New upstream version 18.08
[deb_dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memalloc.c
diff --git a/lib/librte_eal/linuxapp/eal/eal_memalloc.c b/lib/librte_eal/linuxapp/eal/eal_memalloc.c
new file mode 100644 (file)
index 0000000..aa95551
--- /dev/null
@@ -0,0 +1,1363 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2017-2018 Intel Corporation
+ */
+
+#define _FILE_OFFSET_BITS 64
+#include <errno.h>
+#include <stdarg.h>
+#include <stdbool.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include <stdint.h>
+#include <inttypes.h>
+#include <string.h>
+#include <sys/mman.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <sys/queue.h>
+#include <sys/file.h>
+#include <unistd.h>
+#include <limits.h>
+#include <fcntl.h>
+#include <sys/ioctl.h>
+#include <sys/time.h>
+#include <signal.h>
+#include <setjmp.h>
+#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
+#include <numa.h>
+#include <numaif.h>
+#endif
+#include <linux/falloc.h>
+#include <linux/mman.h> /* for hugetlb-related mmap flags */
+
+#include <rte_common.h>
+#include <rte_log.h>
+#include <rte_eal_memconfig.h>
+#include <rte_eal.h>
+#include <rte_memory.h>
+#include <rte_spinlock.h>
+
+#include "eal_filesystem.h"
+#include "eal_internal_cfg.h"
+#include "eal_memalloc.h"
+#include "eal_private.h"
+
+const int anonymous_hugepages_supported =
+#ifdef MAP_HUGE_SHIFT
+               1;
+#define RTE_MAP_HUGE_SHIFT MAP_HUGE_SHIFT
+#else
+               0;
+#define RTE_MAP_HUGE_SHIFT 26
+#endif
+
+/*
+ * not all kernel version support fallocate on hugetlbfs, so fall back to
+ * ftruncate and disallow deallocation if fallocate is not supported.
+ */
+static int fallocate_supported = -1; /* unknown */
+
+/* for single-file segments, we need some kind of mechanism to keep track of
+ * which hugepages can be freed back to the system, and which cannot. we cannot
+ * use flock() because they don't allow locking parts of a file, and we cannot
+ * use fcntl() due to issues with their semantics, so we will have to rely on a
+ * bunch of lockfiles for each page.
+ *
+ * we cannot know how many pages a system will have in advance, but we do know
+ * that they come in lists, and we know lengths of these lists. so, simply store
+ * a malloc'd array of fd's indexed by list and segment index.
+ *
+ * they will be initialized at startup, and filled as we allocate/deallocate
+ * segments. also, use this to track memseg list proper fd.
+ */
+static struct {
+       int *fds; /**< dynamically allocated array of segment lock fd's */
+       int memseg_list_fd; /**< memseg list fd */
+       int len; /**< total length of the array */
+       int count; /**< entries used in an array */
+} lock_fds[RTE_MAX_MEMSEG_LISTS];
+
+/** local copy of a memory map, used to synchronize memory hotplug in MP */
+static struct rte_memseg_list local_memsegs[RTE_MAX_MEMSEG_LISTS];
+
+static sigjmp_buf huge_jmpenv;
+
+static void __rte_unused huge_sigbus_handler(int signo __rte_unused)
+{
+       siglongjmp(huge_jmpenv, 1);
+}
+
+/* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
+ * non-static local variable in the stack frame calling sigsetjmp might be
+ * clobbered by a call to longjmp.
+ */
+static int __rte_unused huge_wrap_sigsetjmp(void)
+{
+       return sigsetjmp(huge_jmpenv, 1);
+}
+
+static struct sigaction huge_action_old;
+static int huge_need_recover;
+
+static void __rte_unused
+huge_register_sigbus(void)
+{
+       sigset_t mask;
+       struct sigaction action;
+
+       sigemptyset(&mask);
+       sigaddset(&mask, SIGBUS);
+       action.sa_flags = 0;
+       action.sa_mask = mask;
+       action.sa_handler = huge_sigbus_handler;
+
+       huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
+}
+
+static void __rte_unused
+huge_recover_sigbus(void)
+{
+       if (huge_need_recover) {
+               sigaction(SIGBUS, &huge_action_old, NULL);
+               huge_need_recover = 0;
+       }
+}
+
+#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
+static bool
+check_numa(void)
+{
+       bool ret = true;
+       /* Check if kernel supports NUMA. */
+       if (numa_available() != 0) {
+               RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
+               ret = false;
+       }
+       return ret;
+}
+
+static void
+prepare_numa(int *oldpolicy, struct bitmask *oldmask, int socket_id)
+{
+       RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
+       if (get_mempolicy(oldpolicy, oldmask->maskp,
+                         oldmask->size + 1, 0, 0) < 0) {
+               RTE_LOG(ERR, EAL,
+                       "Failed to get current mempolicy: %s. "
+                       "Assuming MPOL_DEFAULT.\n", strerror(errno));
+               oldpolicy = MPOL_DEFAULT;
+       }
+       RTE_LOG(DEBUG, EAL,
+               "Setting policy MPOL_PREFERRED for socket %d\n",
+               socket_id);
+       numa_set_preferred(socket_id);
+}
+
+static void
+restore_numa(int *oldpolicy, struct bitmask *oldmask)
+{
+       RTE_LOG(DEBUG, EAL,
+               "Restoring previous memory policy: %d\n", *oldpolicy);
+       if (*oldpolicy == MPOL_DEFAULT) {
+               numa_set_localalloc();
+       } else if (set_mempolicy(*oldpolicy, oldmask->maskp,
+                                oldmask->size + 1) < 0) {
+               RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
+                       strerror(errno));
+               numa_set_localalloc();
+       }
+       numa_free_cpumask(oldmask);
+}
+#endif
+
+/*
+ * uses fstat to report the size of a file on disk
+ */
+static off_t
+get_file_size(int fd)
+{
+       struct stat st;
+       if (fstat(fd, &st) < 0)
+               return 0;
+       return st.st_size;
+}
+
+/* returns 1 on successful lock, 0 on unsuccessful lock, -1 on error */
+static int lock(int fd, int type)
+{
+       int ret;
+
+       /* flock may be interrupted */
+       do {
+               ret = flock(fd, type | LOCK_NB);
+       } while (ret && errno == EINTR);
+
+       if (ret && errno == EWOULDBLOCK) {
+               /* couldn't lock */
+               return 0;
+       } else if (ret) {
+               RTE_LOG(ERR, EAL, "%s(): error calling flock(): %s\n",
+                       __func__, strerror(errno));
+               return -1;
+       }
+       /* lock was successful */
+       return 1;
+}
+
+static int get_segment_lock_fd(int list_idx, int seg_idx)
+{
+       char path[PATH_MAX] = {0};
+       int fd;
+
+       if (list_idx < 0 || list_idx >= (int)RTE_DIM(lock_fds))
+               return -1;
+       if (seg_idx < 0 || seg_idx >= lock_fds[list_idx].len)
+               return -1;
+
+       fd = lock_fds[list_idx].fds[seg_idx];
+       /* does this lock already exist? */
+       if (fd >= 0)
+               return fd;
+
+       eal_get_hugefile_lock_path(path, sizeof(path),
+                       list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx);
+
+       fd = open(path, O_CREAT | O_RDWR, 0660);
+       if (fd < 0) {
+               RTE_LOG(ERR, EAL, "%s(): error creating lockfile '%s': %s\n",
+                       __func__, path, strerror(errno));
+               return -1;
+       }
+       /* take out a read lock */
+       if (lock(fd, LOCK_SH) != 1) {
+               RTE_LOG(ERR, EAL, "%s(): failed to take out a readlock on '%s': %s\n",
+                       __func__, path, strerror(errno));
+               close(fd);
+               return -1;
+       }
+       /* store it for future reference */
+       lock_fds[list_idx].fds[seg_idx] = fd;
+       lock_fds[list_idx].count++;
+       return fd;
+}
+
+static int unlock_segment(int list_idx, int seg_idx)
+{
+       int fd, ret;
+
+       if (list_idx < 0 || list_idx >= (int)RTE_DIM(lock_fds))
+               return -1;
+       if (seg_idx < 0 || seg_idx >= lock_fds[list_idx].len)
+               return -1;
+
+       fd = lock_fds[list_idx].fds[seg_idx];
+
+       /* upgrade lock to exclusive to see if we can remove the lockfile */
+       ret = lock(fd, LOCK_EX);
+       if (ret == 1) {
+               /* we've succeeded in taking exclusive lock, this lockfile may
+                * be removed.
+                */
+               char path[PATH_MAX] = {0};
+               eal_get_hugefile_lock_path(path, sizeof(path),
+                               list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx);
+               if (unlink(path)) {
+                       RTE_LOG(ERR, EAL, "%s(): error removing lockfile '%s': %s\n",
+                                       __func__, path, strerror(errno));
+               }
+       }
+       /* we don't want to leak the fd, so even if we fail to lock, close fd
+        * and remove it from list anyway.
+        */
+       close(fd);
+       lock_fds[list_idx].fds[seg_idx] = -1;
+       lock_fds[list_idx].count--;
+
+       if (ret < 0)
+               return -1;
+       return 0;
+}
+
+static int
+get_seg_fd(char *path, int buflen, struct hugepage_info *hi,
+               unsigned int list_idx, unsigned int seg_idx)
+{
+       int fd;
+
+       if (internal_config.single_file_segments) {
+               /* create a hugepage file path */
+               eal_get_hugefile_path(path, buflen, hi->hugedir, list_idx);
+
+               fd = lock_fds[list_idx].memseg_list_fd;
+
+               if (fd < 0) {
+                       fd = open(path, O_CREAT | O_RDWR, 0600);
+                       if (fd < 0) {
+                               RTE_LOG(ERR, EAL, "%s(): open failed: %s\n",
+                                       __func__, strerror(errno));
+                               return -1;
+                       }
+                       /* take out a read lock and keep it indefinitely */
+                       if (lock(fd, LOCK_SH) < 0) {
+                               RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n",
+                                       __func__, strerror(errno));
+                               close(fd);
+                               return -1;
+                       }
+                       lock_fds[list_idx].memseg_list_fd = fd;
+               }
+       } else {
+               /* create a hugepage file path */
+               eal_get_hugefile_path(path, buflen, hi->hugedir,
+                               list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx);
+               fd = open(path, O_CREAT | O_RDWR, 0600);
+               if (fd < 0) {
+                       RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
+                                       strerror(errno));
+                       return -1;
+               }
+               /* take out a read lock */
+               if (lock(fd, LOCK_SH) < 0) {
+                       RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n",
+                               __func__, strerror(errno));
+                       close(fd);
+                       return -1;
+               }
+       }
+       return fd;
+}
+
+static int
+resize_hugefile(int fd, char *path, int list_idx, int seg_idx,
+               uint64_t fa_offset, uint64_t page_sz, bool grow)
+{
+       bool again = false;
+       do {
+               if (fallocate_supported == 0) {
+                       /* we cannot deallocate memory if fallocate() is not
+                        * supported, and hugepage file is already locked at
+                        * creation, so no further synchronization needed.
+                        */
+
+                       if (!grow) {
+                               RTE_LOG(DEBUG, EAL, "%s(): fallocate not supported, not freeing page back to the system\n",
+                                       __func__);
+                               return -1;
+                       }
+                       uint64_t new_size = fa_offset + page_sz;
+                       uint64_t cur_size = get_file_size(fd);
+
+                       /* fallocate isn't supported, fall back to ftruncate */
+                       if (new_size > cur_size &&
+                                       ftruncate(fd, new_size) < 0) {
+                               RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n",
+                                       __func__, strerror(errno));
+                               return -1;
+                       }
+               } else {
+                       int flags = grow ? 0 : FALLOC_FL_PUNCH_HOLE |
+                                       FALLOC_FL_KEEP_SIZE;
+                       int ret, lock_fd;
+
+                       /* if fallocate() is supported, we need to take out a
+                        * read lock on allocate (to prevent other processes
+                        * from deallocating this page), and take out a write
+                        * lock on deallocate (to ensure nobody else is using
+                        * this page).
+                        *
+                        * read locks on page itself are already taken out at
+                        * file creation, in get_seg_fd().
+                        *
+                        * we cannot rely on simple use of flock() call, because
+                        * we need to be able to lock a section of the file,
+                        * and we cannot use fcntl() locks, because of numerous
+                        * problems with their semantics, so we will use
+                        * deterministically named lock files for each section
+                        * of the file.
+                        *
+                        * if we're shrinking the file, we want to upgrade our
+                        * lock from shared to exclusive.
+                        *
+                        * lock_fd is an fd for a lockfile, not for the segment
+                        * list.
+                        */
+                       lock_fd = get_segment_lock_fd(list_idx, seg_idx);
+
+                       if (!grow) {
+                               /* we are using this lockfile to determine
+                                * whether this particular page is locked, as we
+                                * are in single file segments mode and thus
+                                * cannot use regular flock() to get this info.
+                                *
+                                * we want to try and take out an exclusive lock
+                                * on the lock file to determine if we're the
+                                * last ones using this page, and if not, we
+                                * won't be shrinking it, and will instead exit
+                                * prematurely.
+                                */
+                               ret = lock(lock_fd, LOCK_EX);
+
+                               /* drop the lock on the lockfile, so that even
+                                * if we couldn't shrink the file ourselves, we
+                                * are signalling to other processes that we're
+                                * no longer using this page.
+                                */
+                               if (unlock_segment(list_idx, seg_idx))
+                                       RTE_LOG(ERR, EAL, "Could not unlock segment\n");
+
+                               /* additionally, if this was the last lock on
+                                * this segment list, we can safely close the
+                                * page file fd, so that one of the processes
+                                * could then delete the file after shrinking.
+                                */
+                               if (ret < 1 && lock_fds[list_idx].count == 0) {
+                                       close(fd);
+                                       lock_fds[list_idx].memseg_list_fd = -1;
+                               }
+
+                               if (ret < 0) {
+                                       RTE_LOG(ERR, EAL, "Could not lock segment\n");
+                                       return -1;
+                               }
+                               if (ret == 0)
+                                       /* failed to lock, not an error. */
+                                       return 0;
+                       }
+
+                       /* grow or shrink the file */
+                       ret = fallocate(fd, flags, fa_offset, page_sz);
+
+                       if (ret < 0) {
+                               if (fallocate_supported == -1 &&
+                                               errno == ENOTSUP) {
+                                       RTE_LOG(ERR, EAL, "%s(): fallocate() not supported, hugepage deallocation will be disabled\n",
+                                               __func__);
+                                       again = true;
+                                       fallocate_supported = 0;
+                               } else {
+                                       RTE_LOG(DEBUG, EAL, "%s(): fallocate() failed: %s\n",
+                                               __func__,
+                                               strerror(errno));
+                                       return -1;
+                               }
+                       } else {
+                               fallocate_supported = 1;
+
+                               /* we've grew/shrunk the file, and we hold an
+                                * exclusive lock now. check if there are no
+                                * more segments active in this segment list,
+                                * and remove the file if there aren't.
+                                */
+                               if (lock_fds[list_idx].count == 0) {
+                                       if (unlink(path))
+                                               RTE_LOG(ERR, EAL, "%s(): unlinking '%s' failed: %s\n",
+                                                       __func__, path,
+                                                       strerror(errno));
+                                       close(fd);
+                                       lock_fds[list_idx].memseg_list_fd = -1;
+                               }
+                       }
+               }
+       } while (again);
+       return 0;
+}
+
+static int
+alloc_seg(struct rte_memseg *ms, void *addr, int socket_id,
+               struct hugepage_info *hi, unsigned int list_idx,
+               unsigned int seg_idx)
+{
+#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
+       int cur_socket_id = 0;
+#endif
+       uint64_t map_offset;
+       rte_iova_t iova;
+       void *va;
+       char path[PATH_MAX];
+       int ret = 0;
+       int fd;
+       size_t alloc_sz;
+       int flags;
+       void *new_addr;
+
+       alloc_sz = hi->hugepage_sz;
+       if (!internal_config.single_file_segments &&
+                       internal_config.in_memory &&
+                       anonymous_hugepages_supported) {
+               int log2, flags;
+
+               log2 = rte_log2_u32(alloc_sz);
+               /* as per mmap() manpage, all page sizes are log2 of page size
+                * shifted by MAP_HUGE_SHIFT
+                */
+               flags = (log2 << RTE_MAP_HUGE_SHIFT) | MAP_HUGETLB | MAP_FIXED |
+                               MAP_PRIVATE | MAP_ANONYMOUS;
+               fd = -1;
+               va = mmap(addr, alloc_sz, PROT_READ | PROT_WRITE, flags, -1, 0);
+
+               /* single-file segments codepath will never be active because
+                * in-memory mode is incompatible with it and it's stopped at
+                * EAL initialization stage, however the compiler doesn't know
+                * that and complains about map_offset being used uninitialized
+                * on failure codepaths while having in-memory mode enabled. so,
+                * assign a value here.
+                */
+               map_offset = 0;
+       } else {
+               /* takes out a read lock on segment or segment list */
+               fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx);
+               if (fd < 0) {
+                       RTE_LOG(ERR, EAL, "Couldn't get fd on hugepage file\n");
+                       return -1;
+               }
+
+               if (internal_config.single_file_segments) {
+                       map_offset = seg_idx * alloc_sz;
+                       ret = resize_hugefile(fd, path, list_idx, seg_idx,
+                                       map_offset, alloc_sz, true);
+                       if (ret < 0)
+                               goto resized;
+               } else {
+                       map_offset = 0;
+                       if (ftruncate(fd, alloc_sz) < 0) {
+                               RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n",
+                                       __func__, strerror(errno));
+                               goto resized;
+                       }
+                       if (internal_config.hugepage_unlink) {
+                               if (unlink(path)) {
+                                       RTE_LOG(DEBUG, EAL, "%s(): unlink() failed: %s\n",
+                                               __func__, strerror(errno));
+                                       goto resized;
+                               }
+                       }
+               }
+
+               /*
+                * map the segment, and populate page tables, the kernel fills
+                * this segment with zeros if it's a new page.
+                */
+               va = mmap(addr, alloc_sz, PROT_READ | PROT_WRITE,
+                               MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd,
+                               map_offset);
+       }
+
+       if (va == MAP_FAILED) {
+               RTE_LOG(DEBUG, EAL, "%s(): mmap() failed: %s\n", __func__,
+                       strerror(errno));
+               /* mmap failed, but the previous region might have been
+                * unmapped anyway. try to remap it
+                */
+               goto unmapped;
+       }
+       if (va != addr) {
+               RTE_LOG(DEBUG, EAL, "%s(): wrong mmap() address\n", __func__);
+               munmap(va, alloc_sz);
+               goto resized;
+       }
+
+       /* In linux, hugetlb limitations, like cgroup, are
+        * enforced at fault time instead of mmap(), even
+        * with the option of MAP_POPULATE. Kernel will send
+        * a SIGBUS signal. To avoid to be killed, save stack
+        * environment here, if SIGBUS happens, we can jump
+        * back here.
+        */
+       if (huge_wrap_sigsetjmp()) {
+               RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more hugepages of size %uMB\n",
+                       (unsigned int)(alloc_sz >> 20));
+               goto mapped;
+       }
+
+       /* we need to trigger a write to the page to enforce page fault and
+        * ensure that page is accessible to us, but we can't overwrite value
+        * that is already there, so read the old value, and write itback.
+        * kernel populates the page with zeroes initially.
+        */
+       *(volatile int *)addr = *(volatile int *)addr;
+
+       iova = rte_mem_virt2iova(addr);
+       if (iova == RTE_BAD_PHYS_ADDR) {
+               RTE_LOG(DEBUG, EAL, "%s(): can't get IOVA addr\n",
+                       __func__);
+               goto mapped;
+       }
+
+#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
+       move_pages(getpid(), 1, &addr, NULL, &cur_socket_id, 0);
+
+       if (cur_socket_id != socket_id) {
+               RTE_LOG(DEBUG, EAL,
+                               "%s(): allocation happened on wrong socket (wanted %d, got %d)\n",
+                       __func__, socket_id, cur_socket_id);
+               goto mapped;
+       }
+#endif
+       /* for non-single file segments that aren't in-memory, we can close fd
+        * here */
+       if (!internal_config.single_file_segments && !internal_config.in_memory)
+               close(fd);
+
+       ms->addr = addr;
+       ms->hugepage_sz = alloc_sz;
+       ms->len = alloc_sz;
+       ms->nchannel = rte_memory_get_nchannel();
+       ms->nrank = rte_memory_get_nrank();
+       ms->iova = iova;
+       ms->socket_id = socket_id;
+
+       return 0;
+
+mapped:
+       munmap(addr, alloc_sz);
+unmapped:
+       flags = MAP_FIXED;
+#ifdef RTE_ARCH_PPC_64
+       flags |= MAP_HUGETLB;
+#endif
+       new_addr = eal_get_virtual_area(addr, &alloc_sz, alloc_sz, 0, flags);
+       if (new_addr != addr) {
+               if (new_addr != NULL)
+                       munmap(new_addr, alloc_sz);
+               /* we're leaving a hole in our virtual address space. if
+                * somebody else maps this hole now, we could accidentally
+                * override it in the future.
+                */
+               RTE_LOG(CRIT, EAL, "Can't mmap holes in our virtual address space\n");
+       }
+resized:
+       /* in-memory mode will never be single-file-segments mode */
+       if (internal_config.single_file_segments) {
+               resize_hugefile(fd, path, list_idx, seg_idx, map_offset,
+                               alloc_sz, false);
+               /* ignore failure, can't make it any worse */
+       } else {
+               /* only remove file if we can take out a write lock */
+               if (internal_config.hugepage_unlink == 0 &&
+                               internal_config.in_memory == 0 &&
+                               lock(fd, LOCK_EX) == 1)
+                       unlink(path);
+               close(fd);
+       }
+       return -1;
+}
+
+static int
+free_seg(struct rte_memseg *ms, struct hugepage_info *hi,
+               unsigned int list_idx, unsigned int seg_idx)
+{
+       uint64_t map_offset;
+       char path[PATH_MAX];
+       int fd, ret;
+
+       /* erase page data */
+       memset(ms->addr, 0, ms->len);
+
+       if (mmap(ms->addr, ms->len, PROT_READ,
+                       MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0) ==
+                               MAP_FAILED) {
+               RTE_LOG(DEBUG, EAL, "couldn't unmap page\n");
+               return -1;
+       }
+
+       /* if we've already unlinked the page, nothing needs to be done */
+       if (internal_config.hugepage_unlink) {
+               memset(ms, 0, sizeof(*ms));
+               return 0;
+       }
+
+       /* if we are not in single file segments mode, we're going to unmap the
+        * segment and thus drop the lock on original fd, but hugepage dir is
+        * now locked so we can take out another one without races.
+        */
+       fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx);
+       if (fd < 0)
+               return -1;
+
+       if (internal_config.single_file_segments) {
+               map_offset = seg_idx * ms->len;
+               if (resize_hugefile(fd, path, list_idx, seg_idx, map_offset,
+                               ms->len, false))
+                       return -1;
+               ret = 0;
+       } else {
+               /* if we're able to take out a write lock, we're the last one
+                * holding onto this page.
+                */
+               ret = lock(fd, LOCK_EX);
+               if (ret >= 0) {
+                       /* no one else is using this page */
+                       if (ret == 1)
+                               unlink(path);
+               }
+               /* closing fd will drop the lock */
+               close(fd);
+       }
+
+       memset(ms, 0, sizeof(*ms));
+
+       return ret < 0 ? -1 : 0;
+}
+
+struct alloc_walk_param {
+       struct hugepage_info *hi;
+       struct rte_memseg **ms;
+       size_t page_sz;
+       unsigned int segs_allocated;
+       unsigned int n_segs;
+       int socket;
+       bool exact;
+};
+static int
+alloc_seg_walk(const struct rte_memseg_list *msl, void *arg)
+{
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       struct alloc_walk_param *wa = arg;
+       struct rte_memseg_list *cur_msl;
+       size_t page_sz;
+       int cur_idx, start_idx, j, dir_fd = -1;
+       unsigned int msl_idx, need, i;
+
+       if (msl->page_sz != wa->page_sz)
+               return 0;
+       if (msl->socket_id != wa->socket)
+               return 0;
+
+       page_sz = (size_t)msl->page_sz;
+
+       msl_idx = msl - mcfg->memsegs;
+       cur_msl = &mcfg->memsegs[msl_idx];
+
+       need = wa->n_segs;
+
+       /* try finding space in memseg list */
+       cur_idx = rte_fbarray_find_next_n_free(&cur_msl->memseg_arr, 0, need);
+       if (cur_idx < 0)
+               return 0;
+       start_idx = cur_idx;
+
+       /* do not allow any page allocations during the time we're allocating,
+        * because file creation and locking operations are not atomic,
+        * and we might be the first or the last ones to use a particular page,
+        * so we need to ensure atomicity of every operation.
+        *
+        * during init, we already hold a write lock, so don't try to take out
+        * another one.
+        */
+       if (wa->hi->lock_descriptor == -1 && !internal_config.in_memory) {
+               dir_fd = open(wa->hi->hugedir, O_RDONLY);
+               if (dir_fd < 0) {
+                       RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n",
+                               __func__, wa->hi->hugedir, strerror(errno));
+                       return -1;
+               }
+               /* blocking writelock */
+               if (flock(dir_fd, LOCK_EX)) {
+                       RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n",
+                               __func__, wa->hi->hugedir, strerror(errno));
+                       close(dir_fd);
+                       return -1;
+               }
+       }
+
+       for (i = 0; i < need; i++, cur_idx++) {
+               struct rte_memseg *cur;
+               void *map_addr;
+
+               cur = rte_fbarray_get(&cur_msl->memseg_arr, cur_idx);
+               map_addr = RTE_PTR_ADD(cur_msl->base_va,
+                               cur_idx * page_sz);
+
+               if (alloc_seg(cur, map_addr, wa->socket, wa->hi,
+                               msl_idx, cur_idx)) {
+                       RTE_LOG(DEBUG, EAL, "attempted to allocate %i segments, but only %i were allocated\n",
+                               need, i);
+
+                       /* if exact number wasn't requested, stop */
+                       if (!wa->exact)
+                               goto out;
+
+                       /* clean up */
+                       for (j = start_idx; j < cur_idx; j++) {
+                               struct rte_memseg *tmp;
+                               struct rte_fbarray *arr =
+                                               &cur_msl->memseg_arr;
+
+                               tmp = rte_fbarray_get(arr, j);
+                               rte_fbarray_set_free(arr, j);
+
+                               /* free_seg may attempt to create a file, which
+                                * may fail.
+                                */
+                               if (free_seg(tmp, wa->hi, msl_idx, j))
+                                       RTE_LOG(DEBUG, EAL, "Cannot free page\n");
+                       }
+                       /* clear the list */
+                       if (wa->ms)
+                               memset(wa->ms, 0, sizeof(*wa->ms) * wa->n_segs);
+
+                       if (dir_fd >= 0)
+                               close(dir_fd);
+                       return -1;
+               }
+               if (wa->ms)
+                       wa->ms[i] = cur;
+
+               rte_fbarray_set_used(&cur_msl->memseg_arr, cur_idx);
+       }
+out:
+       wa->segs_allocated = i;
+       if (i > 0)
+               cur_msl->version++;
+       if (dir_fd >= 0)
+               close(dir_fd);
+       return 1;
+}
+
+struct free_walk_param {
+       struct hugepage_info *hi;
+       struct rte_memseg *ms;
+};
+static int
+free_seg_walk(const struct rte_memseg_list *msl, void *arg)
+{
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       struct rte_memseg_list *found_msl;
+       struct free_walk_param *wa = arg;
+       uintptr_t start_addr, end_addr;
+       int msl_idx, seg_idx, ret, dir_fd = -1;
+
+       start_addr = (uintptr_t) msl->base_va;
+       end_addr = start_addr + msl->memseg_arr.len * (size_t)msl->page_sz;
+
+       if ((uintptr_t)wa->ms->addr < start_addr ||
+                       (uintptr_t)wa->ms->addr >= end_addr)
+               return 0;
+
+       msl_idx = msl - mcfg->memsegs;
+       seg_idx = RTE_PTR_DIFF(wa->ms->addr, start_addr) / msl->page_sz;
+
+       /* msl is const */
+       found_msl = &mcfg->memsegs[msl_idx];
+
+       /* do not allow any page allocations during the time we're freeing,
+        * because file creation and locking operations are not atomic,
+        * and we might be the first or the last ones to use a particular page,
+        * so we need to ensure atomicity of every operation.
+        *
+        * during init, we already hold a write lock, so don't try to take out
+        * another one.
+        */
+       if (wa->hi->lock_descriptor == -1 && !internal_config.in_memory) {
+               dir_fd = open(wa->hi->hugedir, O_RDONLY);
+               if (dir_fd < 0) {
+                       RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n",
+                               __func__, wa->hi->hugedir, strerror(errno));
+                       return -1;
+               }
+               /* blocking writelock */
+               if (flock(dir_fd, LOCK_EX)) {
+                       RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n",
+                               __func__, wa->hi->hugedir, strerror(errno));
+                       close(dir_fd);
+                       return -1;
+               }
+       }
+
+       found_msl->version++;
+
+       rte_fbarray_set_free(&found_msl->memseg_arr, seg_idx);
+
+       ret = free_seg(wa->ms, wa->hi, msl_idx, seg_idx);
+
+       if (dir_fd >= 0)
+               close(dir_fd);
+
+       if (ret < 0)
+               return -1;
+
+       return 1;
+}
+
+int
+eal_memalloc_alloc_seg_bulk(struct rte_memseg **ms, int n_segs, size_t page_sz,
+               int socket, bool exact)
+{
+       int i, ret = -1;
+#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
+       bool have_numa = false;
+       int oldpolicy;
+       struct bitmask *oldmask;
+#endif
+       struct alloc_walk_param wa;
+       struct hugepage_info *hi = NULL;
+
+       memset(&wa, 0, sizeof(wa));
+
+       /* dynamic allocation not supported in legacy mode */
+       if (internal_config.legacy_mem)
+               return -1;
+
+       for (i = 0; i < (int) RTE_DIM(internal_config.hugepage_info); i++) {
+               if (page_sz ==
+                               internal_config.hugepage_info[i].hugepage_sz) {
+                       hi = &internal_config.hugepage_info[i];
+                       break;
+               }
+       }
+       if (!hi) {
+               RTE_LOG(ERR, EAL, "%s(): can't find relevant hugepage_info entry\n",
+                       __func__);
+               return -1;
+       }
+
+#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
+       if (check_numa()) {
+               oldmask = numa_allocate_nodemask();
+               prepare_numa(&oldpolicy, oldmask, socket);
+               have_numa = true;
+       }
+#endif
+
+       wa.exact = exact;
+       wa.hi = hi;
+       wa.ms = ms;
+       wa.n_segs = n_segs;
+       wa.page_sz = page_sz;
+       wa.socket = socket;
+       wa.segs_allocated = 0;
+
+       /* memalloc is locked, so it's safe to use thread-unsafe version */
+       ret = rte_memseg_list_walk_thread_unsafe(alloc_seg_walk, &wa);
+       if (ret == 0) {
+               RTE_LOG(ERR, EAL, "%s(): couldn't find suitable memseg_list\n",
+                       __func__);
+               ret = -1;
+       } else if (ret > 0) {
+               ret = (int)wa.segs_allocated;
+       }
+
+#ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
+       if (have_numa)
+               restore_numa(&oldpolicy, oldmask);
+#endif
+       return ret;
+}
+
+struct rte_memseg *
+eal_memalloc_alloc_seg(size_t page_sz, int socket)
+{
+       struct rte_memseg *ms;
+       if (eal_memalloc_alloc_seg_bulk(&ms, 1, page_sz, socket, true) < 0)
+               return NULL;
+       /* return pointer to newly allocated memseg */
+       return ms;
+}
+
+int
+eal_memalloc_free_seg_bulk(struct rte_memseg **ms, int n_segs)
+{
+       int seg, ret = 0;
+
+       /* dynamic free not supported in legacy mode */
+       if (internal_config.legacy_mem)
+               return -1;
+
+       for (seg = 0; seg < n_segs; seg++) {
+               struct rte_memseg *cur = ms[seg];
+               struct hugepage_info *hi = NULL;
+               struct free_walk_param wa;
+               int i, walk_res;
+
+               /* if this page is marked as unfreeable, fail */
+               if (cur->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) {
+                       RTE_LOG(DEBUG, EAL, "Page is not allowed to be freed\n");
+                       ret = -1;
+                       continue;
+               }
+
+               memset(&wa, 0, sizeof(wa));
+
+               for (i = 0; i < (int)RTE_DIM(internal_config.hugepage_info);
+                               i++) {
+                       hi = &internal_config.hugepage_info[i];
+                       if (cur->hugepage_sz == hi->hugepage_sz)
+                               break;
+               }
+               if (i == (int)RTE_DIM(internal_config.hugepage_info)) {
+                       RTE_LOG(ERR, EAL, "Can't find relevant hugepage_info entry\n");
+                       ret = -1;
+                       continue;
+               }
+
+               wa.ms = cur;
+               wa.hi = hi;
+
+               /* memalloc is locked, so it's safe to use thread-unsafe version
+                */
+               walk_res = rte_memseg_list_walk_thread_unsafe(free_seg_walk,
+                               &wa);
+               if (walk_res == 1)
+                       continue;
+               if (walk_res == 0)
+                       RTE_LOG(ERR, EAL, "Couldn't find memseg list\n");
+               ret = -1;
+       }
+       return ret;
+}
+
+int
+eal_memalloc_free_seg(struct rte_memseg *ms)
+{
+       /* dynamic free not supported in legacy mode */
+       if (internal_config.legacy_mem)
+               return -1;
+
+       return eal_memalloc_free_seg_bulk(&ms, 1);
+}
+
+static int
+sync_chunk(struct rte_memseg_list *primary_msl,
+               struct rte_memseg_list *local_msl, struct hugepage_info *hi,
+               unsigned int msl_idx, bool used, int start, int end)
+{
+       struct rte_fbarray *l_arr, *p_arr;
+       int i, ret, chunk_len, diff_len;
+
+       l_arr = &local_msl->memseg_arr;
+       p_arr = &primary_msl->memseg_arr;
+
+       /* we need to aggregate allocations/deallocations into bigger chunks,
+        * as we don't want to spam the user with per-page callbacks.
+        *
+        * to avoid any potential issues, we also want to trigger
+        * deallocation callbacks *before* we actually deallocate
+        * memory, so that the user application could wrap up its use
+        * before it goes away.
+        */
+
+       chunk_len = end - start;
+
+       /* find how many contiguous pages we can map/unmap for this chunk */
+       diff_len = used ?
+                       rte_fbarray_find_contig_free(l_arr, start) :
+                       rte_fbarray_find_contig_used(l_arr, start);
+
+       /* has to be at least one page */
+       if (diff_len < 1)
+               return -1;
+
+       diff_len = RTE_MIN(chunk_len, diff_len);
+
+       /* if we are freeing memory, notify the application */
+       if (!used) {
+               struct rte_memseg *ms;
+               void *start_va;
+               size_t len, page_sz;
+
+               ms = rte_fbarray_get(l_arr, start);
+               start_va = ms->addr;
+               page_sz = (size_t)primary_msl->page_sz;
+               len = page_sz * diff_len;
+
+               eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
+                               start_va, len);
+       }
+
+       for (i = 0; i < diff_len; i++) {
+               struct rte_memseg *p_ms, *l_ms;
+               int seg_idx = start + i;
+
+               l_ms = rte_fbarray_get(l_arr, seg_idx);
+               p_ms = rte_fbarray_get(p_arr, seg_idx);
+
+               if (l_ms == NULL || p_ms == NULL)
+                       return -1;
+
+               if (used) {
+                       ret = alloc_seg(l_ms, p_ms->addr,
+                                       p_ms->socket_id, hi,
+                                       msl_idx, seg_idx);
+                       if (ret < 0)
+                               return -1;
+                       rte_fbarray_set_used(l_arr, seg_idx);
+               } else {
+                       ret = free_seg(l_ms, hi, msl_idx, seg_idx);
+                       rte_fbarray_set_free(l_arr, seg_idx);
+                       if (ret < 0)
+                               return -1;
+               }
+       }
+
+       /* if we just allocated memory, notify the application */
+       if (used) {
+               struct rte_memseg *ms;
+               void *start_va;
+               size_t len, page_sz;
+
+               ms = rte_fbarray_get(l_arr, start);
+               start_va = ms->addr;
+               page_sz = (size_t)primary_msl->page_sz;
+               len = page_sz * diff_len;
+
+               eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC,
+                               start_va, len);
+       }
+
+       /* calculate how much we can advance until next chunk */
+       diff_len = used ?
+                       rte_fbarray_find_contig_used(l_arr, start) :
+                       rte_fbarray_find_contig_free(l_arr, start);
+       ret = RTE_MIN(chunk_len, diff_len);
+
+       return ret;
+}
+
+static int
+sync_status(struct rte_memseg_list *primary_msl,
+               struct rte_memseg_list *local_msl, struct hugepage_info *hi,
+               unsigned int msl_idx, bool used)
+{
+       struct rte_fbarray *l_arr, *p_arr;
+       int p_idx, l_chunk_len, p_chunk_len, ret;
+       int start, end;
+
+       /* this is a little bit tricky, but the basic idea is - walk both lists
+        * and spot any places where there are discrepancies. walking both lists
+        * and noting discrepancies in a single go is a hard problem, so we do
+        * it in two passes - first we spot any places where allocated segments
+        * mismatch (i.e. ensure that everything that's allocated in the primary
+        * is also allocated in the secondary), and then we do it by looking at
+        * free segments instead.
+        *
+        * we also need to aggregate changes into chunks, as we have to call
+        * callbacks per allocation, not per page.
+        */
+       l_arr = &local_msl->memseg_arr;
+       p_arr = &primary_msl->memseg_arr;
+
+       if (used)
+               p_idx = rte_fbarray_find_next_used(p_arr, 0);
+       else
+               p_idx = rte_fbarray_find_next_free(p_arr, 0);
+
+       while (p_idx >= 0) {
+               int next_chunk_search_idx;
+
+               if (used) {
+                       p_chunk_len = rte_fbarray_find_contig_used(p_arr,
+                                       p_idx);
+                       l_chunk_len = rte_fbarray_find_contig_used(l_arr,
+                                       p_idx);
+               } else {
+                       p_chunk_len = rte_fbarray_find_contig_free(p_arr,
+                                       p_idx);
+                       l_chunk_len = rte_fbarray_find_contig_free(l_arr,
+                                       p_idx);
+               }
+               /* best case scenario - no differences (or bigger, which will be
+                * fixed during next iteration), look for next chunk
+                */
+               if (l_chunk_len >= p_chunk_len) {
+                       next_chunk_search_idx = p_idx + p_chunk_len;
+                       goto next_chunk;
+               }
+
+               /* if both chunks start at the same point, skip parts we know
+                * are identical, and sync the rest. each call to sync_chunk
+                * will only sync contiguous segments, so we need to call this
+                * until we are sure there are no more differences in this
+                * chunk.
+                */
+               start = p_idx + l_chunk_len;
+               end = p_idx + p_chunk_len;
+               do {
+                       ret = sync_chunk(primary_msl, local_msl, hi, msl_idx,
+                                       used, start, end);
+                       start += ret;
+               } while (start < end && ret >= 0);
+               /* if ret is negative, something went wrong */
+               if (ret < 0)
+                       return -1;
+
+               next_chunk_search_idx = p_idx + p_chunk_len;
+next_chunk:
+               /* skip to end of this chunk */
+               if (used) {
+                       p_idx = rte_fbarray_find_next_used(p_arr,
+                                       next_chunk_search_idx);
+               } else {
+                       p_idx = rte_fbarray_find_next_free(p_arr,
+                                       next_chunk_search_idx);
+               }
+       }
+       return 0;
+}
+
+static int
+sync_existing(struct rte_memseg_list *primary_msl,
+               struct rte_memseg_list *local_msl, struct hugepage_info *hi,
+               unsigned int msl_idx)
+{
+       int ret, dir_fd;
+
+       /* do not allow any page allocations during the time we're allocating,
+        * because file creation and locking operations are not atomic,
+        * and we might be the first or the last ones to use a particular page,
+        * so we need to ensure atomicity of every operation.
+        */
+       dir_fd = open(hi->hugedir, O_RDONLY);
+       if (dir_fd < 0) {
+               RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n", __func__,
+                       hi->hugedir, strerror(errno));
+               return -1;
+       }
+       /* blocking writelock */
+       if (flock(dir_fd, LOCK_EX)) {
+               RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n", __func__,
+                       hi->hugedir, strerror(errno));
+               close(dir_fd);
+               return -1;
+       }
+
+       /* ensure all allocated space is the same in both lists */
+       ret = sync_status(primary_msl, local_msl, hi, msl_idx, true);
+       if (ret < 0)
+               goto fail;
+
+       /* ensure all unallocated space is the same in both lists */
+       ret = sync_status(primary_msl, local_msl, hi, msl_idx, false);
+       if (ret < 0)
+               goto fail;
+
+       /* update version number */
+       local_msl->version = primary_msl->version;
+
+       close(dir_fd);
+
+       return 0;
+fail:
+       close(dir_fd);
+       return -1;
+}
+
+static int
+sync_walk(const struct rte_memseg_list *msl, void *arg __rte_unused)
+{
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       struct rte_memseg_list *primary_msl, *local_msl;
+       struct hugepage_info *hi = NULL;
+       unsigned int i;
+       int msl_idx;
+
+       msl_idx = msl - mcfg->memsegs;
+       primary_msl = &mcfg->memsegs[msl_idx];
+       local_msl = &local_memsegs[msl_idx];
+
+       for (i = 0; i < RTE_DIM(internal_config.hugepage_info); i++) {
+               uint64_t cur_sz =
+                       internal_config.hugepage_info[i].hugepage_sz;
+               uint64_t msl_sz = primary_msl->page_sz;
+               if (msl_sz == cur_sz) {
+                       hi = &internal_config.hugepage_info[i];
+                       break;
+               }
+       }
+       if (!hi) {
+               RTE_LOG(ERR, EAL, "Can't find relevant hugepage_info entry\n");
+               return -1;
+       }
+
+       /* if versions don't match, synchronize everything */
+       if (local_msl->version != primary_msl->version &&
+                       sync_existing(primary_msl, local_msl, hi, msl_idx))
+               return -1;
+       return 0;
+}
+
+
+int
+eal_memalloc_sync_with_primary(void)
+{
+       /* nothing to be done in primary */
+       if (rte_eal_process_type() == RTE_PROC_PRIMARY)
+               return 0;
+
+       /* memalloc is locked, so it's safe to call thread-unsafe version */
+       if (rte_memseg_list_walk_thread_unsafe(sync_walk, NULL))
+               return -1;
+       return 0;
+}
+
+static int
+secondary_msl_create_walk(const struct rte_memseg_list *msl,
+               void *arg __rte_unused)
+{
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       struct rte_memseg_list *primary_msl, *local_msl;
+       char name[PATH_MAX];
+       int msl_idx, ret;
+
+       msl_idx = msl - mcfg->memsegs;
+       primary_msl = &mcfg->memsegs[msl_idx];
+       local_msl = &local_memsegs[msl_idx];
+
+       /* create distinct fbarrays for each secondary */
+       snprintf(name, RTE_FBARRAY_NAME_LEN, "%s_%i",
+               primary_msl->memseg_arr.name, getpid());
+
+       ret = rte_fbarray_init(&local_msl->memseg_arr, name,
+               primary_msl->memseg_arr.len,
+               primary_msl->memseg_arr.elt_sz);
+       if (ret < 0) {
+               RTE_LOG(ERR, EAL, "Cannot initialize local memory map\n");
+               return -1;
+       }
+       local_msl->base_va = primary_msl->base_va;
+
+       return 0;
+}
+
+static int
+secondary_lock_list_create_walk(const struct rte_memseg_list *msl,
+               void *arg __rte_unused)
+{
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       unsigned int i, len;
+       int msl_idx;
+       int *data;
+
+       msl_idx = msl - mcfg->memsegs;
+       len = msl->memseg_arr.len;
+
+       /* ensure we have space to store lock fd per each possible segment */
+       data = malloc(sizeof(int) * len);
+       if (data == NULL) {
+               RTE_LOG(ERR, EAL, "Unable to allocate space for lock descriptors\n");
+               return -1;
+       }
+       /* set all fd's as invalid */
+       for (i = 0; i < len; i++)
+               data[i] = -1;
+
+       lock_fds[msl_idx].fds = data;
+       lock_fds[msl_idx].len = len;
+       lock_fds[msl_idx].count = 0;
+       lock_fds[msl_idx].memseg_list_fd = -1;
+
+       return 0;
+}
+
+int
+eal_memalloc_init(void)
+{
+       if (rte_eal_process_type() == RTE_PROC_SECONDARY)
+               if (rte_memseg_list_walk(secondary_msl_create_walk, NULL) < 0)
+                       return -1;
+
+       /* initialize all of the lock fd lists */
+       if (internal_config.single_file_segments)
+               if (rte_memseg_list_walk(secondary_lock_list_create_walk, NULL))
+                       return -1;
+       return 0;
+}