Imported Upstream version 16.04
[deb_dpdk.git] / lib / librte_eal / linuxapp / kni / ethtool / igb / e1000_nvm.c
diff --git a/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_nvm.c b/lib/librte_eal/linuxapp/kni/ethtool/igb/e1000_nvm.c
new file mode 100644 (file)
index 0000000..6188d00
--- /dev/null
@@ -0,0 +1,965 @@
+/*******************************************************************************
+
+  Intel(R) Gigabit Ethernet Linux driver
+  Copyright(c) 2007-2013 Intel Corporation.
+
+  This program is free software; you can redistribute it and/or modify it
+  under the terms and conditions of the GNU General Public License,
+  version 2, as published by the Free Software Foundation.
+
+  This program is distributed in the hope it will be useful, but WITHOUT
+  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+  more details.
+
+  You should have received a copy of the GNU General Public License along with
+  this program; if not, write to the Free Software Foundation, Inc.,
+  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+
+  The full GNU General Public License is included in this distribution in
+  the file called "COPYING".
+
+  Contact Information:
+  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
+  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
+
+*******************************************************************************/
+
+#include "e1000_api.h"
+
+static void e1000_reload_nvm_generic(struct e1000_hw *hw);
+
+/**
+ *  e1000_init_nvm_ops_generic - Initialize NVM function pointers
+ *  @hw: pointer to the HW structure
+ *
+ *  Setups up the function pointers to no-op functions
+ **/
+void e1000_init_nvm_ops_generic(struct e1000_hw *hw)
+{
+       struct e1000_nvm_info *nvm = &hw->nvm;
+       DEBUGFUNC("e1000_init_nvm_ops_generic");
+
+       /* Initialize function pointers */
+       nvm->ops.init_params = e1000_null_ops_generic;
+       nvm->ops.acquire = e1000_null_ops_generic;
+       nvm->ops.read = e1000_null_read_nvm;
+       nvm->ops.release = e1000_null_nvm_generic;
+       nvm->ops.reload = e1000_reload_nvm_generic;
+       nvm->ops.update = e1000_null_ops_generic;
+       nvm->ops.valid_led_default = e1000_null_led_default;
+       nvm->ops.validate = e1000_null_ops_generic;
+       nvm->ops.write = e1000_null_write_nvm;
+}
+
+/**
+ *  e1000_null_nvm_read - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_null_read_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
+                       u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
+                       u16 E1000_UNUSEDARG *c)
+{
+       DEBUGFUNC("e1000_null_read_nvm");
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_null_nvm_generic - No-op function, return void
+ *  @hw: pointer to the HW structure
+ **/
+void e1000_null_nvm_generic(struct e1000_hw E1000_UNUSEDARG *hw)
+{
+       DEBUGFUNC("e1000_null_nvm_generic");
+       return;
+}
+
+/**
+ *  e1000_null_led_default - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_null_led_default(struct e1000_hw E1000_UNUSEDARG *hw,
+                          u16 E1000_UNUSEDARG *data)
+{
+       DEBUGFUNC("e1000_null_led_default");
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_null_write_nvm - No-op function, return 0
+ *  @hw: pointer to the HW structure
+ **/
+s32 e1000_null_write_nvm(struct e1000_hw E1000_UNUSEDARG *hw,
+                        u16 E1000_UNUSEDARG a, u16 E1000_UNUSEDARG b,
+                        u16 E1000_UNUSEDARG *c)
+{
+       DEBUGFUNC("e1000_null_write_nvm");
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_raise_eec_clk - Raise EEPROM clock
+ *  @hw: pointer to the HW structure
+ *  @eecd: pointer to the EEPROM
+ *
+ *  Enable/Raise the EEPROM clock bit.
+ **/
+static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+       *eecd = *eecd | E1000_EECD_SK;
+       E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+       E1000_WRITE_FLUSH(hw);
+       usec_delay(hw->nvm.delay_usec);
+}
+
+/**
+ *  e1000_lower_eec_clk - Lower EEPROM clock
+ *  @hw: pointer to the HW structure
+ *  @eecd: pointer to the EEPROM
+ *
+ *  Clear/Lower the EEPROM clock bit.
+ **/
+static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
+{
+       *eecd = *eecd & ~E1000_EECD_SK;
+       E1000_WRITE_REG(hw, E1000_EECD, *eecd);
+       E1000_WRITE_FLUSH(hw);
+       usec_delay(hw->nvm.delay_usec);
+}
+
+/**
+ *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
+ *  @hw: pointer to the HW structure
+ *  @data: data to send to the EEPROM
+ *  @count: number of bits to shift out
+ *
+ *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
+ *  "data" parameter will be shifted out to the EEPROM one bit at a time.
+ *  In order to do this, "data" must be broken down into bits.
+ **/
+static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
+{
+       struct e1000_nvm_info *nvm = &hw->nvm;
+       u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+       u32 mask;
+
+       DEBUGFUNC("e1000_shift_out_eec_bits");
+
+       mask = 0x01 << (count - 1);
+       if (nvm->type == e1000_nvm_eeprom_spi)
+               eecd |= E1000_EECD_DO;
+
+       do {
+               eecd &= ~E1000_EECD_DI;
+
+               if (data & mask)
+                       eecd |= E1000_EECD_DI;
+
+               E1000_WRITE_REG(hw, E1000_EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+
+               usec_delay(nvm->delay_usec);
+
+               e1000_raise_eec_clk(hw, &eecd);
+               e1000_lower_eec_clk(hw, &eecd);
+
+               mask >>= 1;
+       } while (mask);
+
+       eecd &= ~E1000_EECD_DI;
+       E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/**
+ *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
+ *  @hw: pointer to the HW structure
+ *  @count: number of bits to shift in
+ *
+ *  In order to read a register from the EEPROM, we need to shift 'count' bits
+ *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
+ *  the EEPROM (setting the SK bit), and then reading the value of the data out
+ *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
+ *  always be clear.
+ **/
+static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
+{
+       u32 eecd;
+       u32 i;
+       u16 data;
+
+       DEBUGFUNC("e1000_shift_in_eec_bits");
+
+       eecd = E1000_READ_REG(hw, E1000_EECD);
+
+       eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
+       data = 0;
+
+       for (i = 0; i < count; i++) {
+               data <<= 1;
+               e1000_raise_eec_clk(hw, &eecd);
+
+               eecd = E1000_READ_REG(hw, E1000_EECD);
+
+               eecd &= ~E1000_EECD_DI;
+               if (eecd & E1000_EECD_DO)
+                       data |= 1;
+
+               e1000_lower_eec_clk(hw, &eecd);
+       }
+
+       return data;
+}
+
+/**
+ *  e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
+ *  @hw: pointer to the HW structure
+ *  @ee_reg: EEPROM flag for polling
+ *
+ *  Polls the EEPROM status bit for either read or write completion based
+ *  upon the value of 'ee_reg'.
+ **/
+s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
+{
+       u32 attempts = 100000;
+       u32 i, reg = 0;
+
+       DEBUGFUNC("e1000_poll_eerd_eewr_done");
+
+       for (i = 0; i < attempts; i++) {
+               if (ee_reg == E1000_NVM_POLL_READ)
+                       reg = E1000_READ_REG(hw, E1000_EERD);
+               else
+                       reg = E1000_READ_REG(hw, E1000_EEWR);
+
+               if (reg & E1000_NVM_RW_REG_DONE)
+                       return E1000_SUCCESS;
+
+               usec_delay(5);
+       }
+
+       return -E1000_ERR_NVM;
+}
+
+/**
+ *  e1000_acquire_nvm_generic - Generic request for access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
+ *  Return successful if access grant bit set, else clear the request for
+ *  EEPROM access and return -E1000_ERR_NVM (-1).
+ **/
+s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
+{
+       u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+       s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
+
+       DEBUGFUNC("e1000_acquire_nvm_generic");
+
+       E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
+       eecd = E1000_READ_REG(hw, E1000_EECD);
+
+       while (timeout) {
+               if (eecd & E1000_EECD_GNT)
+                       break;
+               usec_delay(5);
+               eecd = E1000_READ_REG(hw, E1000_EECD);
+               timeout--;
+       }
+
+       if (!timeout) {
+               eecd &= ~E1000_EECD_REQ;
+               E1000_WRITE_REG(hw, E1000_EECD, eecd);
+               DEBUGOUT("Could not acquire NVM grant\n");
+               return -E1000_ERR_NVM;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_standby_nvm - Return EEPROM to standby state
+ *  @hw: pointer to the HW structure
+ *
+ *  Return the EEPROM to a standby state.
+ **/
+static void e1000_standby_nvm(struct e1000_hw *hw)
+{
+       struct e1000_nvm_info *nvm = &hw->nvm;
+       u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+
+       DEBUGFUNC("e1000_standby_nvm");
+
+       if (nvm->type == e1000_nvm_eeprom_spi) {
+               /* Toggle CS to flush commands */
+               eecd |= E1000_EECD_CS;
+               E1000_WRITE_REG(hw, E1000_EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               usec_delay(nvm->delay_usec);
+               eecd &= ~E1000_EECD_CS;
+               E1000_WRITE_REG(hw, E1000_EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               usec_delay(nvm->delay_usec);
+       }
+}
+
+/**
+ *  e1000_stop_nvm - Terminate EEPROM command
+ *  @hw: pointer to the HW structure
+ *
+ *  Terminates the current command by inverting the EEPROM's chip select pin.
+ **/
+static void e1000_stop_nvm(struct e1000_hw *hw)
+{
+       u32 eecd;
+
+       DEBUGFUNC("e1000_stop_nvm");
+
+       eecd = E1000_READ_REG(hw, E1000_EECD);
+       if (hw->nvm.type == e1000_nvm_eeprom_spi) {
+               /* Pull CS high */
+               eecd |= E1000_EECD_CS;
+               e1000_lower_eec_clk(hw, &eecd);
+       }
+}
+
+/**
+ *  e1000_release_nvm_generic - Release exclusive access to EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
+ **/
+void e1000_release_nvm_generic(struct e1000_hw *hw)
+{
+       u32 eecd;
+
+       DEBUGFUNC("e1000_release_nvm_generic");
+
+       e1000_stop_nvm(hw);
+
+       eecd = E1000_READ_REG(hw, E1000_EECD);
+       eecd &= ~E1000_EECD_REQ;
+       E1000_WRITE_REG(hw, E1000_EECD, eecd);
+}
+
+/**
+ *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
+ *  @hw: pointer to the HW structure
+ *
+ *  Setups the EEPROM for reading and writing.
+ **/
+static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
+{
+       struct e1000_nvm_info *nvm = &hw->nvm;
+       u32 eecd = E1000_READ_REG(hw, E1000_EECD);
+       u8 spi_stat_reg;
+
+       DEBUGFUNC("e1000_ready_nvm_eeprom");
+
+       if (nvm->type == e1000_nvm_eeprom_spi) {
+               u16 timeout = NVM_MAX_RETRY_SPI;
+
+               /* Clear SK and CS */
+               eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
+               E1000_WRITE_REG(hw, E1000_EECD, eecd);
+               E1000_WRITE_FLUSH(hw);
+               usec_delay(1);
+
+               /* Read "Status Register" repeatedly until the LSB is cleared.
+                * The EEPROM will signal that the command has been completed
+                * by clearing bit 0 of the internal status register.  If it's
+                * not cleared within 'timeout', then error out.
+                */
+               while (timeout) {
+                       e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
+                                                hw->nvm.opcode_bits);
+                       spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
+                       if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
+                               break;
+
+                       usec_delay(5);
+                       e1000_standby_nvm(hw);
+                       timeout--;
+               }
+
+               if (!timeout) {
+                       DEBUGOUT("SPI NVM Status error\n");
+                       return -E1000_ERR_NVM;
+               }
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_nvm_spi - Read EEPROM's using SPI
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of word in the EEPROM to read
+ *  @words: number of words to read
+ *  @data: word read from the EEPROM
+ *
+ *  Reads a 16 bit word from the EEPROM.
+ **/
+s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+       struct e1000_nvm_info *nvm = &hw->nvm;
+       u32 i = 0;
+       s32 ret_val;
+       u16 word_in;
+       u8 read_opcode = NVM_READ_OPCODE_SPI;
+
+       DEBUGFUNC("e1000_read_nvm_spi");
+
+       /* A check for invalid values:  offset too large, too many words,
+        * and not enough words.
+        */
+       if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+           (words == 0)) {
+               DEBUGOUT("nvm parameter(s) out of bounds\n");
+               return -E1000_ERR_NVM;
+       }
+
+       ret_val = nvm->ops.acquire(hw);
+       if (ret_val)
+               return ret_val;
+
+       ret_val = e1000_ready_nvm_eeprom(hw);
+       if (ret_val)
+               goto release;
+
+       e1000_standby_nvm(hw);
+
+       if ((nvm->address_bits == 8) && (offset >= 128))
+               read_opcode |= NVM_A8_OPCODE_SPI;
+
+       /* Send the READ command (opcode + addr) */
+       e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
+       e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
+
+       /* Read the data.  SPI NVMs increment the address with each byte
+        * read and will roll over if reading beyond the end.  This allows
+        * us to read the whole NVM from any offset
+        */
+       for (i = 0; i < words; i++) {
+               word_in = e1000_shift_in_eec_bits(hw, 16);
+               data[i] = (word_in >> 8) | (word_in << 8);
+       }
+
+release:
+       nvm->ops.release(hw);
+
+       return ret_val;
+}
+
+/**
+ *  e1000_read_nvm_eerd - Reads EEPROM using EERD register
+ *  @hw: pointer to the HW structure
+ *  @offset: offset of word in the EEPROM to read
+ *  @words: number of words to read
+ *  @data: word read from the EEPROM
+ *
+ *  Reads a 16 bit word from the EEPROM using the EERD register.
+ **/
+s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+       struct e1000_nvm_info *nvm = &hw->nvm;
+       u32 i, eerd = 0;
+       s32 ret_val = E1000_SUCCESS;
+
+       DEBUGFUNC("e1000_read_nvm_eerd");
+
+       /* A check for invalid values:  offset too large, too many words,
+        * too many words for the offset, and not enough words.
+        */
+       if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+           (words == 0)) {
+               DEBUGOUT("nvm parameter(s) out of bounds\n");
+               return -E1000_ERR_NVM;
+       }
+
+       for (i = 0; i < words; i++) {
+               eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
+                      E1000_NVM_RW_REG_START;
+
+               E1000_WRITE_REG(hw, E1000_EERD, eerd);
+               ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
+               if (ret_val)
+                       break;
+
+               data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
+                          E1000_NVM_RW_REG_DATA);
+       }
+
+       return ret_val;
+}
+
+/**
+ *  e1000_write_nvm_spi - Write to EEPROM using SPI
+ *  @hw: pointer to the HW structure
+ *  @offset: offset within the EEPROM to be written to
+ *  @words: number of words to write
+ *  @data: 16 bit word(s) to be written to the EEPROM
+ *
+ *  Writes data to EEPROM at offset using SPI interface.
+ *
+ *  If e1000_update_nvm_checksum is not called after this function , the
+ *  EEPROM will most likely contain an invalid checksum.
+ **/
+s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
+{
+       struct e1000_nvm_info *nvm = &hw->nvm;
+       s32 ret_val = -E1000_ERR_NVM;
+       u16 widx = 0;
+
+       DEBUGFUNC("e1000_write_nvm_spi");
+
+       /* A check for invalid values:  offset too large, too many words,
+        * and not enough words.
+        */
+       if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
+           (words == 0)) {
+               DEBUGOUT("nvm parameter(s) out of bounds\n");
+               return -E1000_ERR_NVM;
+       }
+
+       while (widx < words) {
+               u8 write_opcode = NVM_WRITE_OPCODE_SPI;
+
+               ret_val = nvm->ops.acquire(hw);
+               if (ret_val)
+                       return ret_val;
+
+               ret_val = e1000_ready_nvm_eeprom(hw);
+               if (ret_val) {
+                       nvm->ops.release(hw);
+                       return ret_val;
+               }
+
+               e1000_standby_nvm(hw);
+
+               /* Send the WRITE ENABLE command (8 bit opcode) */
+               e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
+                                        nvm->opcode_bits);
+
+               e1000_standby_nvm(hw);
+
+               /* Some SPI eeproms use the 8th address bit embedded in the
+                * opcode
+                */
+               if ((nvm->address_bits == 8) && (offset >= 128))
+                       write_opcode |= NVM_A8_OPCODE_SPI;
+
+               /* Send the Write command (8-bit opcode + addr) */
+               e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
+               e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
+                                        nvm->address_bits);
+
+               /* Loop to allow for up to whole page write of eeprom */
+               while (widx < words) {
+                       u16 word_out = data[widx];
+                       word_out = (word_out >> 8) | (word_out << 8);
+                       e1000_shift_out_eec_bits(hw, word_out, 16);
+                       widx++;
+
+                       if ((((offset + widx) * 2) % nvm->page_size) == 0) {
+                               e1000_standby_nvm(hw);
+                               break;
+                       }
+               }
+               msec_delay(10);
+               nvm->ops.release(hw);
+       }
+
+       return ret_val;
+}
+
+/**
+ *  e1000_read_pba_string_generic - Read device part number
+ *  @hw: pointer to the HW structure
+ *  @pba_num: pointer to device part number
+ *  @pba_num_size: size of part number buffer
+ *
+ *  Reads the product board assembly (PBA) number from the EEPROM and stores
+ *  the value in pba_num.
+ **/
+s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
+                                 u32 pba_num_size)
+{
+       s32 ret_val;
+       u16 nvm_data;
+       u16 pba_ptr;
+       u16 offset;
+       u16 length;
+
+       DEBUGFUNC("e1000_read_pba_string_generic");
+
+       if (pba_num == NULL) {
+               DEBUGOUT("PBA string buffer was null\n");
+               return -E1000_ERR_INVALID_ARGUMENT;
+       }
+
+       ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+       if (ret_val) {
+               DEBUGOUT("NVM Read Error\n");
+               return ret_val;
+       }
+
+       ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
+       if (ret_val) {
+               DEBUGOUT("NVM Read Error\n");
+               return ret_val;
+       }
+
+       /* if nvm_data is not ptr guard the PBA must be in legacy format which
+        * means pba_ptr is actually our second data word for the PBA number
+        * and we can decode it into an ascii string
+        */
+       if (nvm_data != NVM_PBA_PTR_GUARD) {
+               DEBUGOUT("NVM PBA number is not stored as string\n");
+
+               /* make sure callers buffer is big enough to store the PBA */
+               if (pba_num_size < E1000_PBANUM_LENGTH) {
+                       DEBUGOUT("PBA string buffer too small\n");
+                       return E1000_ERR_NO_SPACE;
+               }
+
+               /* extract hex string from data and pba_ptr */
+               pba_num[0] = (nvm_data >> 12) & 0xF;
+               pba_num[1] = (nvm_data >> 8) & 0xF;
+               pba_num[2] = (nvm_data >> 4) & 0xF;
+               pba_num[3] = nvm_data & 0xF;
+               pba_num[4] = (pba_ptr >> 12) & 0xF;
+               pba_num[5] = (pba_ptr >> 8) & 0xF;
+               pba_num[6] = '-';
+               pba_num[7] = 0;
+               pba_num[8] = (pba_ptr >> 4) & 0xF;
+               pba_num[9] = pba_ptr & 0xF;
+
+               /* put a null character on the end of our string */
+               pba_num[10] = '\0';
+
+               /* switch all the data but the '-' to hex char */
+               for (offset = 0; offset < 10; offset++) {
+                       if (pba_num[offset] < 0xA)
+                               pba_num[offset] += '0';
+                       else if (pba_num[offset] < 0x10)
+                               pba_num[offset] += 'A' - 0xA;
+               }
+
+               return E1000_SUCCESS;
+       }
+
+       ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
+       if (ret_val) {
+               DEBUGOUT("NVM Read Error\n");
+               return ret_val;
+       }
+
+       if (length == 0xFFFF || length == 0) {
+               DEBUGOUT("NVM PBA number section invalid length\n");
+               return -E1000_ERR_NVM_PBA_SECTION;
+       }
+       /* check if pba_num buffer is big enough */
+       if (pba_num_size < (((u32)length * 2) - 1)) {
+               DEBUGOUT("PBA string buffer too small\n");
+               return -E1000_ERR_NO_SPACE;
+       }
+
+       /* trim pba length from start of string */
+       pba_ptr++;
+       length--;
+
+       for (offset = 0; offset < length; offset++) {
+               ret_val = hw->nvm.ops.read(hw, pba_ptr + offset, 1, &nvm_data);
+               if (ret_val) {
+                       DEBUGOUT("NVM Read Error\n");
+                       return ret_val;
+               }
+               pba_num[offset * 2] = (u8)(nvm_data >> 8);
+               pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
+       }
+       pba_num[offset * 2] = '\0';
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_read_pba_length_generic - Read device part number length
+ *  @hw: pointer to the HW structure
+ *  @pba_num_size: size of part number buffer
+ *
+ *  Reads the product board assembly (PBA) number length from the EEPROM and
+ *  stores the value in pba_num_size.
+ **/
+s32 e1000_read_pba_length_generic(struct e1000_hw *hw, u32 *pba_num_size)
+{
+       s32 ret_val;
+       u16 nvm_data;
+       u16 pba_ptr;
+       u16 length;
+
+       DEBUGFUNC("e1000_read_pba_length_generic");
+
+       if (pba_num_size == NULL) {
+               DEBUGOUT("PBA buffer size was null\n");
+               return -E1000_ERR_INVALID_ARGUMENT;
+       }
+
+       ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
+       if (ret_val) {
+               DEBUGOUT("NVM Read Error\n");
+               return ret_val;
+       }
+
+       ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
+       if (ret_val) {
+               DEBUGOUT("NVM Read Error\n");
+               return ret_val;
+       }
+
+        /* if data is not ptr guard the PBA must be in legacy format */
+       if (nvm_data != NVM_PBA_PTR_GUARD) {
+               *pba_num_size = E1000_PBANUM_LENGTH;
+               return E1000_SUCCESS;
+       }
+
+       ret_val = hw->nvm.ops.read(hw, pba_ptr, 1, &length);
+       if (ret_val) {
+               DEBUGOUT("NVM Read Error\n");
+               return ret_val;
+       }
+
+       if (length == 0xFFFF || length == 0) {
+               DEBUGOUT("NVM PBA number section invalid length\n");
+               return -E1000_ERR_NVM_PBA_SECTION;
+       }
+
+       /* Convert from length in u16 values to u8 chars, add 1 for NULL,
+        * and subtract 2 because length field is included in length.
+        */
+       *pba_num_size = ((u32)length * 2) - 1;
+
+       return E1000_SUCCESS;
+}
+
+
+
+
+
+/**
+ *  e1000_read_mac_addr_generic - Read device MAC address
+ *  @hw: pointer to the HW structure
+ *
+ *  Reads the device MAC address from the EEPROM and stores the value.
+ *  Since devices with two ports use the same EEPROM, we increment the
+ *  last bit in the MAC address for the second port.
+ **/
+s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
+{
+       u32 rar_high;
+       u32 rar_low;
+       u16 i;
+
+       rar_high = E1000_READ_REG(hw, E1000_RAH(0));
+       rar_low = E1000_READ_REG(hw, E1000_RAL(0));
+
+       for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
+               hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
+
+       for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
+               hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
+
+       for (i = 0; i < ETH_ADDR_LEN; i++)
+               hw->mac.addr[i] = hw->mac.perm_addr[i];
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
+ **/
+s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
+{
+       s32 ret_val;
+       u16 checksum = 0;
+       u16 i, nvm_data;
+
+       DEBUGFUNC("e1000_validate_nvm_checksum_generic");
+
+       for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
+               ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
+               if (ret_val) {
+                       DEBUGOUT("NVM Read Error\n");
+                       return ret_val;
+               }
+               checksum += nvm_data;
+       }
+
+       if (checksum != (u16) NVM_SUM) {
+               DEBUGOUT("NVM Checksum Invalid\n");
+               return -E1000_ERR_NVM;
+       }
+
+       return E1000_SUCCESS;
+}
+
+/**
+ *  e1000_update_nvm_checksum_generic - Update EEPROM checksum
+ *  @hw: pointer to the HW structure
+ *
+ *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
+ *  up to the checksum.  Then calculates the EEPROM checksum and writes the
+ *  value to the EEPROM.
+ **/
+s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
+{
+       s32 ret_val;
+       u16 checksum = 0;
+       u16 i, nvm_data;
+
+       DEBUGFUNC("e1000_update_nvm_checksum");
+
+       for (i = 0; i < NVM_CHECKSUM_REG; i++) {
+               ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
+               if (ret_val) {
+                       DEBUGOUT("NVM Read Error while updating checksum.\n");
+                       return ret_val;
+               }
+               checksum += nvm_data;
+       }
+       checksum = (u16) NVM_SUM - checksum;
+       ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
+       if (ret_val)
+               DEBUGOUT("NVM Write Error while updating checksum.\n");
+
+       return ret_val;
+}
+
+/**
+ *  e1000_reload_nvm_generic - Reloads EEPROM
+ *  @hw: pointer to the HW structure
+ *
+ *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
+ *  extended control register.
+ **/
+static void e1000_reload_nvm_generic(struct e1000_hw *hw)
+{
+       u32 ctrl_ext;
+
+       DEBUGFUNC("e1000_reload_nvm_generic");
+
+       usec_delay(10);
+       ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
+       ctrl_ext |= E1000_CTRL_EXT_EE_RST;
+       E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
+       E1000_WRITE_FLUSH(hw);
+}
+
+/**
+ *  e1000_get_fw_version - Get firmware version information
+ *  @hw: pointer to the HW structure
+ *  @fw_vers: pointer to output version structure
+ *
+ *  unsupported/not present features return 0 in version structure
+ **/
+void e1000_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
+{
+       u16 eeprom_verh, eeprom_verl, etrack_test, fw_version;
+       u8 q, hval, rem, result;
+       u16 comb_verh, comb_verl, comb_offset;
+
+       memset(fw_vers, 0, sizeof(struct e1000_fw_version));
+
+       /* basic eeprom version numbers, bits used vary by part and by tool
+        * used to create the nvm images */
+       /* Check which data format we have */
+       hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test);
+       switch (hw->mac.type) {
+       case e1000_i211:
+               e1000_read_invm_version(hw, fw_vers);
+               return;
+       case e1000_82575:
+       case e1000_82576:
+       case e1000_82580:
+               /* Use this format, unless EETRACK ID exists,
+                * then use alternate format
+                */
+               if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) {
+                       hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
+                       fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
+                                             >> NVM_MAJOR_SHIFT;
+                       fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK)
+                                             >> NVM_MINOR_SHIFT;
+                       fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK);
+                       goto etrack_id;
+               }
+               break;
+       case e1000_i210:
+               if (!(e1000_get_flash_presence_i210(hw))) {
+                       e1000_read_invm_version(hw, fw_vers);
+                       return;
+               }
+               /* fall through */
+       case e1000_i350:
+       case e1000_i354:
+               /* find combo image version */
+               hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
+               if ((comb_offset != 0x0) &&
+                   (comb_offset != NVM_VER_INVALID)) {
+
+                       hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
+                                        + 1), 1, &comb_verh);
+                       hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
+                                        1, &comb_verl);
+
+                       /* get Option Rom version if it exists and is valid */
+                       if ((comb_verh && comb_verl) &&
+                           ((comb_verh != NVM_VER_INVALID) &&
+                            (comb_verl != NVM_VER_INVALID))) {
+
+                               fw_vers->or_valid = true;
+                               fw_vers->or_major =
+                                       comb_verl >> NVM_COMB_VER_SHFT;
+                               fw_vers->or_build =
+                                       (comb_verl << NVM_COMB_VER_SHFT)
+                                       | (comb_verh >> NVM_COMB_VER_SHFT);
+                               fw_vers->or_patch =
+                                       comb_verh & NVM_COMB_VER_MASK;
+                       }
+               }
+               break;
+       default:
+               return;
+       }
+       hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
+       fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK)
+                             >> NVM_MAJOR_SHIFT;
+
+       /* check for old style version format in newer images*/
+       if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) {
+               eeprom_verl = (fw_version & NVM_COMB_VER_MASK);
+       } else {
+               eeprom_verl = (fw_version & NVM_MINOR_MASK)
+                               >> NVM_MINOR_SHIFT;
+       }
+       /* Convert minor value to hex before assigning to output struct
+        * Val to be converted will not be higher than 99, per tool output
+        */
+       q = eeprom_verl / NVM_HEX_CONV;
+       hval = q * NVM_HEX_TENS;
+       rem = eeprom_verl % NVM_HEX_CONV;
+       result = hval + rem;
+       fw_vers->eep_minor = result;
+
+etrack_id:
+       if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) {
+               hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
+               hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
+               fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT)
+                       | eeprom_verl;
+       }
+       return;
+}