New upstream version 18.08
[deb_dpdk.git] / lib / librte_eal / common / eal_common_memory.c
index 852f3bb..fbfb1b0 100644 (file)
  * Copyright(c) 2010-2014 Intel Corporation
  */
 
+#include <errno.h>
 #include <stdio.h>
 #include <stdint.h>
 #include <stdlib.h>
 #include <stdarg.h>
+#include <string.h>
 #include <unistd.h>
 #include <inttypes.h>
 #include <sys/mman.h>
 #include <sys/queue.h>
 
+#include <rte_fbarray.h>
 #include <rte_memory.h>
 #include <rte_eal.h>
 #include <rte_eal_memconfig.h>
+#include <rte_errno.h>
 #include <rte_log.h>
 
+#include "eal_memalloc.h"
 #include "eal_private.h"
 #include "eal_internal_cfg.h"
 
 /*
- * Return a pointer to a read-only table of struct rte_physmem_desc
- * elements, containing the layout of all addressable physical
- * memory. The last element of the table contains a NULL address.
+ * Try to mmap *size bytes in /dev/zero. If it is successful, return the
+ * pointer to the mmap'd area and keep *size unmodified. Else, retry
+ * with a smaller zone: decrease *size by hugepage_sz until it reaches
+ * 0. In this case, return NULL. Note: this function returns an address
+ * which is a multiple of hugepage size.
  */
-const struct rte_memseg *
-rte_eal_get_physmem_layout(void)
+
+#define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i"
+
+static void *next_baseaddr;
+static uint64_t system_page_sz;
+
+void *
+eal_get_virtual_area(void *requested_addr, size_t *size,
+               size_t page_sz, int flags, int mmap_flags)
+{
+       bool addr_is_hint, allow_shrink, unmap, no_align;
+       uint64_t map_sz;
+       void *mapped_addr, *aligned_addr;
+
+       if (system_page_sz == 0)
+               system_page_sz = sysconf(_SC_PAGESIZE);
+
+       mmap_flags |= MAP_PRIVATE | MAP_ANONYMOUS;
+
+       RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
+
+       addr_is_hint = (flags & EAL_VIRTUAL_AREA_ADDR_IS_HINT) > 0;
+       allow_shrink = (flags & EAL_VIRTUAL_AREA_ALLOW_SHRINK) > 0;
+       unmap = (flags & EAL_VIRTUAL_AREA_UNMAP) > 0;
+
+       if (next_baseaddr == NULL && internal_config.base_virtaddr != 0 &&
+                       rte_eal_process_type() == RTE_PROC_PRIMARY)
+               next_baseaddr = (void *) internal_config.base_virtaddr;
+
+       if (requested_addr == NULL && next_baseaddr != NULL) {
+               requested_addr = next_baseaddr;
+               requested_addr = RTE_PTR_ALIGN(requested_addr, page_sz);
+               addr_is_hint = true;
+       }
+
+       /* we don't need alignment of resulting pointer in the following cases:
+        *
+        * 1. page size is equal to system size
+        * 2. we have a requested address, and it is page-aligned, and we will
+        *    be discarding the address if we get a different one.
+        *
+        * for all other cases, alignment is potentially necessary.
+        */
+       no_align = (requested_addr != NULL &&
+               requested_addr == RTE_PTR_ALIGN(requested_addr, page_sz) &&
+               !addr_is_hint) ||
+               page_sz == system_page_sz;
+
+       do {
+               map_sz = no_align ? *size : *size + page_sz;
+               if (map_sz > SIZE_MAX) {
+                       RTE_LOG(ERR, EAL, "Map size too big\n");
+                       rte_errno = E2BIG;
+                       return NULL;
+               }
+
+               mapped_addr = mmap(requested_addr, (size_t)map_sz, PROT_READ,
+                               mmap_flags, -1, 0);
+               if (mapped_addr == MAP_FAILED && allow_shrink)
+                       *size -= page_sz;
+       } while (allow_shrink && mapped_addr == MAP_FAILED && *size > 0);
+
+       /* align resulting address - if map failed, we will ignore the value
+        * anyway, so no need to add additional checks.
+        */
+       aligned_addr = no_align ? mapped_addr :
+                       RTE_PTR_ALIGN(mapped_addr, page_sz);
+
+       if (*size == 0) {
+               RTE_LOG(ERR, EAL, "Cannot get a virtual area of any size: %s\n",
+                       strerror(errno));
+               rte_errno = errno;
+               return NULL;
+       } else if (mapped_addr == MAP_FAILED) {
+               RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
+                       strerror(errno));
+               /* pass errno up the call chain */
+               rte_errno = errno;
+               return NULL;
+       } else if (requested_addr != NULL && !addr_is_hint &&
+                       aligned_addr != requested_addr) {
+               RTE_LOG(ERR, EAL, "Cannot get a virtual area at requested address: %p (got %p)\n",
+                       requested_addr, aligned_addr);
+               munmap(mapped_addr, map_sz);
+               rte_errno = EADDRNOTAVAIL;
+               return NULL;
+       } else if (requested_addr != NULL && addr_is_hint &&
+                       aligned_addr != requested_addr) {
+               RTE_LOG(WARNING, EAL, "WARNING! Base virtual address hint (%p != %p) not respected!\n",
+                       requested_addr, aligned_addr);
+               RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory into secondary processes\n");
+       } else if (next_baseaddr != NULL) {
+               next_baseaddr = RTE_PTR_ADD(aligned_addr, *size);
+       }
+
+       RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
+               aligned_addr, *size);
+
+       if (unmap) {
+               munmap(mapped_addr, map_sz);
+       } else if (!no_align) {
+               void *map_end, *aligned_end;
+               size_t before_len, after_len;
+
+               /* when we reserve space with alignment, we add alignment to
+                * mapping size. On 32-bit, if 1GB alignment was requested, this
+                * would waste 1GB of address space, which is a luxury we cannot
+                * afford. so, if alignment was performed, check if any unneeded
+                * address space can be unmapped back.
+                */
+
+               map_end = RTE_PTR_ADD(mapped_addr, (size_t)map_sz);
+               aligned_end = RTE_PTR_ADD(aligned_addr, *size);
+
+               /* unmap space before aligned mmap address */
+               before_len = RTE_PTR_DIFF(aligned_addr, mapped_addr);
+               if (before_len > 0)
+                       munmap(mapped_addr, before_len);
+
+               /* unmap space after aligned end mmap address */
+               after_len = RTE_PTR_DIFF(map_end, aligned_end);
+               if (after_len > 0)
+                       munmap(aligned_end, after_len);
+       }
+
+       return aligned_addr;
+}
+
+static struct rte_memseg *
+virt2memseg(const void *addr, const struct rte_memseg_list *msl)
+{
+       const struct rte_fbarray *arr;
+       void *start, *end;
+       int ms_idx;
+
+       if (msl == NULL)
+               return NULL;
+
+       /* a memseg list was specified, check if it's the right one */
+       start = msl->base_va;
+       end = RTE_PTR_ADD(start, (size_t)msl->page_sz * msl->memseg_arr.len);
+
+       if (addr < start || addr >= end)
+               return NULL;
+
+       /* now, calculate index */
+       arr = &msl->memseg_arr;
+       ms_idx = RTE_PTR_DIFF(addr, msl->base_va) / msl->page_sz;
+       return rte_fbarray_get(arr, ms_idx);
+}
+
+static struct rte_memseg_list *
+virt2memseg_list(const void *addr)
+{
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       struct rte_memseg_list *msl;
+       int msl_idx;
+
+       for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
+               void *start, *end;
+               msl = &mcfg->memsegs[msl_idx];
+
+               start = msl->base_va;
+               end = RTE_PTR_ADD(start,
+                               (size_t)msl->page_sz * msl->memseg_arr.len);
+               if (addr >= start && addr < end)
+                       break;
+       }
+       /* if we didn't find our memseg list */
+       if (msl_idx == RTE_MAX_MEMSEG_LISTS)
+               return NULL;
+       return msl;
+}
+
+__rte_experimental struct rte_memseg_list *
+rte_mem_virt2memseg_list(const void *addr)
+{
+       return virt2memseg_list(addr);
+}
+
+struct virtiova {
+       rte_iova_t iova;
+       void *virt;
+};
+static int
+find_virt(const struct rte_memseg_list *msl __rte_unused,
+               const struct rte_memseg *ms, void *arg)
+{
+       struct virtiova *vi = arg;
+       if (vi->iova >= ms->iova && vi->iova < (ms->iova + ms->len)) {
+               size_t offset = vi->iova - ms->iova;
+               vi->virt = RTE_PTR_ADD(ms->addr, offset);
+               /* stop the walk */
+               return 1;
+       }
+       return 0;
+}
+static int
+find_virt_legacy(const struct rte_memseg_list *msl __rte_unused,
+               const struct rte_memseg *ms, size_t len, void *arg)
 {
-       return rte_eal_get_configuration()->mem_config->memseg;
+       struct virtiova *vi = arg;
+       if (vi->iova >= ms->iova && vi->iova < (ms->iova + len)) {
+               size_t offset = vi->iova - ms->iova;
+               vi->virt = RTE_PTR_ADD(ms->addr, offset);
+               /* stop the walk */
+               return 1;
+       }
+       return 0;
 }
 
+__rte_experimental void *
+rte_mem_iova2virt(rte_iova_t iova)
+{
+       struct virtiova vi;
+
+       memset(&vi, 0, sizeof(vi));
+
+       vi.iova = iova;
+       /* for legacy mem, we can get away with scanning VA-contiguous segments,
+        * as we know they are PA-contiguous as well
+        */
+       if (internal_config.legacy_mem)
+               rte_memseg_contig_walk(find_virt_legacy, &vi);
+       else
+               rte_memseg_walk(find_virt, &vi);
+
+       return vi.virt;
+}
+
+__rte_experimental struct rte_memseg *
+rte_mem_virt2memseg(const void *addr, const struct rte_memseg_list *msl)
+{
+       return virt2memseg(addr, msl != NULL ? msl :
+                       rte_mem_virt2memseg_list(addr));
+}
+
+static int
+physmem_size(const struct rte_memseg_list *msl, void *arg)
+{
+       uint64_t *total_len = arg;
+
+       *total_len += msl->memseg_arr.count * msl->page_sz;
+
+       return 0;
+}
 
 /* get the total size of memory */
 uint64_t
 rte_eal_get_physmem_size(void)
 {
-       const struct rte_mem_config *mcfg;
-       unsigned i = 0;
        uint64_t total_len = 0;
 
-       /* get pointer to global configuration */
-       mcfg = rte_eal_get_configuration()->mem_config;
+       rte_memseg_list_walk(physmem_size, &total_len);
 
-       for (i = 0; i < RTE_MAX_MEMSEG; i++) {
-               if (mcfg->memseg[i].addr == NULL)
-                       break;
+       return total_len;
+}
 
-               total_len += mcfg->memseg[i].len;
-       }
+static int
+dump_memseg(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
+               void *arg)
+{
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       int msl_idx, ms_idx;
+       FILE *f = arg;
 
-       return total_len;
+       msl_idx = msl - mcfg->memsegs;
+       if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
+               return -1;
+
+       ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
+       if (ms_idx < 0)
+               return -1;
+
+       fprintf(f, "Segment %i-%i: IOVA:0x%"PRIx64", len:%zu, "
+                       "virt:%p, socket_id:%"PRId32", "
+                       "hugepage_sz:%"PRIu64", nchannel:%"PRIx32", "
+                       "nrank:%"PRIx32"\n",
+                       msl_idx, ms_idx,
+                       ms->iova,
+                       ms->len,
+                       ms->addr,
+                       ms->socket_id,
+                       ms->hugepage_sz,
+                       ms->nchannel,
+                       ms->nrank);
+
+       return 0;
 }
 
-/* Dump the physical memory layout on console */
-void
-rte_dump_physmem_layout(FILE *f)
+/*
+ * Defining here because declared in rte_memory.h, but the actual implementation
+ * is in eal_common_memalloc.c, like all other memalloc internals.
+ */
+int __rte_experimental
+rte_mem_event_callback_register(const char *name, rte_mem_event_callback_t clb,
+               void *arg)
 {
-       const struct rte_mem_config *mcfg;
-       unsigned i = 0;
+       /* FreeBSD boots with legacy mem enabled by default */
+       if (internal_config.legacy_mem) {
+               RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n");
+               rte_errno = ENOTSUP;
+               return -1;
+       }
+       return eal_memalloc_mem_event_callback_register(name, clb, arg);
+}
 
-       /* get pointer to global configuration */
-       mcfg = rte_eal_get_configuration()->mem_config;
+int __rte_experimental
+rte_mem_event_callback_unregister(const char *name, void *arg)
+{
+       /* FreeBSD boots with legacy mem enabled by default */
+       if (internal_config.legacy_mem) {
+               RTE_LOG(DEBUG, EAL, "Registering mem event callbacks not supported\n");
+               rte_errno = ENOTSUP;
+               return -1;
+       }
+       return eal_memalloc_mem_event_callback_unregister(name, arg);
+}
 
-       for (i = 0; i < RTE_MAX_MEMSEG; i++) {
-               if (mcfg->memseg[i].addr == NULL)
-                       break;
+int __rte_experimental
+rte_mem_alloc_validator_register(const char *name,
+               rte_mem_alloc_validator_t clb, int socket_id, size_t limit)
+{
+       /* FreeBSD boots with legacy mem enabled by default */
+       if (internal_config.legacy_mem) {
+               RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n");
+               rte_errno = ENOTSUP;
+               return -1;
+       }
+       return eal_memalloc_mem_alloc_validator_register(name, clb, socket_id,
+                       limit);
+}
 
-               fprintf(f, "Segment %u: IOVA:0x%"PRIx64", len:%zu, "
-                      "virt:%p, socket_id:%"PRId32", "
-                      "hugepage_sz:%"PRIu64", nchannel:%"PRIx32", "
-                      "nrank:%"PRIx32"\n", i,
-                      mcfg->memseg[i].iova,
-                      mcfg->memseg[i].len,
-                      mcfg->memseg[i].addr,
-                      mcfg->memseg[i].socket_id,
-                      mcfg->memseg[i].hugepage_sz,
-                      mcfg->memseg[i].nchannel,
-                      mcfg->memseg[i].nrank);
+int __rte_experimental
+rte_mem_alloc_validator_unregister(const char *name, int socket_id)
+{
+       /* FreeBSD boots with legacy mem enabled by default */
+       if (internal_config.legacy_mem) {
+               RTE_LOG(DEBUG, EAL, "Registering mem alloc validators not supported\n");
+               rte_errno = ENOTSUP;
+               return -1;
        }
+       return eal_memalloc_mem_alloc_validator_unregister(name, socket_id);
+}
+
+/* Dump the physical memory layout on console */
+void
+rte_dump_physmem_layout(FILE *f)
+{
+       rte_memseg_walk(dump_memseg, f);
 }
 
 /* return the number of memory channels */
@@ -117,20 +420,165 @@ rte_mem_lock_page(const void *virt)
        return mlock((void *)aligned, page_size);
 }
 
+int __rte_experimental
+rte_memseg_contig_walk_thread_unsafe(rte_memseg_contig_walk_t func, void *arg)
+{
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       int i, ms_idx, ret = 0;
+
+       for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
+               struct rte_memseg_list *msl = &mcfg->memsegs[i];
+               const struct rte_memseg *ms;
+               struct rte_fbarray *arr;
+
+               if (msl->memseg_arr.count == 0)
+                       continue;
+
+               arr = &msl->memseg_arr;
+
+               ms_idx = rte_fbarray_find_next_used(arr, 0);
+               while (ms_idx >= 0) {
+                       int n_segs;
+                       size_t len;
+
+                       ms = rte_fbarray_get(arr, ms_idx);
+
+                       /* find how many more segments there are, starting with
+                        * this one.
+                        */
+                       n_segs = rte_fbarray_find_contig_used(arr, ms_idx);
+                       len = n_segs * msl->page_sz;
+
+                       ret = func(msl, ms, len, arg);
+                       if (ret)
+                               return ret;
+                       ms_idx = rte_fbarray_find_next_used(arr,
+                                       ms_idx + n_segs);
+               }
+       }
+       return 0;
+}
+
+int __rte_experimental
+rte_memseg_contig_walk(rte_memseg_contig_walk_t func, void *arg)
+{
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       int ret = 0;
+
+       /* do not allow allocations/frees/init while we iterate */
+       rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
+       ret = rte_memseg_contig_walk_thread_unsafe(func, arg);
+       rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
+
+       return ret;
+}
+
+int __rte_experimental
+rte_memseg_walk_thread_unsafe(rte_memseg_walk_t func, void *arg)
+{
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       int i, ms_idx, ret = 0;
+
+       for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
+               struct rte_memseg_list *msl = &mcfg->memsegs[i];
+               const struct rte_memseg *ms;
+               struct rte_fbarray *arr;
+
+               if (msl->memseg_arr.count == 0)
+                       continue;
+
+               arr = &msl->memseg_arr;
+
+               ms_idx = rte_fbarray_find_next_used(arr, 0);
+               while (ms_idx >= 0) {
+                       ms = rte_fbarray_get(arr, ms_idx);
+                       ret = func(msl, ms, arg);
+                       if (ret)
+                               return ret;
+                       ms_idx = rte_fbarray_find_next_used(arr, ms_idx + 1);
+               }
+       }
+       return 0;
+}
+
+int __rte_experimental
+rte_memseg_walk(rte_memseg_walk_t func, void *arg)
+{
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       int ret = 0;
+
+       /* do not allow allocations/frees/init while we iterate */
+       rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
+       ret = rte_memseg_walk_thread_unsafe(func, arg);
+       rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
+
+       return ret;
+}
+
+int __rte_experimental
+rte_memseg_list_walk_thread_unsafe(rte_memseg_list_walk_t func, void *arg)
+{
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       int i, ret = 0;
+
+       for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
+               struct rte_memseg_list *msl = &mcfg->memsegs[i];
+
+               if (msl->base_va == NULL)
+                       continue;
+
+               ret = func(msl, arg);
+               if (ret)
+                       return ret;
+       }
+       return 0;
+}
+
+int __rte_experimental
+rte_memseg_list_walk(rte_memseg_list_walk_t func, void *arg)
+{
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       int ret = 0;
+
+       /* do not allow allocations/frees/init while we iterate */
+       rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
+       ret = rte_memseg_list_walk_thread_unsafe(func, arg);
+       rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
+
+       return ret;
+}
+
 /* init memory subsystem */
 int
 rte_eal_memory_init(void)
 {
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       int retval;
        RTE_LOG(DEBUG, EAL, "Setting up physically contiguous memory...\n");
 
-       const int retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
+       if (!mcfg)
+               return -1;
+
+       /* lock mem hotplug here, to prevent races while we init */
+       rte_rwlock_read_lock(&mcfg->memory_hotplug_lock);
+
+       if (rte_eal_memseg_init() < 0)
+               goto fail;
+
+       if (eal_memalloc_init() < 0)
+               goto fail;
+
+       retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
                        rte_eal_hugepage_init() :
                        rte_eal_hugepage_attach();
        if (retval < 0)
-               return -1;
+               goto fail;
 
        if (internal_config.no_shconf == 0 && rte_eal_memdevice_init() < 0)
-               return -1;
+               goto fail;
 
        return 0;
+fail:
+       rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
+       return -1;
 }