128(match_mask, temp);
+       }
+}
+
+/*
+ * Process 4 transitions (in 2 XMM registers) in parallel
+ */
+static inline __attribute__((always_inline)) xmm_t
+transition4(xmm_t next_input, const uint64_t *trans,
+       xmm_t *indices1, xmm_t *indices2)
+{
+       xmm_t addr, tr_lo, tr_hi;
+       uint64_t trans0, trans2;
+
+       /* Shuffle low 32 into tr_lo and high 32 into tr_hi */
+       ACL_TR_HILO(mm, __m128, *indices1, *indices2, tr_lo, tr_hi);
+
+        /* Calculate the address (array index) for all 4 transitions. */
+       ACL_TR_CALC_ADDR(mm, 128, addr, xmm_index_mask.x, next_input,
+               xmm_shuffle_input.x, xmm_ones_16.x, xmm_range_base.x,
+               tr_lo, tr_hi);
+
+        /* Gather 64 bit transitions and pack back into 2 registers. */
+
+       trans0 = trans[_mm_cvtsi128_si32(addr)];
+
+       /* get slot 2 */
+
+       /* {x0, x1, x2, x3} -> {x2, x1, x2, x3} */
+       addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT2);
+       trans2 = trans[_mm_cvtsi128_si32(addr)];
+
+       /* get slot 1 */
+
+       /* {x2, x1, x2, x3} -> {x1, x1, x2, x3} */
+       addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT1);
+       *indices1 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans0);
+
+       /* get slot 3 */
+
+       /* {x1, x1, x2, x3} -> {x3, x1, x2, x3} */
+       addr = _mm_shuffle_epi32(addr, SHUFFLE32_SLOT3);
+       *indices2 = _mm_set_epi64x(trans[_mm_cvtsi128_si32(addr)], trans2);
+
+       return _mm_srli_epi32(next_input, CHAR_BIT);
+}
+
+/*
+ * Execute trie traversal with 8 traversals in parallel
+ */
+static inline int
+search_sse_8(const struct rte_acl_ctx *ctx, const uint8_t **data,
+       uint32_t *results, uint32_t total_packets, uint32_t categories)
+{
+       int n;
+       struct acl_flow_data flows;
+       uint64_t index_array[MAX_SEARCHES_SSE8];
+       struct completion cmplt[MAX_SEARCHES_SSE8];
+       struct parms parms[MAX_SEARCHES_SSE8];
+       xmm_t input0, input1;
+       xmm_t indices1, indices2, indices3, indices4;
+
+       acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+               total_packets, categories, ctx->trans_table);
+
+       for (n = 0; n < MAX_SEARCHES_SSE8; n++) {
+               cmplt[n].count = 0;
+               index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+       }
+
+       /*
+        * indices1 contains index_array[0,1]
+        * indices2 contains index_array[2,3]
+        * indices3 contains index_array[4,5]
+        * indices4 contains index_array[6,7]
+        */
+
+       indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]);
+       indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]);
+
+       indices3 = _mm_loadu_si128((xmm_t *) &index_array[4]);
+       indices4 = _mm_loadu_si128((xmm_t *) &index_array[6]);
+
+        /* Check for any matches. */
+       acl_match_check_x4(0, ctx, parms, &flows,
+               &indices1, &indices2, xmm_match_mask.x);
+       acl_match_check_x4(4, ctx, parms, &flows,
+               &indices3, &indices4, xmm_match_mask.x);
+
+       while (flows.started > 0) {
+
+               /* Gather 4 bytes of input data for each stream. */
+               input0 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
+               input1 = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 4));
+
+               input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 1), 1);
+               input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 5), 1);
+
+               input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 2), 2);
+               input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 6), 2);
+
+               input0 = _mm_insert_epi32(input0, GET_NEXT_4BYTES(parms, 3), 3);
+               input1 = _mm_insert_epi32(input1, GET_NEXT_4BYTES(parms, 7), 3);
+
+                /* Process the 4 bytes of input on each stream. */
+
+               input0 = transition4(input0, flows.trans,
+                       &indices1, &indices2);
+               input1 = transition4(input1, flows.trans,
+                       &indices3, &indices4);
+
+               input0 = transition4(input0, flows.trans,
+                       &indices1, &indices2);
+               input1 = transition4(input1, flows.trans,
+                       &indices3, &indices4);
+
+               input0 = transition4(input0, flows.trans,
+                       &indices1, &indices2);
+               input1 = transition4(input1, flows.trans,
+                       &indices3, &indices4);
+
+               input0 = transition4(input0, flows.trans,
+                       &indices1, &indices2);
+               input1 = transition4(input1, flows.trans,
+                       &indices3, &indices4);
+
+                /* Check for any matches. */
+               acl_match_check_x4(0, ctx, parms, &flows,
+                       &indices1, &indices2, xmm_match_mask.x);
+               acl_match_check_x4(4, ctx, parms, &flows,
+                       &indices3, &indices4, xmm_match_mask.x);
+       }
+
+       return 0;
+}
+
+/*
+ * Execute trie traversal with 4 traversals in parallel
+ */
+static inline int
+search_sse_4(const struct rte_acl_ctx *ctx, const uint8_t **data,
+        uint32_t *results, int total_packets, uint32_t categories)
+{
+       int n;
+       struct acl_flow_data flows;
+       uint64_t index_array[MAX_SEARCHES_SSE4];
+       struct completion cmplt[MAX_SEARCHES_SSE4];
+       struct parms parms[MAX_SEARCHES_SSE4];
+       xmm_t input, indices1, indices2;
+
+       acl_set_flow(&flows, cmplt, RTE_DIM(cmplt), data, results,
+               total_packets, categories, ctx->trans_table);
+
+       for (n = 0; n < MAX_SEARCHES_SSE4; n++) {
+               cmplt[n].count = 0;
+               index_array[n] = acl_start_next_trie(&flows, parms, n, ctx);
+       }
+
+       indices1 = _mm_loadu_si128((xmm_t *) &index_array[0]);
+       indices2 = _mm_loadu_si128((xmm_t *) &index_array[2]);
+
+       /* Check for any matches. */
+       acl_match_check_x4(0, ctx, parms, &flows,
+               &indices1, &indices2, xmm_match_mask.x);
+
+       while (flows.started > 0) {
+
+               /* Gather 4 bytes of input data for each stream. */
+               input = _mm_cvtsi32_si128(GET_NEXT_4BYTES(parms, 0));
+               input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 1), 1);
+               input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 2), 2);
+               input = _mm_insert_epi32(input, GET_NEXT_4BYTES(parms, 3), 3);
+
+               /* Process the 4 bytes of input on each stream. */
+               input = transition4(input, flows.trans, &indices1, &indices2);
+               input = transition4(input, flows.trans, &indices1, &indices2);
+               input = transition4(input, flows.trans, &indices1, &indices2);
+               input = transition4(input, flows.trans, &indices1, &indices2);
+
+               /* Check for any matches. */
+               acl_match_check_x4(0, ctx, parms, &flows,
+                       &indices1, &indices2, xmm_match_mask.x);
+       }
+
+       return 0;
+}