Imported Upstream version 17.05
[deb_dpdk.git] / lib / librte_efd / rte_efd.c
diff --git a/lib/librte_efd/rte_efd.c b/lib/librte_efd/rte_efd.c
new file mode 100644 (file)
index 0000000..f601d62
--- /dev/null
@@ -0,0 +1,1343 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+#include <stdio.h>
+#include <string.h>
+#include <stdint.h>
+#include <inttypes.h>
+#include <errno.h>
+#include <stdarg.h>
+#include <sys/queue.h>
+
+#include <rte_log.h>
+#include <rte_eal_memconfig.h>
+#include <rte_errno.h>
+#include <rte_malloc.h>
+#include <rte_memzone.h>
+#include <rte_prefetch.h>
+#include <rte_branch_prediction.h>
+#include <rte_memcpy.h>
+#include <rte_ring.h>
+#include <rte_jhash.h>
+#include <rte_hash_crc.h>
+
+#include "rte_efd.h"
+#if defined(RTE_ARCH_X86)
+#include "rte_efd_x86.h"
+#endif
+
+#define EFD_KEY(key_idx, table) (table->keys + ((key_idx) * table->key_len))
+/** Hash function used to determine chunk_id and bin_id for a group */
+#define EFD_HASH(key, table) \
+       (uint32_t)(rte_jhash(key, table->key_len, 0xbc9f1d34))
+/** Hash function used as constant component of perfect hash search */
+#define EFD_HASHFUNCA(key, table) \
+       (uint32_t)(rte_hash_crc(key, table->key_len, 0xbc9f1d35))
+/** Hash function used as multiplicative component of perfect hash search */
+#define EFD_HASHFUNCB(key, table) \
+       (uint32_t)(rte_hash_crc(key, table->key_len, 0xbc9f1d36))
+
+/*************************************************************************
+ * Fixed constants
+ *************************************************************************/
+
+/* These parameters are fixed by the efd_bin_to_group balancing table */
+#define EFD_CHUNK_NUM_GROUPS (64)
+#define EFD_CHUNK_NUM_BINS   (256)
+#define EFD_CHUNK_NUM_BIN_TO_GROUP_SETS \
+       (EFD_CHUNK_NUM_BINS / EFD_CHUNK_NUM_GROUPS)
+
+/*
+ * Target number of rules that each chunk is created to handle.
+ * Used when initially allocating the table
+ */
+#define EFD_TARGET_CHUNK_NUM_RULES  \
+       (EFD_CHUNK_NUM_GROUPS * EFD_TARGET_GROUP_NUM_RULES)
+/*
+ * Max number of rules that each chunk is created to handle.
+ * Used when initially allocating the table
+ */
+#define EFD_TARGET_CHUNK_MAX_NUM_RULES  \
+       (EFD_CHUNK_NUM_GROUPS * EFD_MAX_GROUP_NUM_RULES)
+
+/** This is fixed based on the bin_to_group permutation array */
+#define EFD_MAX_GROUP_NUM_BINS (16)
+
+/**
+ * The end of the chunks array needs some extra padding to ensure
+ * that vectorization over-reads on the last online chunk stay within
+allocated memory
+ */
+#define EFD_NUM_CHUNK_PADDING_BYTES (256)
+
+/* All different internal lookup functions */
+enum efd_lookup_internal_function {
+       EFD_LOOKUP_SCALAR = 0,
+       EFD_LOOKUP_AVX2,
+       EFD_LOOKUP_NUM
+};
+
+TAILQ_HEAD(rte_efd_list, rte_tailq_entry);
+
+static struct rte_tailq_elem rte_efd_tailq = {
+       .name = "RTE_EFD",
+};
+EAL_REGISTER_TAILQ(rte_efd_tailq);
+
+/** Internal permutation array used to shuffle bins into pseudorandom groups */
+const uint32_t efd_bin_to_group[EFD_CHUNK_NUM_BIN_TO_GROUP_SETS][EFD_CHUNK_NUM_BINS] = {
+       {
+               0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3,
+               4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,
+               8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11,
+               12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15,
+               16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19,
+               20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23,
+               24, 24, 24, 24, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 27,
+               28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30, 30, 31, 31, 31, 31,
+               32, 32, 32, 32, 33, 33, 33, 33, 34, 34, 34, 34, 35, 35, 35, 35,
+               36, 36, 36, 36, 37, 37, 37, 37, 38, 38, 38, 38, 39, 39, 39, 39,
+               40, 40, 40, 40, 41, 41, 41, 41, 42, 42, 42, 42, 43, 43, 43, 43,
+               44, 44, 44, 44, 45, 45, 45, 45, 46, 46, 46, 46, 47, 47, 47, 47,
+               48, 48, 48, 48, 49, 49, 49, 49, 50, 50, 50, 50, 51, 51, 51, 51,
+               52, 52, 52, 52, 53, 53, 53, 53, 54, 54, 54, 54, 55, 55, 55, 55,
+               56, 56, 56, 56, 57, 57, 57, 57, 58, 58, 58, 58, 59, 59, 59, 59,
+               60, 60, 60, 60, 61, 61, 61, 61, 62, 62, 62, 62, 63, 63, 63, 63
+       },
+       {
+               34, 33, 48, 59, 0, 21, 36, 18, 9, 49, 54, 38, 51, 23, 31, 5,
+               44, 23, 37, 52, 11, 4, 58, 20, 38, 40, 38, 22, 26, 28, 42, 6,
+               46, 16, 31, 28, 46, 14, 60, 0, 35, 53, 16, 58, 16, 29, 39, 7,
+               1, 54, 15, 11, 48, 3, 62, 9, 58, 5, 30, 43, 17, 7, 36, 34,
+               6, 36, 2, 14, 10, 1, 47, 47, 20, 45, 62, 56, 34, 25, 39, 18,
+               51, 41, 61, 25, 56, 40, 41, 37, 52, 35, 30, 57, 11, 42, 37, 27,
+               54, 19, 26, 13, 48, 31, 46, 15, 12, 10, 16, 20, 43, 17, 12, 55,
+               45, 18, 8, 41, 7, 31, 42, 63, 12, 14, 21, 57, 24, 40, 5, 41,
+               13, 44, 23, 59, 25, 57, 52, 50, 62, 1, 2, 49, 32, 57, 26, 43,
+               56, 60, 55, 5, 49, 6, 3, 50, 46, 39, 27, 33, 17, 4, 53, 13,
+               2, 19, 36, 51, 63, 0, 22, 33, 59, 28, 29, 23, 45, 33, 53, 27,
+               22, 21, 40, 56, 4, 18, 44, 47, 28, 17, 4, 50, 21, 62, 8, 39,
+               0, 8, 15, 24, 29, 24, 9, 11, 48, 61, 35, 55, 43, 1, 54, 42,
+               53, 60, 22, 3, 32, 52, 25, 8, 15, 60, 7, 55, 27, 63, 19, 10,
+               63, 24, 61, 19, 12, 38, 6, 29, 13, 37, 10, 3, 45, 32, 32, 30,
+               49, 61, 44, 14, 20, 58, 35, 30, 2, 26, 34, 51, 9, 59, 47, 50
+       },
+       {
+               32, 35, 32, 34, 55, 5, 6, 23, 49, 11, 6, 23, 52, 37, 29, 54,
+               55, 40, 63, 50, 29, 52, 61, 25, 12, 56, 39, 38, 29, 11, 46, 1,
+               40, 11, 19, 56, 7, 28, 51, 16, 15, 48, 21, 51, 60, 31, 14, 22,
+               41, 47, 59, 56, 53, 28, 58, 26, 43, 27, 41, 33, 24, 52, 44, 38,
+               13, 59, 48, 51, 60, 15, 3, 30, 15, 0, 10, 62, 44, 14, 28, 51,
+               38, 2, 41, 26, 25, 49, 10, 12, 55, 57, 27, 35, 19, 33, 0, 30,
+               5, 36, 47, 53, 5, 53, 20, 43, 34, 37, 52, 41, 21, 63, 59, 9,
+               24, 1, 45, 24, 39, 44, 45, 16, 9, 17, 7, 50, 57, 22, 18, 28,
+               25, 45, 2, 40, 58, 15, 17, 3, 1, 27, 61, 39, 19, 0, 19, 21,
+               57, 62, 54, 60, 54, 40, 48, 33, 36, 37, 4, 42, 1, 43, 58, 8,
+               13, 42, 10, 56, 35, 22, 48, 61, 63, 10, 49, 9, 24, 9, 25, 57,
+               33, 18, 13, 31, 42, 36, 36, 55, 30, 37, 53, 34, 59, 4, 4, 23,
+               8, 16, 58, 14, 30, 11, 12, 63, 49, 62, 2, 39, 47, 22, 2, 60,
+               18, 8, 46, 31, 6, 20, 32, 29, 46, 42, 20, 31, 32, 61, 34, 4,
+               47, 26, 20, 43, 26, 21, 7, 3, 16, 35, 18, 44, 27, 62, 13, 23,
+               6, 50, 12, 8, 45, 17, 3, 46, 50, 7, 14, 5, 17, 54, 38, 0
+       },
+       {
+               29, 56, 5, 7, 54, 48, 23, 37, 35, 44, 52, 40, 33, 49, 60, 0,
+               59, 51, 28, 12, 41, 26, 2, 23, 34, 5, 59, 40, 3, 19, 6, 26,
+               35, 53, 45, 49, 29, 57, 28, 62, 58, 59, 19, 53, 59, 62, 6, 54,
+               13, 15, 48, 50, 45, 21, 41, 12, 34, 40, 24, 56, 19, 21, 35, 18,
+               55, 45, 9, 61, 47, 61, 19, 15, 16, 39, 17, 31, 3, 51, 21, 50,
+               17, 25, 25, 11, 44, 16, 18, 28, 14, 2, 37, 61, 58, 27, 62, 4,
+               14, 17, 1, 9, 46, 28, 37, 0, 53, 43, 57, 7, 57, 46, 21, 41,
+               39, 14, 52, 60, 44, 53, 49, 60, 49, 63, 13, 11, 29, 1, 55, 47,
+               55, 12, 60, 43, 54, 37, 13, 6, 42, 10, 36, 13, 9, 8, 34, 51,
+               31, 32, 12, 7, 57, 2, 26, 14, 3, 30, 63, 3, 32, 1, 5, 11,
+               27, 24, 26, 44, 31, 23, 56, 38, 62, 0, 40, 30, 6, 23, 38, 2,
+               47, 5, 15, 27, 16, 10, 31, 25, 22, 63, 30, 25, 20, 33, 32, 50,
+               29, 43, 55, 10, 50, 45, 56, 20, 4, 7, 27, 46, 11, 16, 22, 52,
+               35, 20, 41, 54, 46, 33, 42, 18, 63, 8, 22, 58, 36, 4, 51, 42,
+               38, 32, 38, 22, 17, 0, 47, 8, 48, 8, 48, 1, 61, 36, 33, 20,
+               24, 39, 39, 18, 30, 36, 9, 43, 42, 24, 10, 58, 4, 15, 34, 52
+       },
+};
+
+/*************************************************************************
+ * Offline region structures
+ *************************************************************************/
+
+/** Online group containing number of rules, values, keys and their bins
+ * for EFD_MAX_GROUP_NUM_RULES rules.
+ */
+struct efd_offline_group_rules {
+       uint32_t num_rules;
+       /**< Sum of the number of rules in all bins assigned to this group. */
+
+       uint32_t key_idx[EFD_MAX_GROUP_NUM_RULES];
+       /**< Array with all keys of the group. */
+       efd_value_t value[EFD_MAX_GROUP_NUM_RULES];
+       /**< Array with all values of the keys of the group. */
+
+       uint8_t bin_id[EFD_MAX_GROUP_NUM_RULES];
+       /**< Stores the bin for each correspending key to
+        * avoid having to recompute it
+        */
+};
+
+/** Offline chunk record, containing EFD_TARGET_CHUNK_NUM_RULES rules.
+ * Those rules are split into EFD_CHUNK_NUM_GROUPS groups per chunk.
+ */
+struct efd_offline_chunk_rules {
+       uint16_t num_rules;
+       /**< Number of rules in the entire chunk;
+        * used to detect unbalanced groups
+        */
+
+       struct efd_offline_group_rules group_rules[EFD_CHUNK_NUM_GROUPS];
+       /**< Array of all groups in the chunk. */
+};
+
+/*************************************************************************
+ * Online region structures
+ *************************************************************************/
+
+/** Online group containing values for EFD_MAX_GROUP_NUM_RULES rules. */
+struct efd_online_group_entry {
+       efd_hashfunc_t hash_idx[RTE_EFD_VALUE_NUM_BITS];
+       efd_lookuptbl_t lookup_table[RTE_EFD_VALUE_NUM_BITS];
+} __attribute__((__packed__));
+
+/**
+ * A single chunk record, containing EFD_TARGET_CHUNK_NUM_RULES rules.
+ * Those rules are split into EFD_CHUNK_NUM_GROUPS groups per chunk.
+ */
+struct efd_online_chunk {
+       uint8_t bin_choice_list[(EFD_CHUNK_NUM_BINS * 2 + 7) / 8];
+       /**< This is a packed indirection index into the 'groups' array.
+        * Each byte contains four two-bit values which index into
+        * the efd_bin_to_group array.
+        * The efd_bin_to_group array returns the index into the groups array
+        */
+
+       struct efd_online_group_entry groups[EFD_CHUNK_NUM_GROUPS];
+       /**< Array of all the groups in the chunk. */
+} __attribute__((__packed__));
+
+/**
+ * EFD table structure
+ */
+struct rte_efd_table {
+       char name[RTE_EFD_NAMESIZE]; /**< Name of the efd table. */
+
+       uint32_t key_len; /**< Length of the key stored offline */
+
+       uint32_t max_num_rules;
+       /**< Static maximum number of entries the table was constructed to hold. */
+
+       uint32_t num_rules;
+       /**< Number of entries currently in the table . */
+
+       uint32_t num_chunks;
+       /**< Number of chunks in the table needed to support num_rules. */
+
+       uint32_t num_chunks_shift;
+       /**< Bits to shift to get chunk id, instead of dividing by num_chunk. */
+
+       enum efd_lookup_internal_function lookup_fn;
+       /**< Indicates which lookup function to use. */
+
+       struct efd_online_chunk *chunks[RTE_MAX_NUMA_NODES];
+       /**< Dynamic array of size num_chunks of chunk records. */
+
+       struct efd_offline_chunk_rules *offline_chunks;
+       /**< Dynamic array of size num_chunks of key-value pairs. */
+
+       struct rte_ring *free_slots;
+       /**< Ring that stores all indexes of the free slots in the key table */
+
+       uint8_t *keys; /**< Dynamic array of size max_num_rules of keys */
+};
+
+/**
+ * Computes the chunk ID for a given key hash
+ *
+ * @param table
+ *   EFD table to reference
+ * @param hashed_key
+ *   32-bit key hash returned by EFD_HASH
+ *
+ * @return
+ *   chunk ID containing this key hash
+ */
+static inline uint32_t
+efd_get_chunk_id(const struct rte_efd_table * const table,
+               const uint32_t hashed_key)
+{
+       return hashed_key & (table->num_chunks - 1);
+}
+
+/**
+ * Computes the bin ID for a given key hash
+ *
+ * @param table
+ *   EFD table to reference
+ * @param hashed_key
+ *   32-bit key hash returned by EFD_HASH
+ *
+ * @return bin ID containing this key hash
+ */
+static inline uint32_t
+efd_get_bin_id(const struct rte_efd_table * const table,
+               const uint32_t hashed_key)
+{
+       return (hashed_key >> table->num_chunks_shift) & (EFD_CHUNK_NUM_BINS - 1);
+}
+
+/**
+ * Looks up the current permutation choice for a particular bin in the online table
+ *
+ * @param table
+ *  EFD table to reference
+ * @param socket_id
+ *   Socket ID to use to look up existing values (ideally caller's socket id)
+ * @param chunk_id
+ *   Chunk ID of bin to look up
+ * @param bin_id
+ *   Bin ID to look up
+ *
+ * @return
+ *   Currently active permutation choice in the online table
+ */
+static inline uint8_t
+efd_get_choice(const struct rte_efd_table * const table,
+               const unsigned int socket_id, const uint32_t chunk_id,
+               const uint32_t bin_id)
+{
+       struct efd_online_chunk *chunk = &table->chunks[socket_id][chunk_id];
+
+       /*
+        * Grab the chunk (byte) that contains the choices
+        * for four neighboring bins.
+        */
+       uint8_t choice_chunk =
+                       chunk->bin_choice_list[bin_id / EFD_CHUNK_NUM_BIN_TO_GROUP_SETS];
+
+       /*
+        * Compute the offset into the chunk that contains
+        * the group_id lookup position
+        */
+       int offset = (bin_id & 0x3) * 2;
+
+       /* Extract from the byte just the desired lookup position */
+       return (uint8_t) ((choice_chunk >> offset) & 0x3);
+}
+
+/**
+ * Compute the chunk_id and bin_id for a given key
+ *
+ * @param table
+ *   EFD table to reference
+ * @param key
+ *   Key to hash and find location of
+ * @param chunk_id
+ *   Computed chunk ID
+ * @param bin_id
+ *   Computed bin ID
+ *
+ */
+static inline void
+efd_compute_ids(const struct rte_efd_table * const table,
+               const void *key, uint32_t * const chunk_id, uint32_t * const bin_id)
+{
+       /* Compute the position of the entry in the hash table */
+       uint32_t h = EFD_HASH(key, table);
+
+       /* Compute the chunk_id where that entry can be found */
+       *chunk_id = efd_get_chunk_id(table, h);
+
+       /*
+        * Compute the bin within that chunk where the entry
+        * can be found (0 - 255)
+        */
+       *bin_id = efd_get_bin_id(table, h);
+}
+
+/**
+ * Search for a hash function for a group that satisfies all group results
+ */
+static inline int
+efd_search_hash(struct rte_efd_table * const table,
+               const struct efd_offline_group_rules * const off_group,
+               struct efd_online_group_entry * const on_group)
+{
+       efd_hashfunc_t hash_idx;
+       efd_hashfunc_t start_hash_idx[RTE_EFD_VALUE_NUM_BITS];
+       efd_lookuptbl_t start_lookup_table[RTE_EFD_VALUE_NUM_BITS];
+
+       uint32_t i, j, rule_id;
+       uint32_t hash_val_a[EFD_MAX_GROUP_NUM_RULES];
+       uint32_t hash_val_b[EFD_MAX_GROUP_NUM_RULES];
+       uint32_t hash_val[EFD_MAX_GROUP_NUM_RULES];
+
+
+       rte_prefetch0(off_group->value);
+
+       /*
+        * Prepopulate the hash_val tables by running the two hash functions
+        * for each provided rule
+        */
+       for (i = 0; i < off_group->num_rules; i++) {
+               void *key_stored = EFD_KEY(off_group->key_idx[i], table);
+               hash_val_b[i] = EFD_HASHFUNCB(key_stored, table);
+               hash_val_a[i] = EFD_HASHFUNCA(key_stored, table);
+       }
+
+       for (i = 0; i < RTE_EFD_VALUE_NUM_BITS; i++) {
+               hash_idx = on_group->hash_idx[i];
+               start_hash_idx[i] = hash_idx;
+               start_lookup_table[i] = on_group->lookup_table[i];
+
+               do {
+                       efd_lookuptbl_t lookup_table = 0;
+                       efd_lookuptbl_t lookup_table_complement = 0;
+
+                       for (rule_id = 0; rule_id < off_group->num_rules; rule_id++)
+                               hash_val[rule_id] = hash_val_a[rule_id] + (hash_idx *
+                                       hash_val_b[rule_id]);
+
+                       /*
+                        * The goal here is to find a hash function for this
+                        * particular bit entry that meets the following criteria:
+                        * The most significant bits of the hash result define a
+                        * shift into the lookup table where the bit will be stored
+                        */
+
+                       /* Iterate over each provided rule */
+                       for (rule_id = 0; rule_id < off_group->num_rules;
+                                       rule_id++) {
+                               /*
+                                * Use the few most significant bits (number based on
+                                * EFD_LOOKUPTBL_SIZE) to see what position the
+                                * expected bit should be set in the lookup_table
+                                */
+                               uint32_t bucket_idx = hash_val[rule_id] >>
+                                               EFD_LOOKUPTBL_SHIFT;
+
+                               /*
+                                * Get the current bit of interest.
+                                * This only find an appropriate hash function
+                                * for one bit at a time of the rule
+                                */
+                               efd_lookuptbl_t expected =
+                                               (off_group->value[rule_id] >> i) & 0x1;
+
+                               /*
+                                * Add the expected bit (if set) to a map
+                                * (lookup_table). Also set its complement
+                                * in lookup_table_complement
+                                */
+                               lookup_table |= expected << bucket_idx;
+                               lookup_table_complement |= (1 - expected)
+                                               << bucket_idx;
+
+                               /*
+                                * If ever the hash function of two different
+                                * elements result in different values at the
+                                * same location in the lookup_table,
+                                * the current hash_idx is not valid.
+                                */
+                               if (lookup_table & lookup_table_complement)
+                                       break;
+                       }
+
+                       /*
+                        * Check if the previous loop completed without
+                        * breaking early
+                        */
+                       if (rule_id == off_group->num_rules) {
+                               /*
+                                * Current hash function worked, store it
+                                * for the current group
+                                */
+                               on_group->hash_idx[i] = hash_idx;
+                               on_group->lookup_table[i] = lookup_table;
+
+                               /*
+                                * Make sure that the hash function has changed
+                                * from the starting value
+                                */
+                               hash_idx = start_hash_idx[i] + 1;
+                               break;
+                       }
+                       hash_idx++;
+
+               } while (hash_idx != start_hash_idx[i]);
+
+               /* Failed to find perfect hash for this group */
+               if (hash_idx == start_hash_idx[i]) {
+                       /*
+                        * Restore previous hash_idx and lookup_table
+                        * for all value bits
+                        */
+                       for (j = 0; j < i; j++) {
+                               on_group->hash_idx[j] = start_hash_idx[j];
+                               on_group->lookup_table[j] = start_lookup_table[j];
+                       }
+                       return 1;
+               }
+       }
+
+       return 0;
+}
+
+struct rte_efd_table *
+rte_efd_create(const char *name, uint32_t max_num_rules, uint32_t key_len,
+               uint8_t online_cpu_socket_bitmask, uint8_t offline_cpu_socket)
+{
+       struct rte_efd_table *table = NULL;
+       uint8_t *key_array = NULL;
+       uint32_t num_chunks, num_chunks_shift;
+       uint8_t socket_id;
+       struct rte_efd_list *efd_list = NULL;
+       struct rte_tailq_entry *te;
+       uint64_t offline_table_size;
+       char ring_name[RTE_RING_NAMESIZE];
+       struct rte_ring *r = NULL;
+       unsigned int i;
+
+       efd_list = RTE_TAILQ_CAST(rte_efd_tailq.head, rte_efd_list);
+
+       if (online_cpu_socket_bitmask == 0) {
+               RTE_LOG(ERR, EFD, "At least one CPU socket must be enabled "
+                               "in the bitmask\n");
+               return NULL;
+       }
+
+       if (max_num_rules == 0) {
+               RTE_LOG(ERR, EFD, "Max num rules must be higher than 0\n");
+               return NULL;
+       }
+
+       /*
+        * Compute the minimum number of chunks (smallest power of 2)
+        * that can hold all of the rules
+        */
+       if (max_num_rules % EFD_TARGET_CHUNK_NUM_RULES == 0)
+               num_chunks = rte_align32pow2(max_num_rules /
+                       EFD_TARGET_CHUNK_NUM_RULES);
+       else
+               num_chunks = rte_align32pow2((max_num_rules /
+                       EFD_TARGET_CHUNK_NUM_RULES) + 1);
+
+       num_chunks_shift = rte_bsf32(num_chunks);
+
+       rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
+
+       /*
+        * Guarantee there's no existing: this is normally already checked
+        * by ring creation above
+        */
+       TAILQ_FOREACH(te, efd_list, next)
+       {
+               table = (struct rte_efd_table *) te->data;
+               if (strncmp(name, table->name, RTE_EFD_NAMESIZE) == 0)
+                       break;
+       }
+
+       table = NULL;
+       if (te != NULL) {
+               rte_errno = EEXIST;
+               te = NULL;
+               goto error_unlock_exit;
+       }
+
+       te = rte_zmalloc("EFD_TAILQ_ENTRY", sizeof(*te), 0);
+       if (te == NULL) {
+               RTE_LOG(ERR, EFD, "tailq entry allocation failed\n");
+               goto error_unlock_exit;
+       }
+
+       /* Create a new EFD table management structure */
+       table = (struct rte_efd_table *) rte_zmalloc_socket(NULL,
+                       sizeof(struct rte_efd_table),
+                       RTE_CACHE_LINE_SIZE,
+                       offline_cpu_socket);
+       if (table == NULL) {
+               RTE_LOG(ERR, EFD, "Allocating EFD table management structure"
+                               " on socket %u failed\n",
+                               offline_cpu_socket);
+               goto error_unlock_exit;
+       }
+
+
+       RTE_LOG(DEBUG, EFD, "Allocated EFD table management structure "
+                       "on socket %u\n", offline_cpu_socket);
+
+       table->max_num_rules = num_chunks * EFD_TARGET_CHUNK_MAX_NUM_RULES;
+       table->num_rules = 0;
+       table->num_chunks = num_chunks;
+       table->num_chunks_shift = num_chunks_shift;
+       table->key_len = key_len;
+
+       /* key_array */
+       key_array = (uint8_t *) rte_zmalloc_socket(NULL,
+                       table->max_num_rules * table->key_len,
+                       RTE_CACHE_LINE_SIZE,
+                       offline_cpu_socket);
+       if (key_array == NULL) {
+               RTE_LOG(ERR, EFD, "Allocating key array"
+                               " on socket %u failed\n",
+                               offline_cpu_socket);
+               goto error_unlock_exit;
+       }
+       table->keys = key_array;
+       snprintf(table->name, sizeof(table->name), "%s", name);
+
+       RTE_LOG(DEBUG, EFD, "Creating an EFD table with %u chunks,"
+                       " which potentially supports %u entries\n",
+                       num_chunks, table->max_num_rules);
+
+       /* Make sure all the allocatable table pointers are NULL initially */
+       for (socket_id = 0; socket_id < RTE_MAX_NUMA_NODES; socket_id++)
+               table->chunks[socket_id] = NULL;
+       table->offline_chunks = NULL;
+
+       /*
+        * Allocate one online table per socket specified
+        * in the user-supplied bitmask
+        */
+       uint64_t online_table_size = num_chunks * sizeof(struct efd_online_chunk) +
+                       EFD_NUM_CHUNK_PADDING_BYTES;
+
+       for (socket_id = 0; socket_id < RTE_MAX_NUMA_NODES; socket_id++) {
+               if ((online_cpu_socket_bitmask >> socket_id) & 0x01) {
+                       /*
+                        * Allocate all of the EFD table chunks (the online portion)
+                        * as a continuous block
+                        */
+                       table->chunks[socket_id] =
+                               (struct efd_online_chunk *) rte_zmalloc_socket(
+                               NULL,
+                               online_table_size,
+                               RTE_CACHE_LINE_SIZE,
+                               socket_id);
+                       if (table->chunks[socket_id] == NULL) {
+                               RTE_LOG(ERR, EFD,
+                                               "Allocating EFD online table on "
+                                               "socket %u failed\n",
+                                               socket_id);
+                               goto error_unlock_exit;
+                       }
+                       RTE_LOG(DEBUG, EFD,
+                                       "Allocated EFD online table of size "
+                                       "%"PRIu64" bytes (%.2f MB) on socket %u\n",
+                                       online_table_size,
+                                       (float) online_table_size /
+                                               (1024.0F * 1024.0F),
+                                       socket_id);
+               }
+       }
+
+#if defined(RTE_ARCH_X86)
+       /*
+        * For less than 4 bits, scalar function performs better
+        * than vectorised version
+        */
+       if (RTE_EFD_VALUE_NUM_BITS > 3 && rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
+               table->lookup_fn = EFD_LOOKUP_AVX2;
+       else
+#endif
+               table->lookup_fn = EFD_LOOKUP_SCALAR;
+
+       /*
+        * Allocate the EFD table offline portion (with the actual rules
+        * mapping keys to values) as a continuous block.
+        * This could be several gigabytes of memory.
+        */
+       offline_table_size = num_chunks * sizeof(struct efd_offline_chunk_rules);
+       table->offline_chunks =
+                       (struct efd_offline_chunk_rules *) rte_zmalloc_socket(NULL,
+                       offline_table_size,
+                       RTE_CACHE_LINE_SIZE,
+                       offline_cpu_socket);
+       if (table->offline_chunks == NULL) {
+               RTE_LOG(ERR, EFD, "Allocating EFD offline table on socket %u "
+                               "failed\n", offline_cpu_socket);
+               goto error_unlock_exit;
+       }
+
+       RTE_LOG(DEBUG, EFD,
+                       "Allocated EFD offline table of size %"PRIu64" bytes "
+                       " (%.2f MB) on socket %u\n", offline_table_size,
+                       (float) offline_table_size / (1024.0F * 1024.0F),
+                       offline_cpu_socket);
+
+       te->data = (void *) table;
+       TAILQ_INSERT_TAIL(efd_list, te, next);
+       rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
+
+       snprintf(ring_name, sizeof(ring_name), "HT_%s", table->name);
+       /* Create ring (Dummy slot index is not enqueued) */
+       r = rte_ring_create(ring_name, rte_align32pow2(table->max_num_rules),
+                       offline_cpu_socket, 0);
+       if (r == NULL) {
+               RTE_LOG(ERR, EFD, "memory allocation failed\n");
+               goto error_unlock_exit;
+       }
+
+       /* Populate free slots ring. Entry zero is reserved for key misses. */
+       for (i = 0; i < table->max_num_rules; i++)
+               rte_ring_sp_enqueue(r, (void *) ((uintptr_t) i));
+
+       table->free_slots = r;
+       return table;
+
+error_unlock_exit:
+       rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
+       rte_efd_free(table);
+
+       return NULL;
+}
+
+struct rte_efd_table *
+rte_efd_find_existing(const char *name)
+{
+       struct rte_efd_table *table = NULL;
+       struct rte_tailq_entry *te;
+       struct rte_efd_list *efd_list;
+
+       efd_list = RTE_TAILQ_CAST(rte_efd_tailq.head, rte_efd_list);
+
+       rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
+
+       TAILQ_FOREACH(te, efd_list, next)
+       {
+               table = (struct rte_efd_table *) te->data;
+               if (strncmp(name, table->name, RTE_EFD_NAMESIZE) == 0)
+                       break;
+       }
+       rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);
+
+       if (te == NULL) {
+               rte_errno = ENOENT;
+               return NULL;
+       }
+       return table;
+}
+
+void
+rte_efd_free(struct rte_efd_table *table)
+{
+       uint8_t socket_id;
+
+       if (table == NULL)
+               return;
+
+       for (socket_id = 0; socket_id < RTE_MAX_NUMA_NODES; socket_id++)
+               rte_free(table->chunks[socket_id]);
+
+       rte_ring_free(table->free_slots);
+       rte_free(table->offline_chunks);
+       rte_free(table->keys);
+       rte_free(table);
+}
+
+/**
+ * Applies a previously computed table entry to the specified table for all
+ * socket-local copies of the online table.
+ * Intended to apply an update for only a single change
+ * to a key/value pair at a time
+ *
+ * @param table
+ *   EFD table to reference
+ * @param socket_id
+ *   Socket ID to use to lookup existing values (ideally caller's socket id)
+ * @param chunk_id
+ *   Chunk index to update
+ * @param group_id
+ *   Group index to update
+ * @param bin_id
+ *   Bin within the group that this update affects
+ * @param new_bin_choice
+ *   Newly chosen permutation which this bin should use - only lower 2 bits
+ * @param new_group_entry
+ *   Previously computed updated chunk/group entry
+ */
+static inline void
+efd_apply_update(struct rte_efd_table * const table, const unsigned int socket_id,
+               const uint32_t chunk_id, const uint32_t group_id,
+               const uint32_t bin_id, const uint8_t new_bin_choice,
+               const struct efd_online_group_entry * const new_group_entry)
+{
+       int i;
+       struct efd_online_chunk *chunk = &table->chunks[socket_id][chunk_id];
+       uint8_t bin_index = bin_id / EFD_CHUNK_NUM_BIN_TO_GROUP_SETS;
+
+       /*
+        * Grab the current byte that contains the choices
+        * for four neighboring bins
+        */
+       uint8_t choice_chunk =
+                       chunk->bin_choice_list[bin_index];
+
+
+       /* Compute the offset into the chunk that needs to be updated */
+       int offset = (bin_id & 0x3) * 2;
+
+       /* Zero the two bits of interest and set them to new_bin_choice */
+       choice_chunk = (choice_chunk & (~(0x03 << offset)))
+                       | ((new_bin_choice & 0x03) << offset);
+
+       /* Update the online table with the new data across all sockets */
+       for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
+               if (table->chunks[i] != NULL) {
+                       memcpy(&(table->chunks[i][chunk_id].groups[group_id]),
+                                       new_group_entry,
+                                       sizeof(struct efd_online_group_entry));
+                       table->chunks[i][chunk_id].bin_choice_list[bin_index] =
+                                       choice_chunk;
+               }
+       }
+}
+
+/*
+ * Move the bin from prev group to the new group
+ */
+static inline void
+move_groups(uint32_t bin_id, uint8_t bin_size,
+               struct efd_offline_group_rules *new_group,
+               struct efd_offline_group_rules * const current_group)
+{
+
+       uint8_t empty_idx = 0;
+       unsigned int i;
+
+       if (new_group == current_group)
+               return;
+
+       for (i = 0; i < current_group->num_rules; i++) {
+               /*
+                * Move keys that belong to the same bin
+                * to the new group
+                */
+               if (current_group->bin_id[i] == bin_id) {
+                       new_group->key_idx[new_group->num_rules] =
+                                       current_group->key_idx[i];
+                       new_group->value[new_group->num_rules] =
+                                       current_group->value[i];
+                       new_group->bin_id[new_group->num_rules] =
+                                       current_group->bin_id[i];
+                       new_group->num_rules++;
+               } else {
+                       if (i != empty_idx) {
+                               /*
+                                * Need to move this key towards
+                                * the top of the array
+                                */
+                               current_group->key_idx[empty_idx] =
+                                               current_group->key_idx[i];
+                               current_group->value[empty_idx] =
+                                               current_group->value[i];
+                               current_group->bin_id[empty_idx] =
+                                               current_group->bin_id[i];
+                       }
+                       empty_idx++;
+               }
+
+       }
+       current_group->num_rules -= bin_size;
+}
+
+/*
+ * Revert group/s to their previous state before
+ * trying to insert/add a new key
+ */
+static inline void
+revert_groups(struct efd_offline_group_rules *previous_group,
+               struct efd_offline_group_rules *current_group, uint8_t bin_size)
+{
+       unsigned int i;
+
+       if (current_group == previous_group)
+               return;
+
+       /* Move keys back to previous group */
+       for (i = current_group->num_rules - bin_size;
+                       i < current_group->num_rules; i++) {
+               previous_group->key_idx[previous_group->num_rules] =
+                               current_group->key_idx[i];
+               previous_group->value[previous_group->num_rules] =
+                               current_group->value[i];
+               previous_group->bin_id[previous_group->num_rules] =
+                               current_group->bin_id[i];
+               previous_group->num_rules++;
+       }
+
+       /*
+        * Decrease number of rules after the move
+        * in the new group
+        */
+       current_group->num_rules -= bin_size;
+}
+
+/**
+ * Computes an updated table entry where the supplied key points to a new host.
+ * If no entry exists, one is inserted.
+ *
+ * This function does NOT modify the online table(s)
+ * This function DOES modify the offline table
+ *
+ * @param table
+ *   EFD table to reference
+ * @param socket_id
+ *   Socket ID to use to lookup existing values (ideally caller's socket id)
+ * @param key
+ *   Key to insert
+ * @param value
+ *   Value to associate with key
+ * @param chunk_id
+ *   Chunk ID of the chunk that was modified
+ * @param group_id
+ *   Group ID of the group that was modified
+ * @param bin_id
+ *   Bin ID that was modified
+ * @param new_bin_choice
+ *   Newly chosen permutation which this bin will use
+ * @param entry
+ *   Newly computed online entry to apply later with efd_apply_update
+ *
+ * @return
+ *   RTE_EFD_UPDATE_WARN_GROUP_FULL
+ *     Operation is insert, and the last available space in the
+ *     key's group was just used. Future inserts may fail as groups fill up.
+ *     This operation was still successful, and entry contains a valid update
+ *   RTE_EFD_UPDATE_FAILED
+ *     Either the EFD failed to find a suitable perfect hash or the group was full
+ *     This is a fatal error, and the table is now in an indeterminite state
+ *   RTE_EFD_UPDATE_NO_CHANGE
+ *     Operation resulted in no change to the table (same value already exists)
+ *   0
+ *     Insert or update was successful, and the new efd_online_group_entry
+ *     is stored in *entry
+ *
+ * @warning
+ *   Note that entry will be UNCHANGED if the update has no effect, and thus any
+ *   subsequent use of the entry content will likely be invalid
+ */
+static inline int
+efd_compute_update(struct rte_efd_table * const table,
+               const unsigned int socket_id, const void *key,
+               const efd_value_t value, uint32_t * const chunk_id,
+               uint32_t * const group_id, uint32_t * const bin_id,
+               uint8_t * const new_bin_choice,
+               struct efd_online_group_entry * const entry)
+{
+       unsigned int i;
+       int ret;
+       uint32_t new_idx;
+       void *new_k, *slot_id = NULL;
+       int status = EXIT_SUCCESS;
+       unsigned int found = 0;
+
+       efd_compute_ids(table, key, chunk_id, bin_id);
+
+       struct efd_offline_chunk_rules * const chunk =
+                       &table->offline_chunks[*chunk_id];
+       struct efd_offline_group_rules *new_group;
+
+       uint8_t current_choice = efd_get_choice(table, socket_id,
+                       *chunk_id, *bin_id);
+       uint32_t current_group_id = efd_bin_to_group[current_choice][*bin_id];
+       struct efd_offline_group_rules * const current_group =
+                       &chunk->group_rules[current_group_id];
+       uint8_t bin_size = 0;
+       uint8_t key_changed_index = 0;
+       efd_value_t key_changed_previous_value = 0;
+       uint32_t key_idx_previous = 0;
+
+       /* Scan the current group and see if the key is already present */
+       for (i = 0; i < current_group->num_rules; i++) {
+               if (current_group->bin_id[i] == *bin_id)
+                       bin_size++;
+               else
+                       continue;
+
+               void *key_stored = EFD_KEY(current_group->key_idx[i], table);
+               if (found == 0 && unlikely(memcmp(key_stored, key,
+                               table->key_len) == 0)) {
+                       /* Key is already present */
+
+                       /*
+                        * If previous value is same as new value,
+                        * no additional work is required
+                        */
+                       if (current_group->value[i] == value)
+                               return RTE_EFD_UPDATE_NO_CHANGE;
+
+                       key_idx_previous = current_group->key_idx[i];
+                       key_changed_previous_value = current_group->value[i];
+                       key_changed_index = i;
+                       current_group->value[i] = value;
+                       found = 1;
+               }
+       }
+
+       if (found == 0) {
+               /* Key does not exist. Insert the rule into the bin/group */
+               if (unlikely(current_group->num_rules >= EFD_MAX_GROUP_NUM_RULES)) {
+                       RTE_LOG(ERR, EFD,
+                                       "Fatal: No room remaining for insert into "
+                                       "chunk %u group %u bin %u\n",
+                                       *chunk_id,
+                                       current_group_id, *bin_id);
+                       return RTE_EFD_UPDATE_FAILED;
+               }
+
+               if (unlikely(current_group->num_rules ==
+                               (EFD_MAX_GROUP_NUM_RULES - 1))) {
+                       RTE_LOG(INFO, EFD, "Warn: Insert into last "
+                                       "available slot in chunk %u "
+                                       "group %u bin %u\n", *chunk_id,
+                                       current_group_id, *bin_id);
+                       status = RTE_EFD_UPDATE_WARN_GROUP_FULL;
+               }
+
+               if (rte_ring_sc_dequeue(table->free_slots, &slot_id) != 0)
+                       return RTE_EFD_UPDATE_FAILED;
+
+               new_k = RTE_PTR_ADD(table->keys, (uintptr_t) slot_id *
+                                       table->key_len);
+               rte_prefetch0(new_k);
+               new_idx = (uint32_t) ((uintptr_t) slot_id);
+
+               rte_memcpy(EFD_KEY(new_idx, table), key, table->key_len);
+               current_group->key_idx[current_group->num_rules] = new_idx;
+               current_group->value[current_group->num_rules] = value;
+               current_group->bin_id[current_group->num_rules] = *bin_id;
+               current_group->num_rules++;
+               table->num_rules++;
+               bin_size++;
+       } else {
+               uint32_t last = current_group->num_rules - 1;
+               /* Swap the key with the last key inserted*/
+               current_group->key_idx[key_changed_index] =
+                               current_group->key_idx[last];
+               current_group->value[key_changed_index] =
+                               current_group->value[last];
+               current_group->bin_id[key_changed_index] =
+                               current_group->bin_id[last];
+
+               /*
+                * Key to be updated will always be available
+                * at the end of the group
+                */
+               current_group->key_idx[last] = key_idx_previous;
+               current_group->value[last] = value;
+               current_group->bin_id[last] = *bin_id;
+       }
+
+       *new_bin_choice = current_choice;
+       *group_id = current_group_id;
+       new_group = current_group;
+
+       /* Group need to be rebalanced when it starts to get loaded */
+       if (current_group->num_rules > EFD_MIN_BALANCED_NUM_RULES) {
+
+               /*
+                * Subtract the number of entries in the bin from
+                * the original group
+                */
+               current_group->num_rules -= bin_size;
+
+               /*
+                * Figure out which of the available groups that this bin
+                * can map to is the smallest (using the current group
+                * as baseline)
+                */
+               uint8_t smallest_choice = current_choice;
+               uint8_t smallest_size = current_group->num_rules;
+               uint32_t smallest_group_id = current_group_id;
+               unsigned char choice;
+
+               for (choice = 0; choice < EFD_CHUNK_NUM_BIN_TO_GROUP_SETS;
+                               choice++) {
+                       uint32_t test_group_id =
+                                       efd_bin_to_group[choice][*bin_id];
+                       uint32_t num_rules =
+                                       chunk->group_rules[test_group_id].num_rules;
+                       if (num_rules < smallest_size) {
+                               smallest_choice = choice;
+                               smallest_size = num_rules;
+                               smallest_group_id = test_group_id;
+                       }
+               }
+
+               *new_bin_choice = smallest_choice;
+               *group_id = smallest_group_id;
+               new_group = &chunk->group_rules[smallest_group_id];
+               current_group->num_rules += bin_size;
+
+       }
+
+       uint8_t choice = 0;
+       for (;;) {
+               if (current_group != new_group &&
+                               new_group->num_rules + bin_size >
+                                       EFD_MAX_GROUP_NUM_RULES) {
+                       RTE_LOG(DEBUG, EFD,
+                                       "Unable to move_groups to dest group "
+                                       "containing %u entries."
+                                       "bin_size:%u choice:%02x\n",
+                                       new_group->num_rules, bin_size,
+                                       choice - 1);
+                       goto next_choice;
+               }
+               move_groups(*bin_id, bin_size, new_group, current_group);
+               /*
+                * Recompute the hash function for the modified group,
+                * and return it to the caller
+                */
+               ret = efd_search_hash(table, new_group, entry);
+
+               if (!ret)
+                       return status;
+
+               RTE_LOG(DEBUG, EFD,
+                               "Failed to find perfect hash for group "
+                               "containing %u entries. bin_size:%u choice:%02x\n",
+                               new_group->num_rules, bin_size, choice - 1);
+               /* Restore groups modified to their previous state */
+               revert_groups(current_group, new_group, bin_size);
+
+next_choice:
+               if (choice == EFD_CHUNK_NUM_BIN_TO_GROUP_SETS)
+                       break;
+               *new_bin_choice = choice;
+               *group_id = efd_bin_to_group[choice][*bin_id];
+               new_group = &chunk->group_rules[*group_id];
+               choice++;
+       }
+
+       if (!found) {
+               current_group->num_rules--;
+               table->num_rules--;
+       } else
+               current_group->value[current_group->num_rules - 1] =
+                       key_changed_previous_value;
+       return RTE_EFD_UPDATE_FAILED;
+}
+
+int
+rte_efd_update(struct rte_efd_table * const table, const unsigned int socket_id,
+               const void *key, const efd_value_t value)
+{
+       uint32_t chunk_id = 0, group_id = 0, bin_id = 0;
+       uint8_t new_bin_choice = 0;
+       struct efd_online_group_entry entry;
+
+       int status = efd_compute_update(table, socket_id, key, value,
+                       &chunk_id, &group_id, &bin_id,
+                       &new_bin_choice, &entry);
+
+       if (status == RTE_EFD_UPDATE_NO_CHANGE)
+               return EXIT_SUCCESS;
+
+       if (status == RTE_EFD_UPDATE_FAILED)
+               return status;
+
+       efd_apply_update(table, socket_id, chunk_id, group_id, bin_id,
+                       new_bin_choice, &entry);
+       return status;
+}
+
+int
+rte_efd_delete(struct rte_efd_table * const table, const unsigned int socket_id,
+               const void *key, efd_value_t * const prev_value)
+{
+       unsigned int i;
+       uint32_t chunk_id, bin_id;
+       uint8_t not_found = 1;
+
+       efd_compute_ids(table, key, &chunk_id, &bin_id);
+
+       struct efd_offline_chunk_rules * const chunk =
+                       &table->offline_chunks[chunk_id];
+
+       uint8_t current_choice = efd_get_choice(table, socket_id,
+                       chunk_id, bin_id);
+       uint32_t current_group_id = efd_bin_to_group[current_choice][bin_id];
+       struct efd_offline_group_rules * const current_group =
+                       &chunk->group_rules[current_group_id];
+
+       /*
+        * Search the current group for the specified key.
+        * If it exists, remove it and re-pack the other values
+        */
+       for (i = 0; i < current_group->num_rules; i++) {
+               if (not_found) {
+                       /* Found key that needs to be removed */
+                       if (memcmp(EFD_KEY(current_group->key_idx[i], table),
+                                       key, table->key_len) == 0) {
+                               /* Store previous value if requested by caller */
+                               if (prev_value != NULL)
+                                       *prev_value = current_group->value[i];
+
+                               not_found = 0;
+                               rte_ring_sp_enqueue(table->free_slots,
+                                       (void *)((uintptr_t)current_group->key_idx[i]));
+                       }
+               } else {
+                       /*
+                        * If the desired key has been found,
+                        * need to shift other values up one
+                        */
+
+                       /* Need to shift this entry back up one index */
+                       current_group->key_idx[i - 1] = current_group->key_idx[i];
+                       current_group->value[i - 1] = current_group->value[i];
+                       current_group->bin_id[i - 1] = current_group->bin_id[i];
+               }
+       }
+
+       if (not_found == 0) {
+               table->num_rules--;
+               current_group->num_rules--;
+       }
+
+       return not_found;
+}
+
+static inline efd_value_t
+efd_lookup_internal_scalar(const efd_hashfunc_t *group_hash_idx,
+               const efd_lookuptbl_t *group_lookup_table,
+               const uint32_t hash_val_a, const uint32_t hash_val_b)
+{
+       efd_value_t value = 0;
+       uint32_t i;
+
+       for (i = 0; i < RTE_EFD_VALUE_NUM_BITS; i++) {
+               value <<= 1;
+               uint32_t h = hash_val_a + (hash_val_b *
+                       group_hash_idx[RTE_EFD_VALUE_NUM_BITS - i - 1]);
+               uint16_t bucket_idx = h >> EFD_LOOKUPTBL_SHIFT;
+               value |= (group_lookup_table[
+                               RTE_EFD_VALUE_NUM_BITS - i - 1] >>
+                               bucket_idx) & 0x1;
+       }
+
+       return value;
+}
+
+
+static inline efd_value_t
+efd_lookup_internal(const struct efd_online_group_entry * const group,
+               const uint32_t hash_val_a, const uint32_t hash_val_b,
+               enum efd_lookup_internal_function lookup_fn)
+{
+       efd_value_t value = 0;
+
+       switch (lookup_fn) {
+
+#if defined(RTE_ARCH_X86)
+       case EFD_LOOKUP_AVX2:
+               return efd_lookup_internal_avx2(group->hash_idx,
+                                       group->lookup_table,
+                                       hash_val_a,
+                                       hash_val_b);
+#endif
+       case EFD_LOOKUP_SCALAR:
+       /* Fall-through */
+       default:
+               return efd_lookup_internal_scalar(group->hash_idx,
+                                       group->lookup_table,
+                                       hash_val_a,
+                                       hash_val_b);
+       }
+
+       return value;
+}
+
+efd_value_t
+rte_efd_lookup(const struct rte_efd_table * const table,
+               const unsigned int socket_id, const void *key)
+{
+       uint32_t chunk_id, group_id, bin_id;
+       uint8_t bin_choice;
+       const struct efd_online_group_entry *group;
+       const struct efd_online_chunk * const chunks = table->chunks[socket_id];
+
+       /* Determine the chunk and group location for the given key */
+       efd_compute_ids(table, key, &chunk_id, &bin_id);
+       bin_choice = efd_get_choice(table, socket_id, chunk_id, bin_id);
+       group_id = efd_bin_to_group[bin_choice][bin_id];
+       group = &chunks[chunk_id].groups[group_id];
+
+       return efd_lookup_internal(group,
+                       EFD_HASHFUNCA(key, table),
+                       EFD_HASHFUNCB(key, table),
+                       table->lookup_fn);
+}
+
+void rte_efd_lookup_bulk(const struct rte_efd_table * const table,
+               const unsigned int socket_id, const int num_keys,
+               const void **key_list, efd_value_t * const value_list)
+{
+       int i;
+       uint32_t chunk_id_list[RTE_EFD_BURST_MAX];
+       uint32_t bin_id_list[RTE_EFD_BURST_MAX];
+       uint8_t bin_choice_list[RTE_EFD_BURST_MAX];
+       uint32_t group_id_list[RTE_EFD_BURST_MAX];
+       struct efd_online_group_entry *group;
+
+       struct efd_online_chunk *chunks = table->chunks[socket_id];
+
+       for (i = 0; i < num_keys; i++) {
+               efd_compute_ids(table, key_list[i], &chunk_id_list[i],
+                               &bin_id_list[i]);
+               rte_prefetch0(&chunks[chunk_id_list[i]].bin_choice_list);
+       }
+
+       for (i = 0; i < num_keys; i++) {
+               bin_choice_list[i] = efd_get_choice(table, socket_id,
+                               chunk_id_list[i], bin_id_list[i]);
+               group_id_list[i] =
+                               efd_bin_to_group[bin_choice_list[i]][bin_id_list[i]];
+               group = &chunks[chunk_id_list[i]].groups[group_id_list[i]];
+               rte_prefetch0(group);
+       }
+
+       for (i = 0; i < num_keys; i++) {
+               group = &chunks[chunk_id_list[i]].groups[group_id_list[i]];
+               value_list[i] = efd_lookup_internal(group,
+                               EFD_HASHFUNCA(key_list[i], table),
+                               EFD_HASHFUNCB(key_list[i], table),
+                               table->lookup_fn);
+       }
+}