New upstream version 18.08
[deb_dpdk.git] / lib / librte_eal / linuxapp / eal / eal_memory.c
index 38853b7..dbf1949 100644 (file)
@@ -28,6 +28,7 @@
 #include <numaif.h>
 #endif
 
+#include <rte_errno.h>
 #include <rte_log.h>
 #include <rte_memory.h>
 #include <rte_launch.h>
@@ -39,6 +40,7 @@
 #include <rte_string_fns.h>
 
 #include "eal_private.h"
+#include "eal_memalloc.h"
 #include "eal_internal_cfg.h"
 #include "eal_filesystem.h"
 #include "eal_hugepages.h"
@@ -57,8 +59,6 @@
  * zone as well as a physical contiguous zone.
  */
 
-static uint64_t baseaddr_offset;
-
 static bool phys_addrs_available = true;
 
 #define RANDOMIZE_VA_SPACE_FILE "/proc/sys/kernel/randomize_va_space"
@@ -66,7 +66,7 @@ static bool phys_addrs_available = true;
 static void
 test_phys_addrs_available(void)
 {
-       uint64_t tmp;
+       uint64_t tmp = 0;
        phys_addr_t physaddr;
 
        if (!rte_eal_has_hugepages()) {
@@ -221,82 +221,6 @@ aslr_enabled(void)
        }
 }
 
-/*
- * Try to mmap *size bytes in /dev/zero. If it is successful, return the
- * pointer to the mmap'd area and keep *size unmodified. Else, retry
- * with a smaller zone: decrease *size by hugepage_sz until it reaches
- * 0. In this case, return NULL. Note: this function returns an address
- * which is a multiple of hugepage size.
- */
-static void *
-get_virtual_area(size_t *size, size_t hugepage_sz)
-{
-       void *addr;
-       void *addr_hint;
-       int fd;
-       long aligned_addr;
-
-       if (internal_config.base_virtaddr != 0) {
-               int page_size = sysconf(_SC_PAGE_SIZE);
-               addr_hint = (void *) (uintptr_t)
-                       (internal_config.base_virtaddr + baseaddr_offset);
-               addr_hint = RTE_PTR_ALIGN_FLOOR(addr_hint, page_size);
-       } else {
-               addr_hint = NULL;
-       }
-
-       RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
-
-
-       fd = open("/dev/zero", O_RDONLY);
-       if (fd < 0){
-               RTE_LOG(ERR, EAL, "Cannot open /dev/zero\n");
-               return NULL;
-       }
-       do {
-               addr = mmap(addr_hint, (*size) + hugepage_sz, PROT_READ,
-#ifdef RTE_ARCH_PPC_64
-                               MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
-#else
-                               MAP_PRIVATE,
-#endif
-                               fd, 0);
-               if (addr == MAP_FAILED) {
-                       *size -= hugepage_sz;
-               } else if (addr_hint != NULL && addr != addr_hint) {
-                       RTE_LOG(WARNING, EAL, "WARNING! Base virtual address "
-                               "hint (%p != %p) not respected!\n",
-                               addr_hint, addr);
-                       RTE_LOG(WARNING, EAL, "   This may cause issues with "
-                               "mapping memory into secondary processes\n");
-               }
-       } while (addr == MAP_FAILED && *size > 0);
-
-       if (addr == MAP_FAILED) {
-               close(fd);
-               RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
-                       strerror(errno));
-               return NULL;
-       }
-
-       munmap(addr, (*size) + hugepage_sz);
-       close(fd);
-
-       /* align addr to a huge page size boundary */
-       aligned_addr = (long)addr;
-       aligned_addr += (hugepage_sz - 1);
-       aligned_addr &= (~(hugepage_sz - 1));
-       addr = (void *)(aligned_addr);
-
-       RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
-               addr, *size);
-
-       /* increment offset */
-       baseaddr_offset += *size;
-
-       return addr;
-}
-
 static sigjmp_buf huge_jmpenv;
 
 static void huge_sigbus_handler(int signo __rte_unused)
@@ -330,13 +254,11 @@ void numa_error(char *where)
  */
 static unsigned
 map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
-                 uint64_t *essential_memory __rte_unused, int orig)
+                 uint64_t *essential_memory __rte_unused)
 {
        int fd;
        unsigned i;
        void *virtaddr;
-       void *vma_addr = NULL;
-       size_t vma_len = 0;
 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
        int node_id = -1;
        int essential_prev = 0;
@@ -351,7 +273,7 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
                have_numa = false;
        }
 
-       if (orig && have_numa) {
+       if (have_numa) {
                RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
                if (get_mempolicy(&oldpolicy, oldmask->maskp,
                                  oldmask->size + 1, 0, 0) < 0) {
@@ -367,6 +289,7 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
 #endif
 
        for (i = 0; i < hpi->num_pages[0]; i++) {
+               struct hugepage_file *hf = &hugepg_tbl[i];
                uint64_t hugepage_sz = hpi->hugepage_sz;
 
 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
@@ -401,57 +324,14 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
                }
 #endif
 
-               if (orig) {
-                       hugepg_tbl[i].file_id = i;
-                       hugepg_tbl[i].size = hugepage_sz;
-                       eal_get_hugefile_path(hugepg_tbl[i].filepath,
-                                       sizeof(hugepg_tbl[i].filepath), hpi->hugedir,
-                                       hugepg_tbl[i].file_id);
-                       hugepg_tbl[i].filepath[sizeof(hugepg_tbl[i].filepath) - 1] = '\0';
-               }
-#ifndef RTE_ARCH_64
-               /* for 32-bit systems, don't remap 1G and 16G pages, just reuse
-                * original map address as final map address.
-                */
-               else if ((hugepage_sz == RTE_PGSIZE_1G)
-                       || (hugepage_sz == RTE_PGSIZE_16G)) {
-                       hugepg_tbl[i].final_va = hugepg_tbl[i].orig_va;
-                       hugepg_tbl[i].orig_va = NULL;
-                       continue;
-               }
-#endif
-               else if (vma_len == 0) {
-                       unsigned j, num_pages;
-
-                       /* reserve a virtual area for next contiguous
-                        * physical block: count the number of
-                        * contiguous physical pages. */
-                       for (j = i+1; j < hpi->num_pages[0] ; j++) {
-#ifdef RTE_ARCH_PPC_64
-                               /* The physical addresses are sorted in
-                                * descending order on PPC64 */
-                               if (hugepg_tbl[j].physaddr !=
-                                   hugepg_tbl[j-1].physaddr - hugepage_sz)
-                                       break;
-#else
-                               if (hugepg_tbl[j].physaddr !=
-                                   hugepg_tbl[j-1].physaddr + hugepage_sz)
-                                       break;
-#endif
-                       }
-                       num_pages = j - i;
-                       vma_len = num_pages * hugepage_sz;
-
-                       /* get the biggest virtual memory area up to
-                        * vma_len. If it fails, vma_addr is NULL, so
-                        * let the kernel provide the address. */
-                       vma_addr = get_virtual_area(&vma_len, hpi->hugepage_sz);
-                       if (vma_addr == NULL)
-                               vma_len = hugepage_sz;
-               }
+               hf->file_id = i;
+               hf->size = hugepage_sz;
+               eal_get_hugefile_path(hf->filepath, sizeof(hf->filepath),
+                               hpi->hugedir, hf->file_id);
+               hf->filepath[sizeof(hf->filepath) - 1] = '\0';
 
                /* try to create hugepage file */
-               fd = open(hugepg_tbl[i].filepath, O_CREAT | O_RDWR, 0600);
+               fd = open(hf->filepath, O_CREAT | O_RDWR, 0600);
                if (fd < 0) {
                        RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n", __func__,
                                        strerror(errno));
@@ -459,8 +339,11 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
                }
 
                /* map the segment, and populate page tables,
-                * the kernel fills this segment with zeros */
-               virtaddr = mmap(vma_addr, hugepage_sz, PROT_READ | PROT_WRITE,
+                * the kernel fills this segment with zeros. we don't care where
+                * this gets mapped - we already have contiguous memory areas
+                * ready for us to map into.
+                */
+               virtaddr = mmap(NULL, hugepage_sz, PROT_READ | PROT_WRITE,
                                MAP_SHARED | MAP_POPULATE, fd, 0);
                if (virtaddr == MAP_FAILED) {
                        RTE_LOG(DEBUG, EAL, "%s(): mmap failed: %s\n", __func__,
@@ -469,41 +352,33 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
                        goto out;
                }
 
-               if (orig) {
-                       hugepg_tbl[i].orig_va = virtaddr;
-               }
-               else {
-                       hugepg_tbl[i].final_va = virtaddr;
-               }
+               hf->orig_va = virtaddr;
 
-               if (orig) {
-                       /* In linux, hugetlb limitations, like cgroup, are
-                        * enforced at fault time instead of mmap(), even
-                        * with the option of MAP_POPULATE. Kernel will send
-                        * a SIGBUS signal. To avoid to be killed, save stack
-                        * environment here, if SIGBUS happens, we can jump
-                        * back here.
-                        */
-                       if (huge_wrap_sigsetjmp()) {
-                               RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
-                                       "hugepages of size %u MB\n",
-                                       (unsigned)(hugepage_sz / 0x100000));
-                               munmap(virtaddr, hugepage_sz);
-                               close(fd);
-                               unlink(hugepg_tbl[i].filepath);
+               /* In linux, hugetlb limitations, like cgroup, are
+                * enforced at fault time instead of mmap(), even
+                * with the option of MAP_POPULATE. Kernel will send
+                * a SIGBUS signal. To avoid to be killed, save stack
+                * environment here, if SIGBUS happens, we can jump
+                * back here.
+                */
+               if (huge_wrap_sigsetjmp()) {
+                       RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more "
+                               "hugepages of size %u MB\n",
+                               (unsigned int)(hugepage_sz / 0x100000));
+                       munmap(virtaddr, hugepage_sz);
+                       close(fd);
+                       unlink(hugepg_tbl[i].filepath);
 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
-                               if (maxnode)
-                                       essential_memory[node_id] =
-                                               essential_prev;
+                       if (maxnode)
+                               essential_memory[node_id] =
+                                       essential_prev;
 #endif
-                               goto out;
-                       }
-                       *(int *)virtaddr = 0;
+                       goto out;
                }
+               *(int *)virtaddr = 0;
 
-
-               /* set shared flock on the file. */
-               if (flock(fd, LOCK_SH | LOCK_NB) == -1) {
+               /* set shared lock on the file. */
+               if (flock(fd, LOCK_SH) < 0) {
                        RTE_LOG(DEBUG, EAL, "%s(): Locking file failed:%s \n",
                                __func__, strerror(errno));
                        close(fd);
@@ -511,9 +386,6 @@ map_all_hugepages(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi,
                }
 
                close(fd);
-
-               vma_addr = (char *)vma_addr + hugepage_sz;
-               vma_len -= hugepage_sz;
        }
 
 out:
@@ -535,20 +407,6 @@ out:
        return i;
 }
 
-/* Unmap all hugepages from original mapping */
-static int
-unmap_all_hugepages_orig(struct hugepage_file *hugepg_tbl, struct hugepage_info *hpi)
-{
-        unsigned i;
-        for (i = 0; i < hpi->num_pages[0]; i++) {
-                if (hugepg_tbl[i].orig_va) {
-                        munmap(hugepg_tbl[i].orig_va, hpi->hugepage_sz);
-                        hugepg_tbl[i].orig_va = NULL;
-                }
-        }
-        return 0;
-}
-
 /*
  * Parse /proc/self/numa_maps to get the NUMA socket ID for each huge
  * page.
@@ -663,7 +521,18 @@ static void *
 create_shared_memory(const char *filename, const size_t mem_size)
 {
        void *retval;
-       int fd = open(filename, O_CREAT | O_RDWR, 0666);
+       int fd;
+
+       /* if no shared files mode is used, create anonymous memory instead */
+       if (internal_config.no_shconf) {
+               retval = mmap(NULL, mem_size, PROT_READ | PROT_WRITE,
+                               MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+               if (retval == MAP_FAILED)
+                       return NULL;
+               return retval;
+       }
+
+       fd = open(filename, O_CREAT | O_RDWR, 0666);
        if (fd < 0)
                return NULL;
        if (ftruncate(fd, mem_size) < 0) {
@@ -688,7 +557,7 @@ copy_hugepages_to_shared_mem(struct hugepage_file * dst, int dest_size,
        int src_pos, dst_pos = 0;
 
        for (src_pos = 0; src_pos < src_size; src_pos++) {
-               if (src[src_pos].final_va != NULL) {
+               if (src[src_pos].orig_va != NULL) {
                        /* error on overflow attempt */
                        if (dst_pos == dest_size)
                                return -1;
@@ -759,9 +628,10 @@ unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
                                                unmap_len = hp->size;
 
                                                /* get start addr and len of the remaining segment */
-                                               munmap(hp->final_va, (size_t) unmap_len);
+                                               munmap(hp->orig_va,
+                                                       (size_t)unmap_len);
 
-                                               hp->final_va = NULL;
+                                               hp->orig_va = NULL;
                                                if (unlink(hp->filepath) == -1) {
                                                        RTE_LOG(ERR, EAL, "%s(): Removing %s failed: %s\n",
                                                                        __func__, hp->filepath, strerror(errno));
@@ -780,6 +650,436 @@ unmap_unneeded_hugepages(struct hugepage_file *hugepg_tbl,
        return 0;
 }
 
+static int
+remap_segment(struct hugepage_file *hugepages, int seg_start, int seg_end)
+{
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       struct rte_memseg_list *msl;
+       struct rte_fbarray *arr;
+       int cur_page, seg_len;
+       unsigned int msl_idx;
+       int ms_idx;
+       uint64_t page_sz;
+       size_t memseg_len;
+       int socket_id;
+
+       page_sz = hugepages[seg_start].size;
+       socket_id = hugepages[seg_start].socket_id;
+       seg_len = seg_end - seg_start;
+
+       RTE_LOG(DEBUG, EAL, "Attempting to map %" PRIu64 "M on socket %i\n",
+                       (seg_len * page_sz) >> 20ULL, socket_id);
+
+       /* find free space in memseg lists */
+       for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
+               bool empty;
+               msl = &mcfg->memsegs[msl_idx];
+               arr = &msl->memseg_arr;
+
+               if (msl->page_sz != page_sz)
+                       continue;
+               if (msl->socket_id != socket_id)
+                       continue;
+
+               /* leave space for a hole if array is not empty */
+               empty = arr->count == 0;
+               ms_idx = rte_fbarray_find_next_n_free(arr, 0,
+                               seg_len + (empty ? 0 : 1));
+
+               /* memseg list is full? */
+               if (ms_idx < 0)
+                       continue;
+
+               /* leave some space between memsegs, they are not IOVA
+                * contiguous, so they shouldn't be VA contiguous either.
+                */
+               if (!empty)
+                       ms_idx++;
+               break;
+       }
+       if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
+               RTE_LOG(ERR, EAL, "Could not find space for memseg. Please increase %s and/or %s in configuration.\n",
+                               RTE_STR(CONFIG_RTE_MAX_MEMSEG_PER_TYPE),
+                               RTE_STR(CONFIG_RTE_MAX_MEM_PER_TYPE));
+               return -1;
+       }
+
+#ifdef RTE_ARCH_PPC64
+       /* for PPC64 we go through the list backwards */
+       for (cur_page = seg_end - 1; cur_page >= seg_start;
+                       cur_page--, ms_idx++) {
+#else
+       for (cur_page = seg_start; cur_page < seg_end; cur_page++, ms_idx++) {
+#endif
+               struct hugepage_file *hfile = &hugepages[cur_page];
+               struct rte_memseg *ms = rte_fbarray_get(arr, ms_idx);
+               void *addr;
+               int fd;
+
+               fd = open(hfile->filepath, O_RDWR);
+               if (fd < 0) {
+                       RTE_LOG(ERR, EAL, "Could not open '%s': %s\n",
+                                       hfile->filepath, strerror(errno));
+                       return -1;
+               }
+               /* set shared lock on the file. */
+               if (flock(fd, LOCK_SH) < 0) {
+                       RTE_LOG(DEBUG, EAL, "Could not lock '%s': %s\n",
+                                       hfile->filepath, strerror(errno));
+                       close(fd);
+                       return -1;
+               }
+               memseg_len = (size_t)page_sz;
+               addr = RTE_PTR_ADD(msl->base_va, ms_idx * memseg_len);
+
+               /* we know this address is already mmapped by memseg list, so
+                * using MAP_FIXED here is safe
+                */
+               addr = mmap(addr, page_sz, PROT_READ | PROT_WRITE,
+                               MAP_SHARED | MAP_POPULATE | MAP_FIXED, fd, 0);
+               if (addr == MAP_FAILED) {
+                       RTE_LOG(ERR, EAL, "Couldn't remap '%s': %s\n",
+                                       hfile->filepath, strerror(errno));
+                       close(fd);
+                       return -1;
+               }
+
+               /* we have a new address, so unmap previous one */
+#ifndef RTE_ARCH_64
+               /* in 32-bit legacy mode, we have already unmapped the page */
+               if (!internal_config.legacy_mem)
+                       munmap(hfile->orig_va, page_sz);
+#else
+               munmap(hfile->orig_va, page_sz);
+#endif
+
+               hfile->orig_va = NULL;
+               hfile->final_va = addr;
+
+               /* rewrite physical addresses in IOVA as VA mode */
+               if (rte_eal_iova_mode() == RTE_IOVA_VA)
+                       hfile->physaddr = (uintptr_t)addr;
+
+               /* set up memseg data */
+               ms->addr = addr;
+               ms->hugepage_sz = page_sz;
+               ms->len = memseg_len;
+               ms->iova = hfile->physaddr;
+               ms->socket_id = hfile->socket_id;
+               ms->nchannel = rte_memory_get_nchannel();
+               ms->nrank = rte_memory_get_nrank();
+
+               rte_fbarray_set_used(arr, ms_idx);
+
+               close(fd);
+       }
+       RTE_LOG(DEBUG, EAL, "Allocated %" PRIu64 "M on socket %i\n",
+                       (seg_len * page_sz) >> 20, socket_id);
+       return 0;
+}
+
+static uint64_t
+get_mem_amount(uint64_t page_sz, uint64_t max_mem)
+{
+       uint64_t area_sz, max_pages;
+
+       /* limit to RTE_MAX_MEMSEG_PER_LIST pages or RTE_MAX_MEM_MB_PER_LIST */
+       max_pages = RTE_MAX_MEMSEG_PER_LIST;
+       max_mem = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20, max_mem);
+
+       area_sz = RTE_MIN(page_sz * max_pages, max_mem);
+
+       /* make sure the list isn't smaller than the page size */
+       area_sz = RTE_MAX(area_sz, page_sz);
+
+       return RTE_ALIGN(area_sz, page_sz);
+}
+
+static int
+free_memseg_list(struct rte_memseg_list *msl)
+{
+       if (rte_fbarray_destroy(&msl->memseg_arr)) {
+               RTE_LOG(ERR, EAL, "Cannot destroy memseg list\n");
+               return -1;
+       }
+       memset(msl, 0, sizeof(*msl));
+       return 0;
+}
+
+#define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i"
+static int
+alloc_memseg_list(struct rte_memseg_list *msl, uint64_t page_sz,
+               int n_segs, int socket_id, int type_msl_idx)
+{
+       char name[RTE_FBARRAY_NAME_LEN];
+
+       snprintf(name, sizeof(name), MEMSEG_LIST_FMT, page_sz >> 10, socket_id,
+                type_msl_idx);
+       if (rte_fbarray_init(&msl->memseg_arr, name, n_segs,
+                       sizeof(struct rte_memseg))) {
+               RTE_LOG(ERR, EAL, "Cannot allocate memseg list: %s\n",
+                       rte_strerror(rte_errno));
+               return -1;
+       }
+
+       msl->page_sz = page_sz;
+       msl->socket_id = socket_id;
+       msl->base_va = NULL;
+
+       RTE_LOG(DEBUG, EAL, "Memseg list allocated: 0x%zxkB at socket %i\n",
+                       (size_t)page_sz >> 10, socket_id);
+
+       return 0;
+}
+
+static int
+alloc_va_space(struct rte_memseg_list *msl)
+{
+       uint64_t page_sz;
+       size_t mem_sz;
+       void *addr;
+       int flags = 0;
+
+#ifdef RTE_ARCH_PPC_64
+       flags |= MAP_HUGETLB;
+#endif
+
+       page_sz = msl->page_sz;
+       mem_sz = page_sz * msl->memseg_arr.len;
+
+       addr = eal_get_virtual_area(msl->base_va, &mem_sz, page_sz, 0, flags);
+       if (addr == NULL) {
+               if (rte_errno == EADDRNOTAVAIL)
+                       RTE_LOG(ERR, EAL, "Could not mmap %llu bytes at [%p] - please use '--base-virtaddr' option\n",
+                               (unsigned long long)mem_sz, msl->base_va);
+               else
+                       RTE_LOG(ERR, EAL, "Cannot reserve memory\n");
+               return -1;
+       }
+       msl->base_va = addr;
+
+       return 0;
+}
+
+/*
+ * Our VA space is not preallocated yet, so preallocate it here. We need to know
+ * how many segments there are in order to map all pages into one address space,
+ * and leave appropriate holes between segments so that rte_malloc does not
+ * concatenate them into one big segment.
+ *
+ * we also need to unmap original pages to free up address space.
+ */
+static int __rte_unused
+prealloc_segments(struct hugepage_file *hugepages, int n_pages)
+{
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       int cur_page, seg_start_page, end_seg, new_memseg;
+       unsigned int hpi_idx, socket, i;
+       int n_contig_segs, n_segs;
+       int msl_idx;
+
+       /* before we preallocate segments, we need to free up our VA space.
+        * we're not removing files, and we already have information about
+        * PA-contiguousness, so it is safe to unmap everything.
+        */
+       for (cur_page = 0; cur_page < n_pages; cur_page++) {
+               struct hugepage_file *hpi = &hugepages[cur_page];
+               munmap(hpi->orig_va, hpi->size);
+               hpi->orig_va = NULL;
+       }
+
+       /* we cannot know how many page sizes and sockets we have discovered, so
+        * loop over all of them
+        */
+       for (hpi_idx = 0; hpi_idx < internal_config.num_hugepage_sizes;
+                       hpi_idx++) {
+               uint64_t page_sz =
+                       internal_config.hugepage_info[hpi_idx].hugepage_sz;
+
+               for (i = 0; i < rte_socket_count(); i++) {
+                       struct rte_memseg_list *msl;
+
+                       socket = rte_socket_id_by_idx(i);
+                       n_contig_segs = 0;
+                       n_segs = 0;
+                       seg_start_page = -1;
+
+                       for (cur_page = 0; cur_page < n_pages; cur_page++) {
+                               struct hugepage_file *prev, *cur;
+                               int prev_seg_start_page = -1;
+
+                               cur = &hugepages[cur_page];
+                               prev = cur_page == 0 ? NULL :
+                                               &hugepages[cur_page - 1];
+
+                               new_memseg = 0;
+                               end_seg = 0;
+
+                               if (cur->size == 0)
+                                       end_seg = 1;
+                               else if (cur->socket_id != (int) socket)
+                                       end_seg = 1;
+                               else if (cur->size != page_sz)
+                                       end_seg = 1;
+                               else if (cur_page == 0)
+                                       new_memseg = 1;
+#ifdef RTE_ARCH_PPC_64
+                               /* On PPC64 architecture, the mmap always start
+                                * from higher address to lower address. Here,
+                                * physical addresses are in descending order.
+                                */
+                               else if ((prev->physaddr - cur->physaddr) !=
+                                               cur->size)
+                                       new_memseg = 1;
+#else
+                               else if ((cur->physaddr - prev->physaddr) !=
+                                               cur->size)
+                                       new_memseg = 1;
+#endif
+                               if (new_memseg) {
+                                       /* if we're already inside a segment,
+                                        * new segment means end of current one
+                                        */
+                                       if (seg_start_page != -1) {
+                                               end_seg = 1;
+                                               prev_seg_start_page =
+                                                               seg_start_page;
+                                       }
+                                       seg_start_page = cur_page;
+                               }
+
+                               if (end_seg) {
+                                       if (prev_seg_start_page != -1) {
+                                               /* we've found a new segment */
+                                               n_contig_segs++;
+                                               n_segs += cur_page -
+                                                       prev_seg_start_page;
+                                       } else if (seg_start_page != -1) {
+                                               /* we didn't find new segment,
+                                                * but did end current one
+                                                */
+                                               n_contig_segs++;
+                                               n_segs += cur_page -
+                                                               seg_start_page;
+                                               seg_start_page = -1;
+                                               continue;
+                                       } else {
+                                               /* we're skipping this page */
+                                               continue;
+                                       }
+                               }
+                               /* segment continues */
+                       }
+                       /* check if we missed last segment */
+                       if (seg_start_page != -1) {
+                               n_contig_segs++;
+                               n_segs += cur_page - seg_start_page;
+                       }
+
+                       /* if no segments were found, do not preallocate */
+                       if (n_segs == 0)
+                               continue;
+
+                       /* we now have total number of pages that we will
+                        * allocate for this segment list. add separator pages
+                        * to the total count, and preallocate VA space.
+                        */
+                       n_segs += n_contig_segs - 1;
+
+                       /* now, preallocate VA space for these segments */
+
+                       /* first, find suitable memseg list for this */
+                       for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS;
+                                       msl_idx++) {
+                               msl = &mcfg->memsegs[msl_idx];
+
+                               if (msl->base_va != NULL)
+                                       continue;
+                               break;
+                       }
+                       if (msl_idx == RTE_MAX_MEMSEG_LISTS) {
+                               RTE_LOG(ERR, EAL, "Not enough space in memseg lists, please increase %s\n",
+                                       RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
+                               return -1;
+                       }
+
+                       /* now, allocate fbarray itself */
+                       if (alloc_memseg_list(msl, page_sz, n_segs, socket,
+                                               msl_idx) < 0)
+                               return -1;
+
+                       /* finally, allocate VA space */
+                       if (alloc_va_space(msl) < 0)
+                               return -1;
+               }
+       }
+       return 0;
+}
+
+/*
+ * We cannot reallocate memseg lists on the fly because PPC64 stores pages
+ * backwards, therefore we have to process the entire memseg first before
+ * remapping it into memseg list VA space.
+ */
+static int
+remap_needed_hugepages(struct hugepage_file *hugepages, int n_pages)
+{
+       int cur_page, seg_start_page, new_memseg, ret;
+
+       seg_start_page = 0;
+       for (cur_page = 0; cur_page < n_pages; cur_page++) {
+               struct hugepage_file *prev, *cur;
+
+               new_memseg = 0;
+
+               cur = &hugepages[cur_page];
+               prev = cur_page == 0 ? NULL : &hugepages[cur_page - 1];
+
+               /* if size is zero, no more pages left */
+               if (cur->size == 0)
+                       break;
+
+               if (cur_page == 0)
+                       new_memseg = 1;
+               else if (cur->socket_id != prev->socket_id)
+                       new_memseg = 1;
+               else if (cur->size != prev->size)
+                       new_memseg = 1;
+#ifdef RTE_ARCH_PPC_64
+               /* On PPC64 architecture, the mmap always start from higher
+                * address to lower address. Here, physical addresses are in
+                * descending order.
+                */
+               else if ((prev->physaddr - cur->physaddr) != cur->size)
+                       new_memseg = 1;
+#else
+               else if ((cur->physaddr - prev->physaddr) != cur->size)
+                       new_memseg = 1;
+#endif
+
+               if (new_memseg) {
+                       /* if this isn't the first time, remap segment */
+                       if (cur_page != 0) {
+                               ret = remap_segment(hugepages, seg_start_page,
+                                               cur_page);
+                               if (ret != 0)
+                                       return -1;
+                       }
+                       /* remember where we started */
+                       seg_start_page = cur_page;
+               }
+               /* continuation of previous memseg */
+       }
+       /* we were stopped, but we didn't remap the last segment, do it now */
+       if (cur_page != 0) {
+               ret = remap_segment(hugepages, seg_start_page,
+                               cur_page);
+               if (ret != 0)
+                       return -1;
+       }
+       return 0;
+}
+
 static inline uint64_t
 get_socket_mem_size(int socket)
 {
@@ -788,8 +1088,7 @@ get_socket_mem_size(int socket)
 
        for (i = 0; i < internal_config.num_hugepage_sizes; i++){
                struct hugepage_info *hpi = &internal_config.hugepage_info[i];
-               if (hpi->hugedir != NULL)
-                       size += hpi->hugepage_sz * hpi->num_pages[socket];
+               size += hpi->hugepage_sz * hpi->num_pages[socket];
        }
 
        return size;
@@ -818,8 +1117,10 @@ calc_num_pages_per_socket(uint64_t * memory,
 
        /* if specific memory amounts per socket weren't requested */
        if (internal_config.force_sockets == 0) {
+               size_t total_size;
+#ifdef RTE_ARCH_64
                int cpu_per_socket[RTE_MAX_NUMA_NODES];
-               size_t default_size, total_size;
+               size_t default_size;
                unsigned lcore_id;
 
                /* Compute number of cores per socket */
@@ -837,7 +1138,7 @@ calc_num_pages_per_socket(uint64_t * memory,
 
                        /* Set memory amount per socket */
                        default_size = (internal_config.memory * cpu_per_socket[socket])
-                                       / rte_lcore_count();
+                                       / rte_lcore_count();
 
                        /* Limit to maximum available memory on socket */
                        default_size = RTE_MIN(default_size, get_socket_mem_size(socket));
@@ -854,18 +1155,40 @@ calc_num_pages_per_socket(uint64_t * memory,
                for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0; socket++) {
                        /* take whatever is available */
                        default_size = RTE_MIN(get_socket_mem_size(socket) - memory[socket],
-                                              total_size);
+                                              total_size);
 
                        /* Update sizes */
                        memory[socket] += default_size;
                        total_size -= default_size;
                }
+#else
+               /* in 32-bit mode, allocate all of the memory only on master
+                * lcore socket
+                */
+               total_size = internal_config.memory;
+               for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_size != 0;
+                               socket++) {
+                       struct rte_config *cfg = rte_eal_get_configuration();
+                       unsigned int master_lcore_socket;
+
+                       master_lcore_socket =
+                               rte_lcore_to_socket_id(cfg->master_lcore);
+
+                       if (master_lcore_socket != socket)
+                               continue;
+
+                       /* Update sizes */
+                       memory[socket] = total_size;
+                       break;
+               }
+#endif
        }
 
        for (socket = 0; socket < RTE_MAX_NUMA_NODES && total_mem != 0; socket++) {
                /* skips if the memory on specific socket wasn't requested */
                for (i = 0; i < num_hp_info && memory[socket] != 0; i++){
-                       hp_used[i].hugedir = hp_info[i].hugedir;
+                       strlcpy(hp_used[i].hugedir, hp_info[i].hugedir,
+                               sizeof(hp_used[i].hugedir));
                        hp_used[i].num_pages[socket] = RTE_MIN(
                                        memory[socket] / hp_info[i].hugepage_sz,
                                        hp_info[i].num_pages[socket]);
@@ -907,7 +1230,8 @@ calc_num_pages_per_socket(uint64_t * memory,
                        }
                }
                /* if we didn't satisfy all memory requirements per socket */
-               if (memory[socket] > 0) {
+               if (memory[socket] > 0 &&
+                               internal_config.socket_mem[socket] != 0) {
                        /* to prevent icc errors */
                        requested = (unsigned) (internal_config.socket_mem[socket] /
                                        0x100000);
@@ -939,7 +1263,7 @@ eal_get_hugepage_mem_size(void)
 
        for (i = 0; i < internal_config.num_hugepage_sizes; i++) {
                struct hugepage_info *hpi = &internal_config.hugepage_info[i];
-               if (hpi->hugedir != NULL) {
+               if (strnlen(hpi->hugedir, sizeof(hpi->hugedir)) != 0) {
                        for (j = 0; j < RTE_MAX_NUMA_NODES; j++) {
                                size += hpi->hugepage_sz * hpi->num_pages[j];
                        }
@@ -987,17 +1311,19 @@ huge_recover_sigbus(void)
  *  6. unmap the first mapping
  *  7. fill memsegs in configuration with contiguous zones
  */
-int
-rte_eal_hugepage_init(void)
+static int
+eal_legacy_hugepage_init(void)
 {
        struct rte_mem_config *mcfg;
        struct hugepage_file *hugepage = NULL, *tmp_hp = NULL;
        struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
+       struct rte_fbarray *arr;
+       struct rte_memseg *ms;
 
        uint64_t memory[RTE_MAX_NUMA_NODES];
 
        unsigned hp_offset;
-       int i, j, new_memseg;
+       int i, j;
        int nr_hugefiles, nr_hugepages = 0;
        void *addr;
 
@@ -1010,21 +1336,54 @@ rte_eal_hugepage_init(void)
 
        /* hugetlbfs can be disabled */
        if (internal_config.no_hugetlbfs) {
+               struct rte_memseg_list *msl;
+               uint64_t page_sz;
+               int n_segs, cur_seg;
+
+               /* nohuge mode is legacy mode */
+               internal_config.legacy_mem = 1;
+
+               /* create a memseg list */
+               msl = &mcfg->memsegs[0];
+
+               page_sz = RTE_PGSIZE_4K;
+               n_segs = internal_config.memory / page_sz;
+
+               if (rte_fbarray_init(&msl->memseg_arr, "nohugemem", n_segs,
+                                       sizeof(struct rte_memseg))) {
+                       RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n");
+                       return -1;
+               }
+
                addr = mmap(NULL, internal_config.memory, PROT_READ | PROT_WRITE,
-                               MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
+                               MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
                if (addr == MAP_FAILED) {
                        RTE_LOG(ERR, EAL, "%s: mmap() failed: %s\n", __func__,
                                        strerror(errno));
                        return -1;
                }
-               if (rte_eal_iova_mode() == RTE_IOVA_VA)
-                       mcfg->memseg[0].iova = (uintptr_t)addr;
-               else
-                       mcfg->memseg[0].iova = RTE_BAD_IOVA;
-               mcfg->memseg[0].addr = addr;
-               mcfg->memseg[0].hugepage_sz = RTE_PGSIZE_4K;
-               mcfg->memseg[0].len = internal_config.memory;
-               mcfg->memseg[0].socket_id = 0;
+               msl->base_va = addr;
+               msl->page_sz = page_sz;
+               msl->socket_id = 0;
+
+               /* populate memsegs. each memseg is one page long */
+               for (cur_seg = 0; cur_seg < n_segs; cur_seg++) {
+                       arr = &msl->memseg_arr;
+
+                       ms = rte_fbarray_get(arr, cur_seg);
+                       if (rte_eal_iova_mode() == RTE_IOVA_VA)
+                               ms->iova = (uintptr_t)addr;
+                       else
+                               ms->iova = RTE_BAD_IOVA;
+                       ms->addr = addr;
+                       ms->hugepage_sz = page_sz;
+                       ms->socket_id = 0;
+                       ms->len = page_sz;
+
+                       rte_fbarray_set_used(arr, cur_seg);
+
+                       addr = RTE_PTR_ADD(addr, (size_t)page_sz);
+               }
                return 0;
        }
 
@@ -1057,7 +1416,6 @@ rte_eal_hugepage_init(void)
        for (i = 0; i < RTE_MAX_NUMA_NODES; i++)
                memory[i] = internal_config.socket_mem[i];
 
-
        /* map all hugepages and sort them */
        for (i = 0; i < (int)internal_config.num_hugepage_sizes; i ++){
                unsigned pages_old, pages_new;
@@ -1075,8 +1433,7 @@ rte_eal_hugepage_init(void)
 
                /* map all hugepages available */
                pages_old = hpi->num_pages[0];
-               pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi,
-                                             memory, 1);
+               pages_new = map_all_hugepages(&tmp_hp[hp_offset], hpi, memory);
                if (pages_new < pages_old) {
                        RTE_LOG(DEBUG, EAL,
                                "%d not %d hugepages of size %u MB allocated\n",
@@ -1091,7 +1448,8 @@ rte_eal_hugepage_init(void)
                                continue;
                }
 
-               if (phys_addrs_available) {
+               if (phys_addrs_available &&
+                               rte_eal_iova_mode() != RTE_IOVA_VA) {
                        /* find physical addresses for each hugepage */
                        if (find_physaddrs(&tmp_hp[hp_offset], hpi) < 0) {
                                RTE_LOG(DEBUG, EAL, "Failed to find phys addr "
@@ -1118,18 +1476,6 @@ rte_eal_hugepage_init(void)
                qsort(&tmp_hp[hp_offset], hpi->num_pages[0],
                      sizeof(struct hugepage_file), cmp_physaddr);
 
-               /* remap all hugepages */
-               if (map_all_hugepages(&tmp_hp[hp_offset], hpi, NULL, 0) !=
-                   hpi->num_pages[0]) {
-                       RTE_LOG(ERR, EAL, "Failed to remap %u MB pages\n",
-                                       (unsigned)(hpi->hugepage_sz / 0x100000));
-                       goto fail;
-               }
-
-               /* unmap original mappings */
-               if (unmap_all_hugepages_orig(&tmp_hp[hp_offset], hpi) < 0)
-                       goto fail;
-
                /* we have processed a num of hugepages of this size, so inc offset */
                hp_offset += hpi->num_pages[0];
        }
@@ -1191,7 +1537,7 @@ rte_eal_hugepage_init(void)
        }
 
        /* create shared memory */
-       hugepage = create_shared_memory(eal_hugepage_info_path(),
+       hugepage = create_shared_memory(eal_hugepage_data_path(),
                        nr_hugefiles * sizeof(struct hugepage_file));
 
        if (hugepage == NULL) {
@@ -1212,7 +1558,7 @@ rte_eal_hugepage_init(void)
 
        /*
         * copy stuff from malloc'd hugepage* to the actual shared memory.
-        * this procedure only copies those hugepages that have final_va
+        * this procedure only copies those hugepages that have orig_va
         * not NULL. has overflow protection.
         */
        if (copy_hugepages_to_shared_mem(hugepage, nr_hugefiles,
@@ -1221,10 +1567,27 @@ rte_eal_hugepage_init(void)
                goto fail;
        }
 
-       /* free the hugepage backing files */
-       if (internal_config.hugepage_unlink &&
-               unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
-               RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
+#ifndef RTE_ARCH_64
+       /* for legacy 32-bit mode, we did not preallocate VA space, so do it */
+       if (internal_config.legacy_mem &&
+                       prealloc_segments(hugepage, nr_hugefiles)) {
+               RTE_LOG(ERR, EAL, "Could not preallocate VA space for hugepages\n");
+               goto fail;
+       }
+#endif
+
+       /* remap all pages we do need into memseg list VA space, so that those
+        * pages become first-class citizens in DPDK memory subsystem
+        */
+       if (remap_needed_hugepages(hugepage, nr_hugefiles)) {
+               RTE_LOG(ERR, EAL, "Couldn't remap hugepage files into memseg lists\n");
+               goto fail;
+       }
+
+       /* free the hugepage backing files */
+       if (internal_config.hugepage_unlink &&
+               unlink_hugepage_files(tmp_hp, internal_config.num_hugepage_sizes) < 0) {
+               RTE_LOG(ERR, EAL, "Unlinking hugepage files failed!\n");
                goto fail;
        }
 
@@ -1232,75 +1595,30 @@ rte_eal_hugepage_init(void)
        free(tmp_hp);
        tmp_hp = NULL;
 
-       /* first memseg index shall be 0 after incrementing it below */
-       j = -1;
-       for (i = 0; i < nr_hugefiles; i++) {
-               new_memseg = 0;
-
-               /* if this is a new section, create a new memseg */
-               if (i == 0)
-                       new_memseg = 1;
-               else if (hugepage[i].socket_id != hugepage[i-1].socket_id)
-                       new_memseg = 1;
-               else if (hugepage[i].size != hugepage[i-1].size)
-                       new_memseg = 1;
-
-#ifdef RTE_ARCH_PPC_64
-               /* On PPC64 architecture, the mmap always start from higher
-                * virtual address to lower address. Here, both the physical
-                * address and virtual address are in descending order */
-               else if ((hugepage[i-1].physaddr - hugepage[i].physaddr) !=
-                   hugepage[i].size)
-                       new_memseg = 1;
-               else if (((unsigned long)hugepage[i-1].final_va -
-                   (unsigned long)hugepage[i].final_va) != hugepage[i].size)
-                       new_memseg = 1;
-#else
-               else if ((hugepage[i].physaddr - hugepage[i-1].physaddr) !=
-                   hugepage[i].size)
-                       new_memseg = 1;
-               else if (((unsigned long)hugepage[i].final_va -
-                   (unsigned long)hugepage[i-1].final_va) != hugepage[i].size)
-                       new_memseg = 1;
-#endif
+       munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
 
-               if (new_memseg) {
-                       j += 1;
-                       if (j == RTE_MAX_MEMSEG)
-                               break;
+       /* we're not going to allocate more pages, so release VA space for
+        * unused memseg lists
+        */
+       for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
+               struct rte_memseg_list *msl = &mcfg->memsegs[i];
+               size_t mem_sz;
 
-                       mcfg->memseg[j].iova = hugepage[i].physaddr;
-                       mcfg->memseg[j].addr = hugepage[i].final_va;
-                       mcfg->memseg[j].len = hugepage[i].size;
-                       mcfg->memseg[j].socket_id = hugepage[i].socket_id;
-                       mcfg->memseg[j].hugepage_sz = hugepage[i].size;
-               }
-               /* continuation of previous memseg */
-               else {
-#ifdef RTE_ARCH_PPC_64
-               /* Use the phy and virt address of the last page as segment
-                * address for IBM Power architecture */
-                       mcfg->memseg[j].iova = hugepage[i].physaddr;
-                       mcfg->memseg[j].addr = hugepage[i].final_va;
-#endif
-                       mcfg->memseg[j].len += mcfg->memseg[j].hugepage_sz;
-               }
-               hugepage[i].memseg_id = j;
-       }
+               /* skip inactive lists */
+               if (msl->base_va == NULL)
+                       continue;
+               /* skip lists where there is at least one page allocated */
+               if (msl->memseg_arr.count > 0)
+                       continue;
+               /* this is an unused list, deallocate it */
+               mem_sz = (size_t)msl->page_sz * msl->memseg_arr.len;
+               munmap(msl->base_va, mem_sz);
+               msl->base_va = NULL;
 
-       if (i < nr_hugefiles) {
-               RTE_LOG(ERR, EAL, "Can only reserve %d pages "
-                       "from %d requested\n"
-                       "Current %s=%d is not enough\n"
-                       "Please either increase it or request less amount "
-                       "of memory.\n",
-                       i, nr_hugefiles, RTE_STR(CONFIG_RTE_MAX_MEMSEG),
-                       RTE_MAX_MEMSEG);
-               goto fail;
+               /* destroy backing fbarray */
+               rte_fbarray_destroy(&msl->memseg_arr);
        }
 
-       munmap(hugepage, nr_hugefiles * sizeof(struct hugepage_file));
-
        return 0;
 
 fail:
@@ -1312,6 +1630,125 @@ fail:
        return -1;
 }
 
+static int __rte_unused
+hugepage_count_walk(const struct rte_memseg_list *msl, void *arg)
+{
+       struct hugepage_info *hpi = arg;
+
+       if (msl->page_sz != hpi->hugepage_sz)
+               return 0;
+
+       hpi->num_pages[msl->socket_id] += msl->memseg_arr.len;
+       return 0;
+}
+
+static int
+limits_callback(int socket_id, size_t cur_limit, size_t new_len)
+{
+       RTE_SET_USED(socket_id);
+       RTE_SET_USED(cur_limit);
+       RTE_SET_USED(new_len);
+       return -1;
+}
+
+static int
+eal_hugepage_init(void)
+{
+       struct hugepage_info used_hp[MAX_HUGEPAGE_SIZES];
+       uint64_t memory[RTE_MAX_NUMA_NODES];
+       int hp_sz_idx, socket_id;
+
+       test_phys_addrs_available();
+
+       memset(used_hp, 0, sizeof(used_hp));
+
+       for (hp_sz_idx = 0;
+                       hp_sz_idx < (int) internal_config.num_hugepage_sizes;
+                       hp_sz_idx++) {
+#ifndef RTE_ARCH_64
+               struct hugepage_info dummy;
+               unsigned int i;
+#endif
+               /* also initialize used_hp hugepage sizes in used_hp */
+               struct hugepage_info *hpi;
+               hpi = &internal_config.hugepage_info[hp_sz_idx];
+               used_hp[hp_sz_idx].hugepage_sz = hpi->hugepage_sz;
+
+#ifndef RTE_ARCH_64
+               /* for 32-bit, limit number of pages on socket to whatever we've
+                * preallocated, as we cannot allocate more.
+                */
+               memset(&dummy, 0, sizeof(dummy));
+               dummy.hugepage_sz = hpi->hugepage_sz;
+               if (rte_memseg_list_walk(hugepage_count_walk, &dummy) < 0)
+                       return -1;
+
+               for (i = 0; i < RTE_DIM(dummy.num_pages); i++) {
+                       hpi->num_pages[i] = RTE_MIN(hpi->num_pages[i],
+                                       dummy.num_pages[i]);
+               }
+#endif
+       }
+
+       /* make a copy of socket_mem, needed for balanced allocation. */
+       for (hp_sz_idx = 0; hp_sz_idx < RTE_MAX_NUMA_NODES; hp_sz_idx++)
+               memory[hp_sz_idx] = internal_config.socket_mem[hp_sz_idx];
+
+       /* calculate final number of pages */
+       if (calc_num_pages_per_socket(memory,
+                       internal_config.hugepage_info, used_hp,
+                       internal_config.num_hugepage_sizes) < 0)
+               return -1;
+
+       for (hp_sz_idx = 0;
+                       hp_sz_idx < (int)internal_config.num_hugepage_sizes;
+                       hp_sz_idx++) {
+               for (socket_id = 0; socket_id < RTE_MAX_NUMA_NODES;
+                               socket_id++) {
+                       struct rte_memseg **pages;
+                       struct hugepage_info *hpi = &used_hp[hp_sz_idx];
+                       unsigned int num_pages = hpi->num_pages[socket_id];
+                       int num_pages_alloc, i;
+
+                       if (num_pages == 0)
+                               continue;
+
+                       pages = malloc(sizeof(*pages) * num_pages);
+
+                       RTE_LOG(DEBUG, EAL, "Allocating %u pages of size %" PRIu64 "M on socket %i\n",
+                               num_pages, hpi->hugepage_sz >> 20, socket_id);
+
+                       num_pages_alloc = eal_memalloc_alloc_seg_bulk(pages,
+                                       num_pages, hpi->hugepage_sz,
+                                       socket_id, true);
+                       if (num_pages_alloc < 0) {
+                               free(pages);
+                               return -1;
+                       }
+
+                       /* mark preallocated pages as unfreeable */
+                       for (i = 0; i < num_pages_alloc; i++) {
+                               struct rte_memseg *ms = pages[i];
+                               ms->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE;
+                       }
+                       free(pages);
+               }
+       }
+       /* if socket limits were specified, set them */
+       if (internal_config.force_socket_limits) {
+               unsigned int i;
+               for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
+                       uint64_t limit = internal_config.socket_limit[i];
+                       if (limit == 0)
+                               continue;
+                       if (rte_mem_alloc_validator_register("socket-limit",
+                                       limits_callback, i, limit))
+                               RTE_LOG(ERR, EAL, "Failed to register socket limits validator callback\n");
+               }
+       }
+       return 0;
+}
+
 /*
  * uses fstat to report the size of a file on disk
  */
@@ -1330,16 +1767,15 @@ getFileSize(int fd)
  * configuration and finds the hugepages which form that segment, mapping them
  * in order to form a contiguous block in the virtual memory space
  */
-int
-rte_eal_hugepage_attach(void)
+static int
+eal_legacy_hugepage_attach(void)
 {
-       const struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
        struct hugepage_file *hp = NULL;
-       unsigned num_hp = 0;
-       unsigned i, s = 0; /* s used to track the segment number */
-       unsigned max_seg = RTE_MAX_MEMSEG;
+       unsigned int num_hp = 0;
+       unsigned int i = 0;
+       unsigned int cur_seg;
        off_t size = 0;
-       int fd, fd_zero = -1, fd_hugepage = -1;
+       int fd, fd_hugepage = -1;
 
        if (aslr_enabled() > 0) {
                RTE_LOG(WARNING, EAL, "WARNING: Address Space Layout Randomization "
@@ -1350,139 +1786,429 @@ rte_eal_hugepage_attach(void)
 
        test_phys_addrs_available();
 
-       fd_zero = open("/dev/zero", O_RDONLY);
-       if (fd_zero < 0) {
-               RTE_LOG(ERR, EAL, "Could not open /dev/zero\n");
-               goto error;
-       }
-       fd_hugepage = open(eal_hugepage_info_path(), O_RDONLY);
+       fd_hugepage = open(eal_hugepage_data_path(), O_RDONLY);
        if (fd_hugepage < 0) {
-               RTE_LOG(ERR, EAL, "Could not open %s\n", eal_hugepage_info_path());
+               RTE_LOG(ERR, EAL, "Could not open %s\n",
+                               eal_hugepage_data_path());
                goto error;
        }
 
-       /* map all segments into memory to make sure we get the addrs */
-       for (s = 0; s < RTE_MAX_MEMSEG; ++s) {
-               void *base_addr;
-
-               /*
-                * the first memory segment with len==0 is the one that
-                * follows the last valid segment.
-                */
-               if (mcfg->memseg[s].len == 0)
-                       break;
-
-               /*
-                * fdzero is mmapped to get a contiguous block of virtual
-                * addresses of the appropriate memseg size.
-                * use mmap to get identical addresses as the primary process.
-                */
-               base_addr = mmap(mcfg->memseg[s].addr, mcfg->memseg[s].len,
-                                PROT_READ,
-#ifdef RTE_ARCH_PPC_64
-                                MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB,
-#else
-                                MAP_PRIVATE,
-#endif
-                                fd_zero, 0);
-               if (base_addr == MAP_FAILED ||
-                   base_addr != mcfg->memseg[s].addr) {
-                       max_seg = s;
-                       if (base_addr != MAP_FAILED) {
-                               /* errno is stale, don't use */
-                               RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
-                                       "in /dev/zero at [%p], got [%p] - "
-                                       "please use '--base-virtaddr' option\n",
-                                       (unsigned long long)mcfg->memseg[s].len,
-                                       mcfg->memseg[s].addr, base_addr);
-                               munmap(base_addr, mcfg->memseg[s].len);
-                       } else {
-                               RTE_LOG(ERR, EAL, "Could not mmap %llu bytes "
-                                       "in /dev/zero at [%p]: '%s'\n",
-                                       (unsigned long long)mcfg->memseg[s].len,
-                                       mcfg->memseg[s].addr, strerror(errno));
-                       }
-                       if (aslr_enabled() > 0) {
-                               RTE_LOG(ERR, EAL, "It is recommended to "
-                                       "disable ASLR in the kernel "
-                                       "and retry running both primary "
-                                       "and secondary processes\n");
-                       }
-                       goto error;
-               }
-       }
-
        size = getFileSize(fd_hugepage);
        hp = mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd_hugepage, 0);
        if (hp == MAP_FAILED) {
-               RTE_LOG(ERR, EAL, "Could not mmap %s\n", eal_hugepage_info_path());
+               RTE_LOG(ERR, EAL, "Could not mmap %s\n",
+                               eal_hugepage_data_path());
                goto error;
        }
 
        num_hp = size / sizeof(struct hugepage_file);
        RTE_LOG(DEBUG, EAL, "Analysing %u files\n", num_hp);
 
-       s = 0;
-       while (s < RTE_MAX_MEMSEG && mcfg->memseg[s].len > 0){
-               void *addr, *base_addr;
-               uintptr_t offset = 0;
-               size_t mapping_size;
-               /*
-                * free previously mapped memory so we can map the
-                * hugepages into the space
-                */
-               base_addr = mcfg->memseg[s].addr;
-               munmap(base_addr, mcfg->memseg[s].len);
-
-               /* find the hugepages for this segment and map them
-                * we don't need to worry about order, as the server sorted the
-                * entries before it did the second mmap of them */
-               for (i = 0; i < num_hp && offset < mcfg->memseg[s].len; i++){
-                       if (hp[i].memseg_id == (int)s){
-                               fd = open(hp[i].filepath, O_RDWR);
-                               if (fd < 0) {
-                                       RTE_LOG(ERR, EAL, "Could not open %s\n",
-                                               hp[i].filepath);
-                                       goto error;
-                               }
-                               mapping_size = hp[i].size;
-                               addr = mmap(RTE_PTR_ADD(base_addr, offset),
-                                               mapping_size, PROT_READ | PROT_WRITE,
-                                               MAP_SHARED, fd, 0);
-                               close(fd); /* close file both on success and on failure */
-                               if (addr == MAP_FAILED ||
-                                               addr != RTE_PTR_ADD(base_addr, offset)) {
-                                       RTE_LOG(ERR, EAL, "Could not mmap %s\n",
-                                               hp[i].filepath);
-                                       goto error;
-                               }
-                               offset+=mapping_size;
-                       }
+       /* map all segments into memory to make sure we get the addrs. the
+        * segments themselves are already in memseg list (which is shared and
+        * has its VA space already preallocated), so we just need to map
+        * everything into correct addresses.
+        */
+       for (i = 0; i < num_hp; i++) {
+               struct hugepage_file *hf = &hp[i];
+               size_t map_sz = hf->size;
+               void *map_addr = hf->final_va;
+
+               /* if size is zero, no more pages left */
+               if (map_sz == 0)
+                       break;
+
+               fd = open(hf->filepath, O_RDWR);
+               if (fd < 0) {
+                       RTE_LOG(ERR, EAL, "Could not open %s: %s\n",
+                               hf->filepath, strerror(errno));
+                       goto error;
+               }
+
+               map_addr = mmap(map_addr, map_sz, PROT_READ | PROT_WRITE,
+                               MAP_SHARED | MAP_FIXED, fd, 0);
+               if (map_addr == MAP_FAILED) {
+                       RTE_LOG(ERR, EAL, "Could not map %s: %s\n",
+                               hf->filepath, strerror(errno));
+                       close(fd);
+                       goto error;
                }
-               RTE_LOG(DEBUG, EAL, "Mapped segment %u of size 0x%llx\n", s,
-                               (unsigned long long)mcfg->memseg[s].len);
-               s++;
+
+               /* set shared lock on the file. */
+               if (flock(fd, LOCK_SH) < 0) {
+                       RTE_LOG(DEBUG, EAL, "%s(): Locking file failed: %s\n",
+                               __func__, strerror(errno));
+                       close(fd);
+                       goto error;
+               }
+
+               close(fd);
        }
        /* unmap the hugepage config file, since we are done using it */
        munmap(hp, size);
-       close(fd_zero);
        close(fd_hugepage);
        return 0;
 
 error:
-       for (i = 0; i < max_seg && mcfg->memseg[i].len > 0; i++)
-               munmap(mcfg->memseg[i].addr, mcfg->memseg[i].len);
+       /* map all segments into memory to make sure we get the addrs */
+       cur_seg = 0;
+       for (cur_seg = 0; cur_seg < i; cur_seg++) {
+               struct hugepage_file *hf = &hp[i];
+               size_t map_sz = hf->size;
+               void *map_addr = hf->final_va;
+
+               munmap(map_addr, map_sz);
+       }
        if (hp != NULL && hp != MAP_FAILED)
                munmap(hp, size);
-       if (fd_zero >= 0)
-               close(fd_zero);
        if (fd_hugepage >= 0)
                close(fd_hugepage);
        return -1;
 }
 
+static int
+eal_hugepage_attach(void)
+{
+       if (eal_memalloc_sync_with_primary()) {
+               RTE_LOG(ERR, EAL, "Could not map memory from primary process\n");
+               if (aslr_enabled() > 0)
+                       RTE_LOG(ERR, EAL, "It is recommended to disable ASLR in the kernel and retry running both primary and secondary processes\n");
+               return -1;
+       }
+       return 0;
+}
+
+int
+rte_eal_hugepage_init(void)
+{
+       return internal_config.legacy_mem ?
+                       eal_legacy_hugepage_init() :
+                       eal_hugepage_init();
+}
+
+int
+rte_eal_hugepage_attach(void)
+{
+       return internal_config.legacy_mem ?
+                       eal_legacy_hugepage_attach() :
+                       eal_hugepage_attach();
+}
+
 int
 rte_eal_using_phys_addrs(void)
 {
        return phys_addrs_available;
 }
+
+static int __rte_unused
+memseg_primary_init_32(void)
+{
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       int active_sockets, hpi_idx, msl_idx = 0;
+       unsigned int socket_id, i;
+       struct rte_memseg_list *msl;
+       uint64_t extra_mem_per_socket, total_extra_mem, total_requested_mem;
+       uint64_t max_mem;
+
+       /* no-huge does not need this at all */
+       if (internal_config.no_hugetlbfs)
+               return 0;
+
+       /* this is a giant hack, but desperate times call for desperate
+        * measures. in legacy 32-bit mode, we cannot preallocate VA space,
+        * because having upwards of 2 gigabytes of VA space already mapped will
+        * interfere with our ability to map and sort hugepages.
+        *
+        * therefore, in legacy 32-bit mode, we will be initializing memseg
+        * lists much later - in eal_memory.c, right after we unmap all the
+        * unneeded pages. this will not affect secondary processes, as those
+        * should be able to mmap the space without (too many) problems.
+        */
+       if (internal_config.legacy_mem)
+               return 0;
+
+       /* 32-bit mode is a very special case. we cannot know in advance where
+        * the user will want to allocate their memory, so we have to do some
+        * heuristics.
+        */
+       active_sockets = 0;
+       total_requested_mem = 0;
+       if (internal_config.force_sockets)
+               for (i = 0; i < rte_socket_count(); i++) {
+                       uint64_t mem;
+
+                       socket_id = rte_socket_id_by_idx(i);
+                       mem = internal_config.socket_mem[socket_id];
+
+                       if (mem == 0)
+                               continue;
+
+                       active_sockets++;
+                       total_requested_mem += mem;
+               }
+       else
+               total_requested_mem = internal_config.memory;
+
+       max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
+       if (total_requested_mem > max_mem) {
+               RTE_LOG(ERR, EAL, "Invalid parameters: 32-bit process can at most use %uM of memory\n",
+                               (unsigned int)(max_mem >> 20));
+               return -1;
+       }
+       total_extra_mem = max_mem - total_requested_mem;
+       extra_mem_per_socket = active_sockets == 0 ? total_extra_mem :
+                       total_extra_mem / active_sockets;
+
+       /* the allocation logic is a little bit convoluted, but here's how it
+        * works, in a nutshell:
+        *  - if user hasn't specified on which sockets to allocate memory via
+        *    --socket-mem, we allocate all of our memory on master core socket.
+        *  - if user has specified sockets to allocate memory on, there may be
+        *    some "unused" memory left (e.g. if user has specified --socket-mem
+        *    such that not all memory adds up to 2 gigabytes), so add it to all
+        *    sockets that are in use equally.
+        *
+        * page sizes are sorted by size in descending order, so we can safely
+        * assume that we dispense with bigger page sizes first.
+        */
+
+       /* create memseg lists */
+       for (i = 0; i < rte_socket_count(); i++) {
+               int hp_sizes = (int) internal_config.num_hugepage_sizes;
+               uint64_t max_socket_mem, cur_socket_mem;
+               unsigned int master_lcore_socket;
+               struct rte_config *cfg = rte_eal_get_configuration();
+               bool skip;
+
+               socket_id = rte_socket_id_by_idx(i);
+
+#ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
+               if (socket_id > 0)
+                       break;
+#endif
+
+               /* if we didn't specifically request memory on this socket */
+               skip = active_sockets != 0 &&
+                               internal_config.socket_mem[socket_id] == 0;
+               /* ...or if we didn't specifically request memory on *any*
+                * socket, and this is not master lcore
+                */
+               master_lcore_socket = rte_lcore_to_socket_id(cfg->master_lcore);
+               skip |= active_sockets == 0 && socket_id != master_lcore_socket;
+
+               if (skip) {
+                       RTE_LOG(DEBUG, EAL, "Will not preallocate memory on socket %u\n",
+                                       socket_id);
+                       continue;
+               }
+
+               /* max amount of memory on this socket */
+               max_socket_mem = (active_sockets != 0 ?
+                                       internal_config.socket_mem[socket_id] :
+                                       internal_config.memory) +
+                                       extra_mem_per_socket;
+               cur_socket_mem = 0;
+
+               for (hpi_idx = 0; hpi_idx < hp_sizes; hpi_idx++) {
+                       uint64_t max_pagesz_mem, cur_pagesz_mem = 0;
+                       uint64_t hugepage_sz;
+                       struct hugepage_info *hpi;
+                       int type_msl_idx, max_segs, total_segs = 0;
+
+                       hpi = &internal_config.hugepage_info[hpi_idx];
+                       hugepage_sz = hpi->hugepage_sz;
+
+                       /* check if pages are actually available */
+                       if (hpi->num_pages[socket_id] == 0)
+                               continue;
+
+                       max_segs = RTE_MAX_MEMSEG_PER_TYPE;
+                       max_pagesz_mem = max_socket_mem - cur_socket_mem;
+
+                       /* make it multiple of page size */
+                       max_pagesz_mem = RTE_ALIGN_FLOOR(max_pagesz_mem,
+                                       hugepage_sz);
+
+                       RTE_LOG(DEBUG, EAL, "Attempting to preallocate "
+                                       "%" PRIu64 "M on socket %i\n",
+                                       max_pagesz_mem >> 20, socket_id);
+
+                       type_msl_idx = 0;
+                       while (cur_pagesz_mem < max_pagesz_mem &&
+                                       total_segs < max_segs) {
+                               uint64_t cur_mem;
+                               unsigned int n_segs;
+
+                               if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
+                                       RTE_LOG(ERR, EAL,
+                                               "No more space in memseg lists, please increase %s\n",
+                                               RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
+                                       return -1;
+                               }
+
+                               msl = &mcfg->memsegs[msl_idx];
+
+                               cur_mem = get_mem_amount(hugepage_sz,
+                                               max_pagesz_mem);
+                               n_segs = cur_mem / hugepage_sz;
+
+                               if (alloc_memseg_list(msl, hugepage_sz, n_segs,
+                                               socket_id, type_msl_idx)) {
+                                       /* failing to allocate a memseg list is
+                                        * a serious error.
+                                        */
+                                       RTE_LOG(ERR, EAL, "Cannot allocate memseg list\n");
+                                       return -1;
+                               }
+
+                               if (alloc_va_space(msl)) {
+                                       /* if we couldn't allocate VA space, we
+                                        * can try with smaller page sizes.
+                                        */
+                                       RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list, retrying with different page size\n");
+                                       /* deallocate memseg list */
+                                       if (free_memseg_list(msl))
+                                               return -1;
+                                       break;
+                               }
+
+                               total_segs += msl->memseg_arr.len;
+                               cur_pagesz_mem = total_segs * hugepage_sz;
+                               type_msl_idx++;
+                               msl_idx++;
+                       }
+                       cur_socket_mem += cur_pagesz_mem;
+               }
+               if (cur_socket_mem == 0) {
+                       RTE_LOG(ERR, EAL, "Cannot allocate VA space on socket %u\n",
+                               socket_id);
+                       return -1;
+               }
+       }
+
+       return 0;
+}
+
+static int __rte_unused
+memseg_primary_init(void)
+{
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       int i, socket_id, hpi_idx, msl_idx = 0;
+       struct rte_memseg_list *msl;
+       uint64_t max_mem, total_mem;
+
+       /* no-huge does not need this at all */
+       if (internal_config.no_hugetlbfs)
+               return 0;
+
+       max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
+       total_mem = 0;
+
+       /* create memseg lists */
+       for (hpi_idx = 0; hpi_idx < (int) internal_config.num_hugepage_sizes;
+                       hpi_idx++) {
+               struct hugepage_info *hpi;
+               uint64_t hugepage_sz;
+
+               hpi = &internal_config.hugepage_info[hpi_idx];
+               hugepage_sz = hpi->hugepage_sz;
+
+               for (i = 0; i < (int) rte_socket_count(); i++) {
+                       uint64_t max_type_mem, total_type_mem = 0;
+                       int type_msl_idx, max_segs, total_segs = 0;
+
+                       socket_id = rte_socket_id_by_idx(i);
+
+#ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
+                       if (socket_id > 0)
+                               break;
+#endif
+
+                       if (total_mem >= max_mem)
+                               break;
+
+                       max_type_mem = RTE_MIN(max_mem - total_mem,
+                               (uint64_t)RTE_MAX_MEM_MB_PER_TYPE << 20);
+                       max_segs = RTE_MAX_MEMSEG_PER_TYPE;
+
+                       type_msl_idx = 0;
+                       while (total_type_mem < max_type_mem &&
+                                       total_segs < max_segs) {
+                               uint64_t cur_max_mem, cur_mem;
+                               unsigned int n_segs;
+
+                               if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
+                                       RTE_LOG(ERR, EAL,
+                                               "No more space in memseg lists, please increase %s\n",
+                                               RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
+                                       return -1;
+                               }
+
+                               msl = &mcfg->memsegs[msl_idx++];
+
+                               cur_max_mem = max_type_mem - total_type_mem;
+
+                               cur_mem = get_mem_amount(hugepage_sz,
+                                               cur_max_mem);
+                               n_segs = cur_mem / hugepage_sz;
+
+                               if (alloc_memseg_list(msl, hugepage_sz, n_segs,
+                                               socket_id, type_msl_idx))
+                                       return -1;
+
+                               total_segs += msl->memseg_arr.len;
+                               total_type_mem = total_segs * hugepage_sz;
+                               type_msl_idx++;
+
+                               if (alloc_va_space(msl)) {
+                                       RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list\n");
+                                       return -1;
+                               }
+                       }
+                       total_mem += total_type_mem;
+               }
+       }
+       return 0;
+}
+
+static int
+memseg_secondary_init(void)
+{
+       struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
+       int msl_idx = 0;
+       struct rte_memseg_list *msl;
+
+       for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
+
+               msl = &mcfg->memsegs[msl_idx];
+
+               /* skip empty memseg lists */
+               if (msl->memseg_arr.len == 0)
+                       continue;
+
+               if (rte_fbarray_attach(&msl->memseg_arr)) {
+                       RTE_LOG(ERR, EAL, "Cannot attach to primary process memseg lists\n");
+                       return -1;
+               }
+
+               /* preallocate VA space */
+               if (alloc_va_space(msl)) {
+                       RTE_LOG(ERR, EAL, "Cannot preallocate VA space for hugepage memory\n");
+                       return -1;
+               }
+       }
+
+       return 0;
+}
+
+int
+rte_eal_memseg_init(void)
+{
+       return rte_eal_process_type() == RTE_PROC_PRIMARY ?
+#ifndef RTE_ARCH_64
+                       memseg_primary_init_32() :
+#else
+                       memseg_primary_init() :
+#endif
+                       memseg_secondary_init();
+}