Imported Upstream version 16.04
[deb_dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
diff --git a/lib/librte_eal/linuxapp/eal/eal_memory.c b/lib/librte_eal/linuxapp/eal/eal_memory.c
new file mode 100644 (file)
index 0000000..5b9132c
--- /dev/null
@@ -0,0 +1,1559 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+/*   BSD LICENSE
+ *
+ *   Copyright(c) 2013 6WIND.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of 6WIND S.A. nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#define _FILE_OFFSET_BITS 64
+#include <errno.h>
+#include <stdarg.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include <stdint.h>
+#include <inttypes.h>
+#include <string.h>
+#include <stdarg.h>
+#include <sys/mman.h>
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <sys/queue.h>
+#include <sys/file.h>
+#include <unistd.h>
+#include <limits.h>
+#include <errno.h>
+#include <sys/ioctl.h>
+#include <sys/time.h>
+
+#include <rte_log.h>
+#include <rte_memory.h>
+#include <rte_memzone.h>
+#include <rte_launch.h>
+#include <rte_eal.h>
+#include <rte_eal_memconfig.h>
+#include <rte_per_lcore.h>
+#include <rte_lcore.h>
+#include <rte_common.h>
+#include <rte_string_fns.h>
+
+#include "eal_private.h"
+#include "eal_internal_cfg.h"
+#include "eal_filesystem.h"
+#include "eal_hugepages.h"
+
+#ifdef RTE_LIBRTE_XEN_DOM0
+int rte_xen_dom0_supported(void)
+{
+       return internal_config.xen_dom0_support;
+}
+#endif
+
+/**
+ * @file
+ * Huge page mapping under linux
+ *
+ * To reserve a big contiguous amount of memory, we use the hugepage
+ * feature of linux. For that, we need to have hugetlbfs mounted. This
+ * code will create many files in this directory (one per page) and
+ * map them in virtual memory. For each page, we will retrieve its
+ * physical address and remap it in order to have a virtual contiguous
+ * zone as well as a physical contiguous zone.
+ */
+
+static uint64_t baseaddr_offset;
+
+static unsigned proc_pagemap_readable;
+
+#define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
+
+static void
+test_proc_pagemap_readable(void)
+{
+       int fd = open("/proc/self/pagemap", O_RDONLY);
+
+       if (fd < 0) {
+               RTE_LOG(ERR, EAL,
+                       "Cannot open /proc/self/pagemap: %s. "
+                       "virt2phys address translation will not work\n",
+                       strerror(errno));
+               return;
+       }
+
+       /* Is readable */
+       close(fd);
+       proc_pagemap_readable = 1;
+}
+
+/* Lock page in physical memory and prevent from swapping. */
+int
+rte_mem_lock_page(const void *virt)
+{
+       unsigned long virtual = (unsigned long)virt;
+       int page_size = getpagesize();
+       unsigned long aligned = (virtual & ~ (page_size - 1));
+       return mlock((void*)aligned, page_size);
+}
+
+/*
+ * Get physical address of any mapped virtual address in the current process.
+ */
+phys_addr_t
+rte_mem_virt2phy(const void *virtaddr)
+{
+       int fd;
+       uint64_t page, physaddr;
+       unsigned long virt_pfn;
+       int page_size;
+       off_t offset;
+
+       /* Cannot parse /proc/self/pagemap, no need to log errors everywhere */
+       if (!proc_pagemap_readable)
+               return RTE_BAD_PHYS_ADDR;
+
+       /* standard page size */
+       page_size = getpagesize();
+
+       fd = open("/proc/self/pagemap", O_RDONLY);
+       if (fd < 0) {
+               RTE_LOG(ERR, EAL, "%s(): cannot open /proc/self/pagemap: %s\n",
+                       __func__, strerror(errno));
+               return RTE_BAD_PHYS_ADDR;
+       }
+
+       virt_pfn = (unsigned long)virtaddr / page_size;
+       offset = sizeof(uint64_t) * virt_pfn;
+       if (lseek(fd, offset, SEEK_SET) == (off_t) -1) {
+               RTE_LOG(ERR, EAL, "%s(): seek error in /proc/self/pagemap: %s\n",
+                               __func__, strerror(errno));
+               close(fd);
+               return RTE_BAD_PHYS_ADDR;
+       }
+       if (read(fd, &page, sizeof(uint64_t)) < 0) {
+               RTE_LOG(ERR, EAL, "%s(): cannot read /proc/self/pagemap: %s\n",
+                               __func__, strerror(errno));
+               close(fd);
+               return RTE_BAD_PHYS_ADDR;
+       }
+
+       /*
+        * the pfn (page frame number) are bits 0-54 (see
+        * pagemap.txt in linux Documentation)
+        */
+       physaddr = ((page & 0x7fffffffffffffULL) * page_size)
+               + ((unsigned long)virtaddr % page_size);
+       close(fd);
+       return physaddr;
+}
+
+/*
+ * For each hugepage in hugepg_tbl, fill the physaddr value. We find
+ * it by browsing the /proc/self/pagemap special file.
+ */
+static int
+find_physaddrs(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
+{
+       unsigned i;
+       phys_addr_t addr;
+
+       for (i = 0; i < hpi->num_pages[0]; i++) {
+               addr = rte_mem_virt2phy(hugepg_tbl[i].orig_va);
+               if (addr == RTE_BAD_PHYS_ADDR)
+                       return -1;
+               hugepg_tbl[i].physaddr = addr;
+       }
+       return 0;
+}
+
+/*
+ * Check whether address-space layout randomization is enabled in
+ * the kernel. This is important for multi-process as it can prevent
+ * two processes mapping data to the same virtual address
+ * Returns:
+ *    0 - address space randomization disabled
+ *    1/2 - address space randomization enabled
+ *    negative error code on error
+ */
+static int
+aslr_enabled(void)
+{
+       char c;
+       int retval, fd = open(RANDOMIZE_VA_SPACE_FILE, O_RDONLY);
+       if (fd < 0)
+               return -errno;
+       retval = read(fd, &c, 1);
+       close(fd);
+       if (retval < 0)
+               return -errno;
+       if (retval == 0)
+               return -EIO;
+       switch (c) {
+               case '0' : return 0;
+               case '1' : return 1;
+               case '2' : return 2;
+               default: return -EINVAL;
+       }
+}
+
+/*
+ * Try to mmap *size bytes in /dev/zero. If it is successful, return the
+ * pointer to the mmap'd area and keep *size unmodified. Else, retry
+ * with a smaller zone: decrease *size by hugepage_sz until it reaches
+ * 0. In this case, return NULL. Note: this function returns an address
+ * which is a multiple of hugepage size.
+ */
+static void *
+get_virtual_area(size_t *size, size_t hugepage_sz)
+{
+       void *addr;
+       int fd;
+       long aligned_addr;
+
+       if (internal_config.base_virtaddr != 0) {
+               addr = (void*) (uintptr_t) (internal_config.base_virtaddr +
+                               baseaddr_offset);
+       }
+       else addr = NULL;
+
+       RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
+
+       fd = open("/dev/zero", O_RDONLY);
+       if (fd < 0){
+               RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
+               return NULL;
+       }
+       do {
+               addr = mmap(addr,
+                               (*size) + hugepage_sz, PROT_READ, MAP_PRIVATE, fd, 0);
+               if (addr == MAP_FAILED)
+                       *size -= hugepage_sz;
+       } while (addr == MAP_FAILED && *size > 0);
+
+       if (addr == MAP_FAILED) {
+               close(fd);
+               RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
+                       strerror(errno));
+               return NULL;
+       }
+
+       munmap(addr, (*size) + hugepage_sz);
+       close(fd);
+
+       /* align addr to a huge page size boundary */
+       aligned_addr = (long)addr;
+       aligned_addr += (hugepage_sz - 1);
+       aligned_addr &= (~(hugepage_sz - 1));
+       addr = (void *)(aligned_addr);
+
+       RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
+               addr, *size);
+
+       /* increment offset */
+       baseaddr_offset += *size;
+
+       return addr;
+}
+
+/*
+ * Mmap all hugepages of hugepage table: it first open a file in
+ * hugetlbfs, then mmap() hugepage_sz data in it. If orig is set, the
+ * virtual address is stored in hugepg_tbl[i].orig_va, else it is stored
+ * in hugepg_tbl[i].final_va. The second mapping (when orig is 0) tries to
+ * map continguous physical blocks in contiguous virtual blocks.
+ */
+static int
+map_all_hugepages(struct hugepage_file *hugepg_tbl,
+               struct hugepage_info *hpi, int orig)
+{
+       int fd;
+       unsigned i;
+       void *virtaddr;
+       void *vma_addr = NULL;
+       size_t vma_len = 0;
+
+#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
+       RTE_SET_USED(vma_len);
+#endif
+
+       for (i = 0; i < hpi->num_pages[0]; i++) {
+               uint64_t hugepage_sz = hpi->hugepage_sz;
+
+               if (orig) {
+                       hugepg_tbl[i].file_id = i;
+                       hugepg_tbl[i].size = hugepage_sz;
+#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
+                       eal_get_hugefile_temp_path(hugepg_tbl[i].filepath,
+                                       sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
+                                       hugepg_tbl[i].file_id);
+#else
+                       eal_get_hugefile_path(hugepg_tbl[i].filepath,
+                                       sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
+                                       hugepg_tbl[i].file_id);
+#endif
+                       hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
+               }
+#ifndef RTE_ARCH_64
+               /* for 32-bit systems, don't remap 1G and 16G pages, just reuse
+                * original map address as final map address.
+                */
+               else if ((hugepage_sz == RTE_PGSIZE_1G)
+                       || (hugepage_sz == RTE_PGSIZE_16G)) {
+                       hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
+                       hugepg_tbl[i].orig_va = NULL;
+                       continue;
+               }
+#endif
+
+#ifndef RTE_EAL_SINGLE_FILE_SEGMENTS
+               else if (vma_len == 0) {
+                       unsigned j, num_pages;
+
+                       /* reserve a virtual area for next contiguous
+                        * physical block: count the number of
+                        * contiguous physical pages. */
+                       for (j = i+1; j < hpi->num_pages[0] ; j++) {
+#ifdef RTE_ARCH_PPC_64
+                               /* The physical addresses are sorted in
+                                * descending order on PPC64 */
+                               if (hugepg_tbl[j].physaddr !=
+                                   hugepg_tbl[j-1].physaddr - hugepage_sz)
+                                       break;
+#else
+                               if (hugepg_tbl[j].physaddr !=
+                                   hugepg_tbl[j-1].physaddr + hugepage_sz)
+                                       break;
+#endif
+                       }
+                       num_pages = j - i;
+                       vma_len = num_pages * hugepage_sz;
+
+                       /* get the biggest virtual memory area up to
+                        * vma_len. If it fails, vma_addr is NULL, so
+                        * let the kernel provide the address. */
+                       vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
+                       if (vma_addr == NULL)
+                               vma_len = hugepage_sz;
+               }
+#endif
+
+               /* try to create hugepage file */
+               fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0755);
+               if (fd < 0) {
+                       RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__,
+                                       strerror(errno));
+                       return -1;
+               }
+
+               /* map the segment, and populate page tables,
+                * the kernel fills this segment with zeros */
+               virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
+                               MAP_SHARED | MAP_POPULATE, fd, 0);
+               if (virtaddr == MAP_FAILED) {
+                       RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__,
+                                       strerror(errno));
+                       close(fd);
+                       return -1;
+               }
+
+               if (orig) {
+                       hugepg_tbl[i].orig_va = virtaddr;
+               }
+               else {
+                       hugepg_tbl[i].final_va = virtaddr;
+               }
+
+               /* set shared flock on the file. */
+               if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
+                       RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n",
+                               __func__, strerror(errno));
+                       close(fd);
+                       return -1;
+               }
+
+               close(fd);
+
+               vma_addr = (char *)vma_addr + hugepage_sz;
+               vma_len -= hugepage_sz;
+       }
+       return 0;
+}
+
+#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
+
+/*
+ * Remaps all hugepages into single file segments
+ */
+static int
+remap_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
+{
+       int fd;
+       unsigned i = 0, j, num_pages, page_idx = 0;
+       void *vma_addr = NULL, *old_addr = NULL, *page_addr = NULL;
+       size_t vma_len = 0;
+       size_t hugepage_sz = hpi->hugepage_sz;
+       size_t total_size, offset;
+       char filepath[MAX_HUGEPAGE_PATH];
+       phys_addr_t physaddr;
+       int socket;
+
+       while (i < hpi->num_pages[0]) {
+
+#ifndef RTE_ARCH_64
+               /* for 32-bit systems, don't remap 1G pages and 16G pages,
+                * just reuse original map address as final map address.
+                */
+               if ((hugepage_sz == RTE_PGSIZE_1G)
+                       || (hugepage_sz == RTE_PGSIZE_16G)) {
+                       hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
+                       hugepg_tbl[i].orig_va = NULL;
+                       i++;
+                       continue;
+               }
+#endif
+
+               /* reserve a virtual area for next contiguous
+                * physical block: count the number of
+                * contiguous physical pages. */
+               for (j = i+1; j < hpi->num_pages[0] ; j++) {
+#ifdef RTE_ARCH_PPC_64
+                       /* The physical addresses are sorted in descending
+                        * order on PPC64 */
+                       if (hugepg_tbl[j].physaddr !=
+                               hugepg_tbl[j-1].physaddr - hugepage_sz)
+                               break;
+#else
+                       if (hugepg_tbl[j].physaddr !=
+                               hugepg_tbl[j-1].physaddr + hugepage_sz)
+                               break;
+#endif
+               }
+               num_pages = j - i;
+               vma_len = num_pages * hugepage_sz;
+
+               socket = hugepg_tbl[i].socket_id;
+
+               /* get the biggest virtual memory area up to
+                * vma_len. If it fails, vma_addr is NULL, so
+                * let the kernel provide the address. */
+               vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
+
+               /* If we can't find a big enough virtual area, work out how many pages
+                * we are going to get */
+               if (vma_addr == NULL)
+                       j = i + 1;
+               else if (vma_len != num_pages * hugepage_sz) {
+                       num_pages = vma_len / hugepage_sz;
+                       j = i + num_pages;
+
+               }
+
+               hugepg_tbl[page_idx].file_id = page_idx;
+               eal_get_hugefile_path(filepath,
+                               sizeof(filepath),
+                               hpi->hugedir,
+                               hugepg_tbl[page_idx].file_id);
+
+               /* try to create hugepage file */
+               fd = open(filepath, O_CREAT | O_RDWR, 0755);
+               if (fd < 0) {
+                       RTE_LOG(ERR, EAL, "%s(): open failed: %s\n", __func__, strerror(errno));
+                       return -1;
+               }
+
+               total_size = 0;
+               for (;i < j; i++) {
+
+                       /* unmap current segment */
+                       if (total_size > 0)
+                               munmap(vma_addr, total_size);
+
+                       /* unmap original page */
+                       munmap(hugepg_tbl[i].orig_va, hugepage_sz);
+                       unlink(hugepg_tbl[i].filepath);
+
+                       total_size += hugepage_sz;
+
+                       old_addr = vma_addr;
+
+                       /* map new, bigger segment, and populate page tables,
+                        * the kernel fills this segment with zeros */
+                       vma_addr = mmap(vma_addr, total_size,
+                                       PROT_READ | PROT_WRITE, MAP_SHARED | MAP_POPULATE, fd, 0);
+
+                       if (vma_addr == MAP_FAILED || vma_addr != old_addr) {
+                               RTE_LOG(ERR, EAL, "%s(): mmap failed: %s\n", __func__, strerror(errno));
+                               close(fd);
+                               return -1;
+                       }
+               }
+
+               /* set shared flock on the file. */
+               if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
+                       RTE_LOG(ERR, EAL, "%s(): Locking file failed:%s \n",
+                               __func__, strerror(errno));
+                       close(fd);
+                       return -1;
+               }
+
+               snprintf(hugepg_tbl[page_idx].filepath, MAX_HUGEPAGE_PATH, "%s",
+                               filepath);
+
+               physaddr = rte_mem_virt2phy(vma_addr);
+
+               if (physaddr == RTE_BAD_PHYS_ADDR)
+                       return -1;
+
+               hugepg_tbl[page_idx].final_va = vma_addr;
+
+               hugepg_tbl[page_idx].physaddr = physaddr;
+
+               hugepg_tbl[page_idx].repeated = num_pages;
+
+               hugepg_tbl[page_idx].socket_id = socket;
+
+               close(fd);
+
+               /* verify the memory segment - that is, check that every VA corresponds
+                * to the physical address we expect to see
+                */
+               for (offset = 0; offset < vma_len; offset += hugepage_sz) {
+                       uint64_t expected_physaddr;
+
+                       expected_physaddr = hugepg_tbl[page_idx].physaddr + offset;
+                       page_addr = RTE_PTR_ADD(vma_addr, offset);
+                       physaddr = rte_mem_virt2phy(page_addr);
+
+                       if (physaddr != expected_physaddr) {
+                               RTE_LOG(ERR, EAL, "Segment sanity check failed: wrong physaddr "
+                                               "at %p (offset 0x%" PRIx64 ": 0x%" PRIx64
+                                               " (expected 0x%" PRIx64 ")\n",
+                                               page_addr, offset, physaddr, expected_physaddr);
+                               return -1;
+                       }
+               }
+
+               page_idx++;
+       }
+
+       /* zero out the rest */
+       memset(&hugepg_tbl[page_idx], 0, (hpi->num_pages[0] - page_idx) * sizeof(struct hugepage_file));
+       return page_idx;
+}
+#else/* RTE_EAL_SINGLE_FILE_SEGMENTS=n */
+
+/* Unmap all hugepages from original mapping */
+static int
+unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
+{
+        unsigned i;
+        for (i = 0; i < hpi->num_pages[0]; i++) {
+                if (hugepg_tbl[i].orig_va) {
+                        munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
+                        hugepg_tbl[i].orig_va = NULL;
+                }
+        }
+        return 0;
+}
+#endif /* RTE_EAL_SINGLE_FILE_SEGMENTS */
+
+/*
+ * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
+ * page.
+ */
+static int
+find_numasocket(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
+{
+       int socket_id;
+       char *end, *nodestr;
+       unsigned i, hp_count = 0;
+       uint64_t virt_addr;
+       char buf[BUFSIZ];
+       char hugedir_str[PATH_MAX];
+       FILE *f;
+
+       f = fopen("/proc/self/numa_maps", "r");
+       if (f == NULL) {
+               RTE_LOG(NOTICE, EAL, "cannot open /proc/self/numa_maps,"
+                               " consider that all memory is in socket_id 0\n");
+               return 0;
+       }
+
+       snprintf(hugedir_str, sizeof(hugedir_str),
+                       "%s/%s", hpi->hugedir, internal_config.hugefile_prefix);
+
+       /* parse numa map */
+       while (fgets(buf, sizeof(buf), f) != NULL) {
+
+               /* ignore non huge page */
+               if (strstr(buf, " huge ") == NULL &&
+                               strstr(buf, hugedir_str) == NULL)
+                       continue;
+
+               /* get zone addr */
+               virt_addr = strtoull(buf, &end, 16);
+               if (virt_addr == 0 || end == buf) {
+                       RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
+                       goto error;
+               }
+
+               /* get node id (socket id) */
+               nodestr = strstr(buf, " N");
+               if (nodestr == NULL) {
+                       RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
+                       goto error;
+               }
+               nodestr += 2;
+               end = strstr(nodestr, "=");
+               if (end == NULL) {
+                       RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
+                       goto error;
+               }
+               end[0] = '\0';
+               end = NULL;
+
+               socket_id = strtoul(nodestr, &end, 0);
+               if ((nodestr[0] == '\0') || (end == NULL) || (*end != '\0')) {
+                       RTE_LOG(ERR, EAL, "%s(): error in numa_maps parsing\n", __func__);
+                       goto error;
+               }
+
+               /* if we find this page in our mappings, set socket_id */
+               for (i = 0; i < hpi->num_pages[0]; i++) {
+                       void *va = (void *)(unsigned long)virt_addr;
+                       if (hugepg_tbl[i].orig_va == va) {
+                               hugepg_tbl[i].socket_id = socket_id;
+                               hp_count++;
+                       }
+               }
+       }
+
+       if (hp_count < hpi->num_pages[0])
+               goto error;
+
+       fclose(f);
+       return 0;
+
+error:
+       fclose(f);
+       return -1;
+}
+
+static int
+cmp_physaddr(const void *a, const void *b)
+{
+#ifndef RTE_ARCH_PPC_64
+       const struct hugepage_file *p1 = (const struct hugepage_file *)a;
+       const struct hugepage_file *p2 = (const struct hugepage_file *)b;
+#else
+       /* PowerPC needs memory sorted in reverse order from x86 */
+       const struct hugepage_file *p1 = (const struct hugepage_file *)b;
+       const struct hugepage_file *p2 = (const struct hugepage_file *)a;
+#endif
+       if (p1->physaddr < p2->physaddr)
+               return -1;
+       else if (p1->physaddr > p2->physaddr)
+               return 1;
+       else
+               return 0;
+}
+
+/*
+ * Uses mmap to create a shared memory area for storage of data
+ * Used in this file to store the hugepage file map on disk
+ */
+static void *
+create_shared_memory(const char *filename, const size_t mem_size)
+{
+       void *retval;
+       int fd = open(filename, O_CREAT | O_RDWR, 0666);
+       if (fd < 0)
+               return NULL;
+       if (ftruncate(fd, mem_size) < 0) {
+               close(fd);
+               return NULL;
+       }
+       retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
+       close(fd);
+       return retval;
+}
+
+/*
+ * this copies *active* hugepages from one hugepage table to another.
+ * destination is typically the shared memory.
+ */
+static int
+copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
+               const struct hugepage_file * src, int src_size)
+{
+       int src_pos, dst_pos = 0;
+
+       for (src_pos = 0; src_pos < src_size; src_pos++) {
+               if (src[src_pos].final_va != NULL) {
+                       /* error on overflow attempt */
+                       if (dst_pos == dest_size)
+                               return -1;
+                       memcpy(&dst[dst_pos], &src[src_pos], sizeof(struct hugepage_file));
+                       dst_pos++;
+               }
+       }
+       return 0;
+}
+
+static int
+unlink_hugepage_files(struct hugepage_file *hugepg_tbl,
+               unsigned num_hp_info)
+{
+       unsigned socket, size;
+       int page, nrpages = 0;
+
+       /* get total number of hugepages */
+       for (size = 0; size < num_hp_info; size++)
+               for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
+                       nrpages +=
+                       internal_config.hugepage_info[size].num_pages[socket];
+
+       for (page = 0; page < nrpages; page++) {
+               struct hugepage_file *hp = &hugepg_tbl[page];
+
+               if (hp->final_va != NULL && unlink(hp->filepath)) {
+                       RTE_LOG(WARNING, EAL, "%s(): Removing %s failed: %s\n",
+                               __func__, hp->filepath, strerror(errno));
+               }
+       }
+       return 0;
+}
+
+/*
+ * unmaps hugepages that are not going to be used. since we originally allocate
+ * ALL hugepages (not just those we need), additional unmapping needs to be done.
+ */
+static int
+unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
+               struct hugepage_info *hpi,
+               unsigned num_hp_info)
+{
+       unsigned socket, size;
+       int page, nrpages = 0;
+
+       /* get total number of hugepages */
+       for (size = 0; size < num_hp_info; size++)
+               for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++)
+                       nrpages += internal_config.hugepage_info[size].num_pages[socket];
+
+       for (size = 0; size < num_hp_info; size++) {
+               for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
+                       unsigned pages_found = 0;
+
+                       /* traverse until we have unmapped all the unused pages */
+                       for (page = 0; page < nrpages; page++) {
+                               struct hugepage_file *hp = &hugepg_tbl[page];
+
+#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
+                               /* if this page was already cleared */
+                               if (hp->final_va == NULL)
+                                       continue;
+#endif
+
+                               /* find a page that matches the criteria */
+                               if ((hp->size == hpi[size].hugepage_sz) &&
+                                               (hp->socket_id == (int) socket)) {
+
+                                       /* if we skipped enough pages, unmap the rest */
+                                       if (pages_found == hpi[size].num_pages[socket]) {
+                                               uint64_t unmap_len;
+
+#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
+                                               unmap_len = hp->size * hp->repeated;
+#else
+                                               unmap_len = hp->size;
+#endif
+
+                                               /* get start addr and len of the remaining segment */
+                                               munmap(hp->final_va, (size_t) unmap_len);
+
+                                               hp->final_va = NULL;
+                                               if (unlink(hp->filepath) == -1) {
+                                                       RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
+                                                                       __func__, hp->filepath, strerror(errno));
+                                                       return -1;
+                                               }
+                                       }
+#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
+                                       /* else, check how much do we need to map */
+                                       else {
+                                               int nr_pg_left =
+                                                               hpi[size].num_pages[socket] - pages_found;
+
+                                               /* if we need enough memory to fit into the segment */
+                                               if (hp->repeated <= nr_pg_left) {
+                                                       pages_found += hp->repeated;
+                                               }
+                                               /* truncate the segment */
+                                               else {
+                                                       uint64_t final_size = nr_pg_left * hp->size;
+                                                       uint64_t seg_size = hp->repeated * hp->size;
+
+                                                       void * unmap_va = RTE_PTR_ADD(hp->final_va,
+                                                                       final_size);
+                                                       int fd;
+
+                                                       munmap(unmap_va, seg_size - final_size);
+
+                                                       fd = open(hp->filepath, O_RDWR);
+                                                       if (fd < 0) {
+                                                               RTE_LOG(ERR, EAL, "Cannot open %s: %s\n",
+                                                                               hp->filepath, strerror(errno));
+                                                               return -1;
+                                                       }
+                                                       if (ftruncate(fd, final_size) < 0) {
+                                                               RTE_LOG(ERR, EAL, "Cannot truncate %s: %s\n",
+                                                                               hp->filepath, strerror(errno));
+                                                               return -1;
+                                                       }
+                                                       close(fd);
+
+                                                       pages_found += nr_pg_left;
+                                                       hp->repeated = nr_pg_left;
+                                               }
+                                       }
+#else
+                                       /* else, lock the page and skip */
+                                       else
+                                               pages_found++;
+#endif
+
+                               } /* match page */
+                       } /* foreach page */
+               } /* foreach socket */
+       } /* foreach pagesize */
+
+       return 0;
+}
+
+static inline uint64_t
+get_socket_mem_size(int socket)
+{
+       uint64_t size = 0;
+       unsigned i;
+
+       for (i = 0; i < internal_config.num_hugepage_sizes; i++){
+               struct hugepage_info *hpi = &internal_config.hugepage_info[i];
+               if (hpi->hugedir != NULL)
+                       size += hpi->hugepage_sz * hpi->num_pages[socket];
+       }
+
+       return size;
+}
+
+/*
+ * This function is a NUMA-aware equivalent of calc_num_pages.
+ * It takes in the list of hugepage sizes and the
+ * number of pages thereof, and calculates the best number of
+ * pages of each size to fulfill the request for <memory> ram
+ */
+static int
+calc_num_pages_per_socket(uint64_t * memory,
+               struct hugepage_info *hp_info,
+               struct hugepage_info *hp_used,
+               unsigned num_hp_info)
+{
+       unsigned socket, j, i = 0;
+       unsigned requested, available;
+       int total_num_pages = 0;
+       uint64_t remaining_mem, cur_mem;
+       uint64_t total_mem = internal_config.memory;
+
+       if (num_hp_info == 0)
+               return -1;
+
+       /* if specific memory amounts per socket weren't requested */
+       if (internal_config.force_sockets == 0) {
+               int cpu_per_socket[RTE_MAX_NUMA_NODES];
+               size_t default_size, total_size;
+               unsigned lcore_id;
+
+               /* Compute number of cores per socket */
+               memset(cpu_per_socket, 0, sizeof(cpu_per_socket));
+               RTE_LCORE_FOREACH(lcore_id) {
+                       cpu_per_socket[rte_lcore_to_socket_id(lcore_id)]++;
+               }
+
+               /*
+                * Automatically spread requested memory amongst detected sockets according
+                * to number of cores from cpu mask present on each socket
+                */
+               total_size = internal_config.memory;
+               for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
+
+                       /* Set memory amount per socket */
+                       default_size = (internal_config.memory * cpu_per_socket[socket])
+                                       / rte_lcore_count();
+
+                       /* Limit to maximum available memory on socket */
+                       default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
+
+                       /* Update sizes */
+                       memory[socket] = default_size;
+                       total_size -= default_size;
+               }
+
+               /*
+                * If some memory is remaining, try to allocate it by getting all
+                * available memory from sockets, one after the other
+                */
+               for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
+                       /* take whatever is available */
+                       default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
+                                              total_size);
+
+                       /* Update sizes */
+                       memory[socket] += default_size;
+                       total_size -= default_size;
+               }
+       }
+
+       for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
+               /* skips if the memory on specific socket wasn't requested */
+               for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
+                       hp_used[i].hugedir = hp_info[i].hugedir;
+                       hp_used[i].num_pages[socket] = RTE_MIN(
+                                       memory[socket] / hp_info[i].hugepage_sz,
+                                       hp_info[i].num_pages[socket]);
+
+                       cur_mem = hp_used[i].num_pages[socket] *
+                                       hp_used[i].hugepage_sz;
+
+                       memory[socket] -= cur_mem;
+                       total_mem -= cur_mem;
+
+                       total_num_pages += hp_used[i].num_pages[socket];
+
+                       /* check if we have met all memory requests */
+                       if (memory[socket] == 0)
+                               break;
+
+                       /* check if we have any more pages left at this size, if so
+                        * move on to next size */
+                       if (hp_used[i].num_pages[socket] == hp_info[i].num_pages[socket])
+                               continue;
+                       /* At this point we know that there are more pages available that are
+                        * bigger than the memory we want, so lets see if we can get enough
+                        * from other page sizes.
+                        */
+                       remaining_mem = 0;
+                       for (j = i+1; j < num_hp_info; j++)
+                               remaining_mem += hp_info[j].hugepage_sz *
+                               hp_info[j].num_pages[socket];
+
+                       /* is there enough other memory, if not allocate another page and quit */
+                       if (remaining_mem < memory[socket]){
+                               cur_mem = RTE_MIN(memory[socket],
+                                               hp_info[i].hugepage_sz);
+                               memory[socket] -= cur_mem;
+                               total_mem -= cur_mem;
+                               hp_used[i].num_pages[socket]++;
+                               total_num_pages++;
+                               break; /* we are done with this socket*/
+                       }
+               }
+               /* if we didn't satisfy all memory requirements per socket */
+               if (memory[socket] > 0) {
+                       /* to prevent icc errors */
+                       requested = (unsigned) (internal_config.socket_mem[socket] /
+                                       0x100000);
+                       available = requested -
+                                       ((unsigned) (memory[socket] / 0x100000));
+                       RTE_LOG(ERR, EAL, "Not enough memory available on socket %u! "
+                                       "Requested: %uMB, available: %uMB\n", socket,
+                                       requested, available);
+                       return -1;
+               }
+       }
+
+       /* if we didn't satisfy total memory requirements */
+       if (total_mem > 0) {
+               requested = (unsigned) (internal_config.memory / 0x100000);
+               available = requested - (unsigned) (total_mem / 0x100000);
+               RTE_LOG(ERR, EAL, "Not enough memory available! Requested: %uMB,"
+                               " available: %uMB\n", requested, available);
+               return -1;
+       }
+       return total_num_pages;
+}
+
+/*
+ * Prepare physical memory mapping: fill configuration structure with
+ * these infos, return 0 on success.
+ *  1. map N huge pages in separate files in hugetlbfs
+ *  2. find associated physical addr
+ *  3. find associated NUMA socket ID
+ *  4. sort all huge pages by physical address
+ *  5. remap these N huge pages in the correct order
+ *  6. unmap the first mapping
+ *  7. fill memsegs in configuration with contiguous zones
+ */
+int
+rte_eal_hugepage_init(void)
+{
+       struct rte_mem_config *mcfg;
+       struct hugepage_file *hugepage, *tmp_hp = NULL;
+       struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
+
+       uint64_t memory[RTE_MAX_NUMA_NODES];
+
+       unsigned hp_offset;
+       int i, j, new_memseg;
+       int nr_hugefiles, nr_hugepages = 0;
+       void *addr;
+#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
+       int new_pages_count[MAX_HUGEPAGE_SIZES];
+#endif
+
+       test_proc_pagemap_readable();
+
+       memset(used_hp, 0, sizeof(used_hp));
+
+       /* get pointer to global configuration */
+       mcfg = rte_eal_get_configuration()->mem_config;
+
+       /* hugetlbfs can be disabled */
+       if (internal_config.no_hugetlbfs) {
+               addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
+                               MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
+               if (addr == MAP_FAILED) {
+                       RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
+                                       strerror(errno));
+                       return -1;
+               }
+               mcfg->memseg[0].phys_addr = (phys_addr_t)(uintptr_t)addr;
+               mcfg->memseg[0].addr = addr;
+               mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
+               mcfg->memseg[0].len = internal_config.memory;
+               mcfg->memseg[0].socket_id = 0;
+               return 0;
+       }
+
+/* check if app runs on Xen Dom0 */
+       if (internal_config.xen_dom0_support) {
+#ifdef RTE_LIBRTE_XEN_DOM0
+               /* use dom0_mm kernel driver to init memory */
+               if (rte_xen_dom0_memory_init() < 0)
+                       return -1;
+               else
+                       return 0;
+#endif
+       }
+
+       /* calculate total number of hugepages available. at this point we haven't
+        * yet started sorting them so they all are on socket 0 */
+       for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
+               /* meanwhile, also initialize used_hp hugepage sizes in used_hp */
+               used_hp[i].hugepage_sz = internal_config.hugepage_info[i].hugepage_sz;
+
+               nr_hugepages += internal_config.hugepage_info[i].num_pages[0];
+       }
+
+       /*
+        * allocate a memory area for hugepage table.
+        * this isn't shared memory yet. due to the fact that we need some
+        * processing done on these pages, shared memory will be created
+        * at a later stage.
+        */
+       tmp_hp = malloc(nr_hugepages * sizeof(struct hugepage_file));
+       if (tmp_hp == NULL)
+               goto fail;
+
+       memset(tmp_hp, 0, nr_hugepages * sizeof(struct hugepage_file));
+
+       hp_offset = 0; /* where we start the current page size entries */
+
+       /* map all hugepages and sort them */
+       for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
+               struct hugepage_info *hpi;
+
+               /*
+                * we don't yet mark hugepages as used at this stage, so
+                * we just map all hugepages available to the system
+                * all hugepages are still located on socket 0
+                */
+               hpi = &internal_config.hugepage_info[i];
+
+               if (hpi->num_pages[0] == 0)
+                       continue;
+
+               /* map all hugepages available */
+               if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 1) < 0){
+                       RTE_LOG(DEBUG, EAL, "Failed to mmap %u MB hugepages\n",
+                                       (unsigned)(hpi->hugepage_sz / 0x100000));
+                       goto fail;
+               }
+
+               /* find physical addresses and sockets for each hugepage */
+               if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0){
+                       RTE_LOG(DEBUG, EAL, "Failed to find phys addr for %u MB pages\n",
+                                       (unsigned)(hpi->hugepage_sz / 0x100000));
+                       goto fail;
+               }
+
+               if (find_numasocket(&tmp_hp[hp_offset], hpi) < 0){
+                       RTE_LOG(DEBUG, EAL, "Failed to find NUMA socket for %u MB pages\n",
+                                       (unsigned)(hpi->hugepage_sz / 0x100000));
+                       goto fail;
+               }
+
+               qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
+                     sizeof(struct hugepage_file), cmp_physaddr);
+
+#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
+               /* remap all hugepages into single file segments */
+               new_pages_count[i] = remap_all_hugepages(&tmp_hp[hp_offset], hpi);
+               if (new_pages_count[i] < 0){
+                       RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n",
+                                       (unsigned)(hpi->hugepage_sz / 0x100000));
+                       goto fail;
+               }
+
+               /* we have processed a num of hugepages of this size, so inc offset */
+               hp_offset += new_pages_count[i];
+#else
+               /* remap all hugepages */
+               if (map_all_hugepages(&tmp_hp[hp_offset], hpi, 0) < 0){
+                       RTE_LOG(DEBUG, EAL, "Failed to remap %u MB pages\n",
+                                       (unsigned)(hpi->hugepage_sz / 0x100000));
+                       goto fail;
+               }
+
+               /* unmap original mappings */
+               if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
+                       goto fail;
+
+               /* we have processed a num of hugepages of this size, so inc offset */
+               hp_offset += hpi->num_pages[0];
+#endif
+       }
+
+#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
+       nr_hugefiles = 0;
+       for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
+               nr_hugefiles += new_pages_count[i];
+       }
+#else
+       nr_hugefiles = nr_hugepages;
+#endif
+
+
+       /* clean out the numbers of pages */
+       for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++)
+               for (j = 0; j < RTE_MAX_NUMA_NODES; j++)
+                       internal_config.hugepage_info[i].num_pages[j] = 0;
+
+       /* get hugepages for each socket */
+       for (i = 0; i < nr_hugefiles; i++) {
+               int socket = tmp_hp[i].socket_id;
+
+               /* find a hugepage info with right size and increment num_pages */
+               const int nb_hpsizes = RTE_MIN(MAX_HUGEPAGE_SIZES,
+                               (int)internal_config.num_hugepage_sizes);
+               for (j = 0; j < nb_hpsizes; j++) {
+                       if (tmp_hp[i].size ==
+                                       internal_config.hugepage_info[j].hugepage_sz) {
+#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
+                                       internal_config.hugepage_info[j].num_pages[socket] +=
+                                               tmp_hp[i].repeated;
+#else
+                               internal_config.hugepage_info[j].num_pages[socket]++;
+#endif
+                       }
+               }
+       }
+
+       /* make a copy of socket_mem, needed for number of pages calculation */
+       for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
+               memory[i] = internal_config.socket_mem[i];
+
+       /* calculate final number of pages */
+       nr_hugepages = calc_num_pages_per_socket(memory,
+                       internal_config.hugepage_info, used_hp,
+                       internal_config.num_hugepage_sizes);
+
+       /* error if not enough memory available */
+       if (nr_hugepages < 0)
+               goto fail;
+
+       /* reporting in! */
+       for (i = 0; i < (int) internal_config.num_hugepage_sizes; i++) {
+               for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
+                       if (used_hp[i].num_pages[j] > 0) {
+                               RTE_LOG(DEBUG, EAL,
+                                       "Requesting %u pages of size %uMB"
+                                       " from socket %i\n",
+                                       used_hp[i].num_pages[j],
+                                       (unsigned)
+                                       (used_hp[i].hugepage_sz / 0x100000),
+                                       j);
+                       }
+               }
+       }
+
+       /* create shared memory */
+       hugepage = create_shared_memory(eal_hugepage_info_path(),
+                       nr_hugefiles * sizeof(struct hugepage_file));
+
+       if (hugepage == NULL) {
+               RTE_LOG(ERR, EAL, "Failed to create shared memory!\n");
+               goto fail;
+       }
+       memset(hugepage, 0, nr_hugefiles * sizeof(struct hugepage_file));
+
+       /*
+        * unmap pages that we won't need (looks at used_hp).
+        * also, sets final_va to NULL on pages that were unmapped.
+        */
+       if (unmap_unneeded_hugepages(tmp_hp, used_hp,
+                       internal_config.num_hugepage_sizes) < 0) {
+               RTE_LOG(ERR, EAL, "Unmapping and locking hugepages failed!\n");
+               goto fail;
+       }
+
+       /*
+        * copy stuff from malloc'd hugepage* to the actual shared memory.
+        * this procedure only copies those hugepages that have final_va
+        * not NULL. has overflow protection.
+        */
+       if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
+                       tmp_hp, nr_hugefiles) < 0) {
+               RTE_LOG(ERR, EAL, "Copying tables to shared memory failed!\n");
+               goto fail;
+       }
+
+       /* free the hugepage backing files */
+       if (internal_config.hugepage_unlink &&
+               unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
+               RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
+               goto fail;
+       }
+
+       /* free the temporary hugepage table */
+       free(tmp_hp);
+       tmp_hp = NULL;
+
+       /* find earliest free memseg - this is needed because in case of IVSHMEM,
+        * segments might have already been initialized */
+       for (j = 0; j < RTE_MAX_MEMSEG; j++)
+               if (mcfg->memseg[j].addr == NULL) {
+                       /* move to previous segment and exit loop */
+                       j--;
+                       break;
+               }
+
+       for (i = 0; i < nr_hugefiles; i++) {
+               new_memseg = 0;
+
+               /* if this is a new section, create a new memseg */
+               if (i == 0)
+                       new_memseg = 1;
+               else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
+                       new_memseg = 1;
+               else if (hugepage[i].size != hugepage[i-1].size)
+                       new_memseg = 1;
+
+#ifdef RTE_ARCH_PPC_64
+               /* On PPC64 architecture, the mmap always start from higher
+                * virtual address to lower address. Here, both the physical
+                * address and virtual address are in descending order */
+               else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
+                   hugepage[i].size)
+                       new_memseg = 1;
+               else if (((unsigned long)hugepage[i-1].final_va -
+                   (unsigned long)hugepage[i].final_va) != hugepage[i].size)
+                       new_memseg = 1;
+#else
+               else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
+                   hugepage[i].size)
+                       new_memseg = 1;
+               else if (((unsigned long)hugepage[i].final_va -
+                   (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
+                       new_memseg = 1;
+#endif
+
+               if (new_memseg) {
+                       j += 1;
+                       if (j == RTE_MAX_MEMSEG)
+                               break;
+
+                       mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
+                       mcfg->memseg[j].addr = hugepage[i].final_va;
+#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
+                       mcfg->memseg[j].len = hugepage[i].size * hugepage[i].repeated;
+#else
+                       mcfg->memseg[j].len = hugepage[i].size;
+#endif
+                       mcfg->memseg[j].socket_id = hugepage[i].socket_id;
+                       mcfg->memseg[j].hugepage_sz = hugepage[i].size;
+               }
+               /* continuation of previous memseg */
+               else {
+#ifdef RTE_ARCH_PPC_64
+               /* Use the phy and virt address of the last page as segment
+                * address for IBM Power architecture */
+                       mcfg->memseg[j].phys_addr = hugepage[i].physaddr;
+                       mcfg->memseg[j].addr = hugepage[i].final_va;
+#endif
+                       mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
+               }
+               hugepage[i].memseg_id = j;
+       }
+
+       if (i < nr_hugefiles) {
+               RTE_LOG(ERR, EAL, "Can only reserve %d pages "
+                       "from %d requested\n"
+                       "Current %s=%d is not enough\n"
+                       "Please either increase it or request less amount "
+                       "of memory.\n",
+                       i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
+                       RTE_MAX_MEMSEG);
+               return -ENOMEM;
+       }
+
+       return 0;
+
+fail:
+       free(tmp_hp);
+       return -1;
+}
+
+/*
+ * uses fstat to report the size of a file on disk
+ */
+static off_t
+getFileSize(int fd)
+{
+       struct stat st;
+       if (fstat(fd, &st) < 0)
+               return 0;
+       return st.st_size;
+}
+
+/*
+ * This creates the memory mappings in the secondary process to match that of
+ * the server process. It goes through each memory segment in the DPDK runtime
+ * configuration and finds the hugepages which form that segment, mapping them
+ * in order to form a contiguous block in the virtual memory space
+ */
+int
+rte_eal_hugepage_attach(void)
+{
+       const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       const struct hugepage_file *hp = NULL;
+       unsigned num_hp = 0;
+       unsigned i, s = 0; /* s used to track the segment number */
+       off_t size;
+       int fd, fd_zero = -1, fd_hugepage = -1;
+
+       if (aslr_enabled() > 0) {
+               RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
+                               "(ASLR) is enabled in the kernel.\n");
+               RTE_LOG(WARNING, EAL, "   This may cause issues with mapping memory "
+                               "into secondary processes\n");
+       }
+
+       test_proc_pagemap_readable();
+
+       if (internal_config.xen_dom0_support) {
+#ifdef RTE_LIBRTE_XEN_DOM0
+               if (rte_xen_dom0_memory_attach() < 0) {
+                       RTE_LOG(ERR, EAL,"Failed to attach memory setments of primay "
+                                       "process\n");
+                       return -1;
+               }
+               return 0;
+#endif
+       }
+
+       fd_zero = open("/dev/zero", O_RDONLY);
+       if (fd_zero < 0) {
+               RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
+               goto error;
+       }
+       fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
+       if (fd_hugepage < 0) {
+               RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
+               goto error;
+       }
+
+       /* map all segments into memory to make sure we get the addrs */
+       for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
+               void *base_addr;
+
+               /*
+                * the first memory segment with len==0 is the one that
+                * follows the last valid segment.
+                */
+               if (mcfg->memseg[s].len == 0)
+                       break;
+
+#ifdef RTE_LIBRTE_IVSHMEM
+               /*
+                * if segment has ioremap address set, it's an IVSHMEM segment and
+                * doesn't need mapping as it was already mapped earlier
+                */
+               if (mcfg->memseg[s].ioremap_addr != 0)
+                       continue;
+#endif
+
+               /*
+                * fdzero is mmapped to get a contiguous block of virtual
+                * addresses of the appropriate memseg size.
+                * use mmap to get identical addresses as the primary process.
+                */
+               base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
+                                PROT_READ, MAP_PRIVATE, fd_zero, 0);
+               if (base_addr == MAP_FAILED ||
+                   base_addr != mcfg->memseg[s].addr) {
+                       RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
+                               "in /dev/zero to requested address [%p]: '%s'\n",
+                               (unsigned long long)mcfg->memseg[s].len,
+                               mcfg->memseg[s].addr, strerror(errno));
+                       if (aslr_enabled() > 0) {
+                               RTE_LOG(ERR, EAL, "It is recommended to "
+                                       "disable ASLR in the kernel "
+                                       "and retry running both primary "
+                                       "and secondary processes\n");
+                       }
+                       goto error;
+               }
+       }
+
+       size = getFileSize(fd_hugepage);
+       hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
+       if (hp == NULL) {
+               RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
+               goto error;
+       }
+
+       num_hp = size / sizeof(struct hugepage_file);
+       RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
+
+       s = 0;
+       while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
+               void *addr, *base_addr;
+               uintptr_t offset = 0;
+               size_t mapping_size;
+#ifdef RTE_LIBRTE_IVSHMEM
+               /*
+                * if segment has ioremap address set, it's an IVSHMEM segment and
+                * doesn't need mapping as it was already mapped earlier
+                */
+               if (mcfg->memseg[s].ioremap_addr != 0) {
+                       s++;
+                       continue;
+               }
+#endif
+               /*
+                * free previously mapped memory so we can map the
+                * hugepages into the space
+                */
+               base_addr = mcfg->memseg[s].addr;
+               munmap(base_addr, mcfg->memseg[s].len);
+
+               /* find the hugepages for this segment and map them
+                * we don't need to worry about order, as the server sorted the
+                * entries before it did the second mmap of them */
+               for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
+                       if (hp[i].memseg_id == (int)s){
+                               fd = open(hp[i].filepath, O_RDWR);
+                               if (fd < 0) {
+                                       RTE_LOG(ERR, EAL, "Could not open %s\n",
+                                               hp[i].filepath);
+                                       goto error;
+                               }
+#ifdef RTE_EAL_SINGLE_FILE_SEGMENTS
+                               mapping_size = hp[i].size * hp[i].repeated;
+#else
+                               mapping_size = hp[i].size;
+#endif
+                               addr = mmap(RTE_PTR_ADD(base_addr, offset),
+                                               mapping_size, PROT_READ | PROT_WRITE,
+                                               MAP_SHARED, fd, 0);
+                               close(fd); /* close file both on success and on failure */
+                               if (addr == MAP_FAILED ||
+                                               addr != RTE_PTR_ADD(base_addr, offset)) {
+                                       RTE_LOG(ERR, EAL, "Could not mmap %s\n",
+                                               hp[i].filepath);
+                                       goto error;
+                               }
+                               offset+=mapping_size;
+                       }
+               }
+               RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
+                               (unsigned long long)mcfg->memseg[s].len);
+               s++;
+       }
+       /* unmap the hugepage config file, since we are done using it */
+       munmap((void *)(uintptr_t)hp, size);
+       close(fd_zero);
+       close(fd_hugepage);
+       return 0;
+
+error:
+       if (fd_zero >= 0)
+               close(fd_zero);
+       if (fd_hugepage >= 0)
+               close(fd_hugepage);
+       return -1;
+}