Imported Upstream version 16.04
[deb_dpdk.git] / lib / librte_hash / rte_cuckoo_hash.c
diff --git a/lib/librte_hash/rte_cuckoo_hash.c b/lib/librte_hash/rte_cuckoo_hash.c
new file mode 100644 (file)
index 0000000..7b7d1f8
--- /dev/null
@@ -0,0 +1,1323 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <string.h>
+#include <stdint.h>
+#include <errno.h>
+#include <stdio.h>
+#include <stdarg.h>
+#include <sys/queue.h>
+
+#include <rte_common.h>
+#include <rte_memory.h>         /* for definition of RTE_CACHE_LINE_SIZE */
+#include <rte_log.h>
+#include <rte_memcpy.h>
+#include <rte_prefetch.h>
+#include <rte_branch_prediction.h>
+#include <rte_memzone.h>
+#include <rte_malloc.h>
+#include <rte_eal.h>
+#include <rte_eal_memconfig.h>
+#include <rte_per_lcore.h>
+#include <rte_errno.h>
+#include <rte_string_fns.h>
+#include <rte_cpuflags.h>
+#include <rte_log.h>
+#include <rte_rwlock.h>
+#include <rte_spinlock.h>
+#include <rte_ring.h>
+#include <rte_compat.h>
+
+#include "rte_hash.h"
+#if defined(RTE_ARCH_X86)
+#include "rte_cmp_x86.h"
+#endif
+
+#if defined(RTE_ARCH_ARM64)
+#include "rte_cmp_arm64.h"
+#endif
+
+TAILQ_HEAD(rte_hash_list, rte_tailq_entry);
+
+static struct rte_tailq_elem rte_hash_tailq = {
+       .name = "RTE_HASH",
+};
+EAL_REGISTER_TAILQ(rte_hash_tailq)
+
+/* Macro to enable/disable run-time checking of function parameters */
+#if defined(RTE_LIBRTE_HASH_DEBUG)
+#define RETURN_IF_TRUE(cond, retval) do { \
+       if (cond) \
+               return retval; \
+} while (0)
+#else
+#define RETURN_IF_TRUE(cond, retval)
+#endif
+
+/* Hash function used if none is specified */
+#if defined(RTE_MACHINE_CPUFLAG_SSE4_2) || defined(RTE_MACHINE_CPUFLAG_CRC32)
+#include <rte_hash_crc.h>
+#define DEFAULT_HASH_FUNC       rte_hash_crc
+#else
+#include <rte_jhash.h>
+#define DEFAULT_HASH_FUNC       rte_jhash
+#endif
+
+/** Number of items per bucket. */
+#define RTE_HASH_BUCKET_ENTRIES                4
+
+#define NULL_SIGNATURE                 0
+
+#define KEY_ALIGNMENT                  16
+
+#define LCORE_CACHE_SIZE               8
+
+#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
+/*
+ * All different options to select a key compare function,
+ * based on the key size and custom function.
+ */
+enum cmp_jump_table_case {
+       KEY_CUSTOM = 0,
+       KEY_16_BYTES,
+       KEY_32_BYTES,
+       KEY_48_BYTES,
+       KEY_64_BYTES,
+       KEY_80_BYTES,
+       KEY_96_BYTES,
+       KEY_112_BYTES,
+       KEY_128_BYTES,
+       KEY_OTHER_BYTES,
+       NUM_KEY_CMP_CASES,
+};
+
+/*
+ * Table storing all different key compare functions
+ * (multi-process supported)
+ */
+const rte_hash_cmp_eq_t cmp_jump_table[NUM_KEY_CMP_CASES] = {
+       NULL,
+       rte_hash_k16_cmp_eq,
+       rte_hash_k32_cmp_eq,
+       rte_hash_k48_cmp_eq,
+       rte_hash_k64_cmp_eq,
+       rte_hash_k80_cmp_eq,
+       rte_hash_k96_cmp_eq,
+       rte_hash_k112_cmp_eq,
+       rte_hash_k128_cmp_eq,
+       memcmp
+};
+#else
+/*
+ * All different options to select a key compare function,
+ * based on the key size and custom function.
+ */
+enum cmp_jump_table_case {
+       KEY_CUSTOM = 0,
+       KEY_OTHER_BYTES,
+       NUM_KEY_CMP_CASES,
+};
+
+/*
+ * Table storing all different key compare functions
+ * (multi-process supported)
+ */
+const rte_hash_cmp_eq_t cmp_jump_table[NUM_KEY_CMP_CASES] = {
+       NULL,
+       memcmp
+};
+
+#endif
+
+struct lcore_cache {
+       unsigned len; /**< Cache len */
+       void *objs[LCORE_CACHE_SIZE]; /**< Cache objects */
+} __rte_cache_aligned;
+
+/** A hash table structure. */
+struct rte_hash {
+       char name[RTE_HASH_NAMESIZE];   /**< Name of the hash. */
+       uint32_t entries;               /**< Total table entries. */
+       uint32_t num_buckets;           /**< Number of buckets in table. */
+       uint32_t key_len;               /**< Length of hash key. */
+       rte_hash_function hash_func;    /**< Function used to calculate hash. */
+       uint32_t hash_func_init_val;    /**< Init value used by hash_func. */
+       rte_hash_cmp_eq_t rte_hash_custom_cmp_eq;
+       /**< Custom function used to compare keys. */
+       enum cmp_jump_table_case cmp_jump_table_idx;
+       /**< Indicates which compare function to use. */
+       uint32_t bucket_bitmask;        /**< Bitmask for getting bucket index
+                                               from hash signature. */
+       uint32_t key_entry_size;         /**< Size of each key entry. */
+
+       struct rte_ring *free_slots;    /**< Ring that stores all indexes
+                                               of the free slots in the key table */
+       void *key_store;                /**< Table storing all keys and data */
+       struct rte_hash_bucket *buckets;        /**< Table with buckets storing all the
+                                                       hash values and key indexes
+                                                       to the key table*/
+       uint8_t hw_trans_mem_support;   /**< Hardware transactional
+                                                       memory support */
+       struct lcore_cache *local_free_slots;
+       /**< Local cache per lcore, storing some indexes of the free slots */
+} __rte_cache_aligned;
+
+/* Structure storing both primary and secondary hashes */
+struct rte_hash_signatures {
+       union {
+               struct {
+                       hash_sig_t current;
+                       hash_sig_t alt;
+               };
+               uint64_t sig;
+       };
+};
+
+/* Structure that stores key-value pair */
+struct rte_hash_key {
+       union {
+               uintptr_t idata;
+               void *pdata;
+       };
+       /* Variable key size */
+       char key[0];
+} __attribute__((aligned(KEY_ALIGNMENT)));
+
+/** Bucket structure */
+struct rte_hash_bucket {
+       struct rte_hash_signatures signatures[RTE_HASH_BUCKET_ENTRIES];
+       /* Includes dummy key index that always contains index 0 */
+       uint32_t key_idx[RTE_HASH_BUCKET_ENTRIES + 1];
+       uint8_t flag[RTE_HASH_BUCKET_ENTRIES];
+} __rte_cache_aligned;
+
+struct rte_hash *
+rte_hash_find_existing(const char *name)
+{
+       struct rte_hash *h = NULL;
+       struct rte_tailq_entry *te;
+       struct rte_hash_list *hash_list;
+
+       hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
+
+       rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
+       TAILQ_FOREACH(te, hash_list, next) {
+               h = (struct rte_hash *) te->data;
+               if (strncmp(name, h->name, RTE_HASH_NAMESIZE) == 0)
+                       break;
+       }
+       rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);
+
+       if (te == NULL) {
+               rte_errno = ENOENT;
+               return NULL;
+       }
+       return h;
+}
+
+void rte_hash_set_cmp_func(struct rte_hash *h, rte_hash_cmp_eq_t func)
+{
+       h->rte_hash_custom_cmp_eq = func;
+}
+
+static inline int
+rte_hash_cmp_eq(const void *key1, const void *key2, const struct rte_hash *h)
+{
+       if (h->cmp_jump_table_idx == KEY_CUSTOM)
+               return h->rte_hash_custom_cmp_eq(key1, key2, h->key_len);
+       else
+               return cmp_jump_table[h->cmp_jump_table_idx](key1, key2, h->key_len);
+}
+
+struct rte_hash *
+rte_hash_create(const struct rte_hash_parameters *params)
+{
+       struct rte_hash *h = NULL;
+       struct rte_tailq_entry *te = NULL;
+       struct rte_hash_list *hash_list;
+       struct rte_ring *r = NULL;
+       char hash_name[RTE_HASH_NAMESIZE];
+       void *k = NULL;
+       void *buckets = NULL;
+       char ring_name[RTE_RING_NAMESIZE];
+       unsigned num_key_slots;
+       unsigned hw_trans_mem_support = 0;
+       unsigned i;
+
+       hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
+
+       if (params == NULL) {
+               RTE_LOG(ERR, HASH, "rte_hash_create has no parameters\n");
+               return NULL;
+       }
+
+       /* Check for valid parameters */
+       if ((params->entries > RTE_HASH_ENTRIES_MAX) ||
+                       (params->entries < RTE_HASH_BUCKET_ENTRIES) ||
+                       !rte_is_power_of_2(RTE_HASH_BUCKET_ENTRIES) ||
+                       (params->key_len == 0)) {
+               rte_errno = EINVAL;
+               RTE_LOG(ERR, HASH, "rte_hash_create has invalid parameters\n");
+               return NULL;
+       }
+
+       /* Check extra flags field to check extra options. */
+       if (params->extra_flag & RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT)
+               hw_trans_mem_support = 1;
+
+       /* Store all keys and leave the first entry as a dummy entry for lookup_bulk */
+       if (hw_trans_mem_support)
+               /*
+                * Increase number of slots by total number of indices
+                * that can be stored in the lcore caches
+                * except for the first cache
+                */
+               num_key_slots = params->entries + (RTE_MAX_LCORE - 1) *
+                                       LCORE_CACHE_SIZE + 1;
+       else
+               num_key_slots = params->entries + 1;
+
+       snprintf(ring_name, sizeof(ring_name), "HT_%s", params->name);
+       r = rte_ring_create(ring_name, rte_align32pow2(num_key_slots),
+                       params->socket_id, 0);
+       if (r == NULL) {
+               RTE_LOG(ERR, HASH, "memory allocation failed\n");
+               goto err;
+       }
+
+       snprintf(hash_name, sizeof(hash_name), "HT_%s", params->name);
+
+       rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
+
+       /* guarantee there's no existing: this is normally already checked
+        * by ring creation above */
+       TAILQ_FOREACH(te, hash_list, next) {
+               h = (struct rte_hash *) te->data;
+               if (strncmp(params->name, h->name, RTE_HASH_NAMESIZE) == 0)
+                       break;
+       }
+       h = NULL;
+       if (te != NULL) {
+               rte_errno = EEXIST;
+               te = NULL;
+               goto err_unlock;
+       }
+
+       te = rte_zmalloc("HASH_TAILQ_ENTRY", sizeof(*te), 0);
+       if (te == NULL) {
+               RTE_LOG(ERR, HASH, "tailq entry allocation failed\n");
+               goto err_unlock;
+       }
+
+       h = (struct rte_hash *)rte_zmalloc_socket(hash_name, sizeof(struct rte_hash),
+                                       RTE_CACHE_LINE_SIZE, params->socket_id);
+
+       if (h == NULL) {
+               RTE_LOG(ERR, HASH, "memory allocation failed\n");
+               goto err_unlock;
+       }
+
+       const uint32_t num_buckets = rte_align32pow2(params->entries)
+                                       / RTE_HASH_BUCKET_ENTRIES;
+
+       buckets = rte_zmalloc_socket(NULL,
+                               num_buckets * sizeof(struct rte_hash_bucket),
+                               RTE_CACHE_LINE_SIZE, params->socket_id);
+
+       if (buckets == NULL) {
+               RTE_LOG(ERR, HASH, "memory allocation failed\n");
+               goto err_unlock;
+       }
+
+       const uint32_t key_entry_size = sizeof(struct rte_hash_key) + params->key_len;
+       const uint64_t key_tbl_size = (uint64_t) key_entry_size * num_key_slots;
+
+       k = rte_zmalloc_socket(NULL, key_tbl_size,
+                       RTE_CACHE_LINE_SIZE, params->socket_id);
+
+       if (k == NULL) {
+               RTE_LOG(ERR, HASH, "memory allocation failed\n");
+               goto err_unlock;
+       }
+
+/*
+ * If x86 architecture is used, select appropriate compare function,
+ * which may use x86 instrinsics, otherwise use memcmp
+ */
+#if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
+       /* Select function to compare keys */
+       switch (params->key_len) {
+       case 16:
+               h->cmp_jump_table_idx = KEY_16_BYTES;
+               break;
+       case 32:
+               h->cmp_jump_table_idx = KEY_32_BYTES;
+               break;
+       case 48:
+               h->cmp_jump_table_idx = KEY_48_BYTES;
+               break;
+       case 64:
+               h->cmp_jump_table_idx = KEY_64_BYTES;
+               break;
+       case 80:
+               h->cmp_jump_table_idx = KEY_80_BYTES;
+               break;
+       case 96:
+               h->cmp_jump_table_idx = KEY_96_BYTES;
+               break;
+       case 112:
+               h->cmp_jump_table_idx = KEY_112_BYTES;
+               break;
+       case 128:
+               h->cmp_jump_table_idx = KEY_128_BYTES;
+               break;
+       default:
+               /* If key is not multiple of 16, use generic memcmp */
+               h->cmp_jump_table_idx = KEY_OTHER_BYTES;
+       }
+#else
+       h->cmp_jump_table_idx = KEY_OTHER_BYTES;
+#endif
+
+       if (hw_trans_mem_support) {
+               h->local_free_slots = rte_zmalloc_socket(NULL,
+                               sizeof(struct lcore_cache) * RTE_MAX_LCORE,
+                               RTE_CACHE_LINE_SIZE, params->socket_id);
+       }
+
+       /* Setup hash context */
+       snprintf(h->name, sizeof(h->name), "%s", params->name);
+       h->entries = params->entries;
+       h->key_len = params->key_len;
+       h->key_entry_size = key_entry_size;
+       h->hash_func_init_val = params->hash_func_init_val;
+
+       h->num_buckets = num_buckets;
+       h->bucket_bitmask = h->num_buckets - 1;
+       h->buckets = buckets;
+       h->hash_func = (params->hash_func == NULL) ?
+               DEFAULT_HASH_FUNC : params->hash_func;
+       h->key_store = k;
+       h->free_slots = r;
+       h->hw_trans_mem_support = hw_trans_mem_support;
+
+       /* populate the free slots ring. Entry zero is reserved for key misses */
+       for (i = 1; i < params->entries + 1; i++)
+               rte_ring_sp_enqueue(r, (void *)((uintptr_t) i));
+
+       te->data = (void *) h;
+       TAILQ_INSERT_TAIL(hash_list, te, next);
+       rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
+
+       return h;
+err_unlock:
+       rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
+err:
+       rte_ring_free(r);
+       rte_free(te);
+       rte_free(h);
+       rte_free(buckets);
+       rte_free(k);
+       return NULL;
+}
+
+void
+rte_hash_free(struct rte_hash *h)
+{
+       struct rte_tailq_entry *te;
+       struct rte_hash_list *hash_list;
+
+       if (h == NULL)
+               return;
+
+       hash_list = RTE_TAILQ_CAST(rte_hash_tailq.head, rte_hash_list);
+
+       rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
+
+       /* find out tailq entry */
+       TAILQ_FOREACH(te, hash_list, next) {
+               if (te->data == (void *) h)
+                       break;
+       }
+
+       if (te == NULL) {
+               rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
+               return;
+       }
+
+       TAILQ_REMOVE(hash_list, te, next);
+
+       rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
+
+       if (h->hw_trans_mem_support)
+               rte_free(h->local_free_slots);
+
+       rte_ring_free(h->free_slots);
+       rte_free(h->key_store);
+       rte_free(h->buckets);
+       rte_free(h);
+       rte_free(te);
+}
+
+hash_sig_t
+rte_hash_hash(const struct rte_hash *h, const void *key)
+{
+       /* calc hash result by key */
+       return h->hash_func(key, h->key_len, h->hash_func_init_val);
+}
+
+/* Calc the secondary hash value from the primary hash value of a given key */
+static inline hash_sig_t
+rte_hash_secondary_hash(const hash_sig_t primary_hash)
+{
+       static const unsigned all_bits_shift = 12;
+       static const unsigned alt_bits_xor = 0x5bd1e995;
+
+       uint32_t tag = primary_hash >> all_bits_shift;
+
+       return primary_hash ^ ((tag + 1) * alt_bits_xor);
+}
+
+void
+rte_hash_reset(struct rte_hash *h)
+{
+       void *ptr;
+       unsigned i;
+
+       if (h == NULL)
+               return;
+
+       memset(h->buckets, 0, h->num_buckets * sizeof(struct rte_hash_bucket));
+       memset(h->key_store, 0, h->key_entry_size * (h->entries + 1));
+
+       /* clear the free ring */
+       while (rte_ring_dequeue(h->free_slots, &ptr) == 0)
+               rte_pause();
+
+       /* Repopulate the free slots ring. Entry zero is reserved for key misses */
+       for (i = 1; i < h->entries + 1; i++)
+               rte_ring_sp_enqueue(h->free_slots, (void *)((uintptr_t) i));
+
+       if (h->hw_trans_mem_support) {
+               /* Reset local caches per lcore */
+               for (i = 0; i < RTE_MAX_LCORE; i++)
+                       h->local_free_slots[i].len = 0;
+       }
+}
+
+/* Search for an entry that can be pushed to its alternative location */
+static inline int
+make_space_bucket(const struct rte_hash *h, struct rte_hash_bucket *bkt)
+{
+       unsigned i, j;
+       int ret;
+       uint32_t next_bucket_idx;
+       struct rte_hash_bucket *next_bkt[RTE_HASH_BUCKET_ENTRIES];
+
+       /*
+        * Push existing item (search for bucket with space in
+        * alternative locations) to its alternative location
+        */
+       for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+               /* Search for space in alternative locations */
+               next_bucket_idx = bkt->signatures[i].alt & h->bucket_bitmask;
+               next_bkt[i] = &h->buckets[next_bucket_idx];
+               for (j = 0; j < RTE_HASH_BUCKET_ENTRIES; j++) {
+                       if (next_bkt[i]->signatures[j].sig == NULL_SIGNATURE)
+                               break;
+               }
+
+               if (j != RTE_HASH_BUCKET_ENTRIES)
+                       break;
+       }
+
+       /* Alternative location has spare room (end of recursive function) */
+       if (i != RTE_HASH_BUCKET_ENTRIES) {
+               next_bkt[i]->signatures[j].alt = bkt->signatures[i].current;
+               next_bkt[i]->signatures[j].current = bkt->signatures[i].alt;
+               next_bkt[i]->key_idx[j] = bkt->key_idx[i];
+               return i;
+       }
+
+       /* Pick entry that has not been pushed yet */
+       for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++)
+               if (bkt->flag[i] == 0)
+                       break;
+
+       /* All entries have been pushed, so entry cannot be added */
+       if (i == RTE_HASH_BUCKET_ENTRIES)
+               return -ENOSPC;
+
+       /* Set flag to indicate that this entry is going to be pushed */
+       bkt->flag[i] = 1;
+       /* Need room in alternative bucket to insert the pushed entry */
+       ret = make_space_bucket(h, next_bkt[i]);
+       /*
+        * After recursive function.
+        * Clear flags and insert the pushed entry
+        * in its alternative location if successful,
+        * or return error
+        */
+       bkt->flag[i] = 0;
+       if (ret >= 0) {
+               next_bkt[i]->signatures[ret].alt = bkt->signatures[i].current;
+               next_bkt[i]->signatures[ret].current = bkt->signatures[i].alt;
+               next_bkt[i]->key_idx[ret] = bkt->key_idx[i];
+               return i;
+       } else
+               return ret;
+
+}
+
+/*
+ * Function called to enqueue back an index in the cache/ring,
+ * as slot has not being used and it can be used in the
+ * next addition attempt.
+ */
+static inline void
+enqueue_slot_back(const struct rte_hash *h,
+               struct lcore_cache *cached_free_slots,
+               void *slot_id)
+{
+       if (h->hw_trans_mem_support) {
+               cached_free_slots->objs[cached_free_slots->len] = slot_id;
+               cached_free_slots->len++;
+       } else
+               rte_ring_sp_enqueue(h->free_slots, slot_id);
+}
+
+static inline int32_t
+__rte_hash_add_key_with_hash(const struct rte_hash *h, const void *key,
+                                               hash_sig_t sig, void *data)
+{
+       hash_sig_t alt_hash;
+       uint32_t prim_bucket_idx, sec_bucket_idx;
+       unsigned i;
+       struct rte_hash_bucket *prim_bkt, *sec_bkt;
+       struct rte_hash_key *new_k, *k, *keys = h->key_store;
+       void *slot_id = NULL;
+       uint32_t new_idx;
+       int ret;
+       unsigned n_slots;
+       unsigned lcore_id;
+       struct lcore_cache *cached_free_slots = NULL;
+
+       prim_bucket_idx = sig & h->bucket_bitmask;
+       prim_bkt = &h->buckets[prim_bucket_idx];
+       rte_prefetch0(prim_bkt);
+
+       alt_hash = rte_hash_secondary_hash(sig);
+       sec_bucket_idx = alt_hash & h->bucket_bitmask;
+       sec_bkt = &h->buckets[sec_bucket_idx];
+       rte_prefetch0(sec_bkt);
+
+       /* Get a new slot for storing the new key */
+       if (h->hw_trans_mem_support) {
+               lcore_id = rte_lcore_id();
+               cached_free_slots = &h->local_free_slots[lcore_id];
+               /* Try to get a free slot from the local cache */
+               if (cached_free_slots->len == 0) {
+                       /* Need to get another burst of free slots from global ring */
+                       n_slots = rte_ring_mc_dequeue_burst(h->free_slots,
+                                       cached_free_slots->objs, LCORE_CACHE_SIZE);
+                       if (n_slots == 0)
+                               return -ENOSPC;
+
+                       cached_free_slots->len += n_slots;
+               }
+
+               /* Get a free slot from the local cache */
+               cached_free_slots->len--;
+               slot_id = cached_free_slots->objs[cached_free_slots->len];
+       } else {
+               if (rte_ring_sc_dequeue(h->free_slots, &slot_id) != 0)
+                       return -ENOSPC;
+       }
+
+       new_k = RTE_PTR_ADD(keys, (uintptr_t)slot_id * h->key_entry_size);
+       rte_prefetch0(new_k);
+       new_idx = (uint32_t)((uintptr_t) slot_id);
+
+       /* Check if key is already inserted in primary location */
+       for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+               if (prim_bkt->signatures[i].current == sig &&
+                               prim_bkt->signatures[i].alt == alt_hash) {
+                       k = (struct rte_hash_key *) ((char *)keys +
+                                       prim_bkt->key_idx[i] * h->key_entry_size);
+                       if (rte_hash_cmp_eq(key, k->key, h) == 0) {
+                               /* Enqueue index of free slot back in the ring. */
+                               enqueue_slot_back(h, cached_free_slots, slot_id);
+                               /* Update data */
+                               k->pdata = data;
+                               /*
+                                * Return index where key is stored,
+                                * substracting the first dummy index
+                                */
+                               return prim_bkt->key_idx[i] - 1;
+                       }
+               }
+       }
+
+       /* Check if key is already inserted in secondary location */
+       for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+               if (sec_bkt->signatures[i].alt == sig &&
+                               sec_bkt->signatures[i].current == alt_hash) {
+                       k = (struct rte_hash_key *) ((char *)keys +
+                                       sec_bkt->key_idx[i] * h->key_entry_size);
+                       if (rte_hash_cmp_eq(key, k->key, h) == 0) {
+                               /* Enqueue index of free slot back in the ring. */
+                               enqueue_slot_back(h, cached_free_slots, slot_id);
+                               /* Update data */
+                               k->pdata = data;
+                               /*
+                                * Return index where key is stored,
+                                * substracting the first dummy index
+                                */
+                               return sec_bkt->key_idx[i] - 1;
+                       }
+               }
+       }
+
+       /* Copy key */
+       rte_memcpy(new_k->key, key, h->key_len);
+       new_k->pdata = data;
+
+       /* Insert new entry is there is room in the primary bucket */
+       for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+               /* Check if slot is available */
+               if (likely(prim_bkt->signatures[i].sig == NULL_SIGNATURE)) {
+                       prim_bkt->signatures[i].current = sig;
+                       prim_bkt->signatures[i].alt = alt_hash;
+                       prim_bkt->key_idx[i] = new_idx;
+                       return new_idx - 1;
+               }
+       }
+
+       /* Primary bucket is full, so we need to make space for new entry */
+       ret = make_space_bucket(h, prim_bkt);
+       /*
+        * After recursive function.
+        * Insert the new entry in the position of the pushed entry
+        * if successful or return error and
+        * store the new slot back in the ring
+        */
+       if (ret >= 0) {
+               prim_bkt->signatures[ret].current = sig;
+               prim_bkt->signatures[ret].alt = alt_hash;
+               prim_bkt->key_idx[ret] = new_idx;
+               return new_idx - 1;
+       }
+
+       /* Error in addition, store new slot back in the ring and return error */
+       enqueue_slot_back(h, cached_free_slots, (void *)((uintptr_t) new_idx));
+
+       return ret;
+}
+
+int32_t
+rte_hash_add_key_with_hash(const struct rte_hash *h,
+                       const void *key, hash_sig_t sig)
+{
+       RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+       return __rte_hash_add_key_with_hash(h, key, sig, 0);
+}
+
+int32_t
+rte_hash_add_key(const struct rte_hash *h, const void *key)
+{
+       RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+       return __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), 0);
+}
+
+int
+rte_hash_add_key_with_hash_data(const struct rte_hash *h,
+                       const void *key, hash_sig_t sig, void *data)
+{
+       int ret;
+
+       RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+       ret = __rte_hash_add_key_with_hash(h, key, sig, data);
+       if (ret >= 0)
+               return 0;
+       else
+               return ret;
+}
+
+int
+rte_hash_add_key_data(const struct rte_hash *h, const void *key, void *data)
+{
+       int ret;
+
+       RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+
+       ret = __rte_hash_add_key_with_hash(h, key, rte_hash_hash(h, key), data);
+       if (ret >= 0)
+               return 0;
+       else
+               return ret;
+}
+static inline int32_t
+__rte_hash_lookup_with_hash(const struct rte_hash *h, const void *key,
+                                       hash_sig_t sig, void **data)
+{
+       uint32_t bucket_idx;
+       hash_sig_t alt_hash;
+       unsigned i;
+       struct rte_hash_bucket *bkt;
+       struct rte_hash_key *k, *keys = h->key_store;
+
+       bucket_idx = sig & h->bucket_bitmask;
+       bkt = &h->buckets[bucket_idx];
+
+       /* Check if key is in primary location */
+       for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+               if (bkt->signatures[i].current == sig &&
+                               bkt->signatures[i].sig != NULL_SIGNATURE) {
+                       k = (struct rte_hash_key *) ((char *)keys +
+                                       bkt->key_idx[i] * h->key_entry_size);
+                       if (rte_hash_cmp_eq(key, k->key, h) == 0) {
+                               if (data != NULL)
+                                       *data = k->pdata;
+                               /*
+                                * Return index where key is stored,
+                                * substracting the first dummy index
+                                */
+                               return bkt->key_idx[i] - 1;
+                       }
+               }
+       }
+
+       /* Calculate secondary hash */
+       alt_hash = rte_hash_secondary_hash(sig);
+       bucket_idx = alt_hash & h->bucket_bitmask;
+       bkt = &h->buckets[bucket_idx];
+
+       /* Check if key is in secondary location */
+       for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+               if (bkt->signatures[i].current == alt_hash &&
+                               bkt->signatures[i].alt == sig) {
+                       k = (struct rte_hash_key *) ((char *)keys +
+                                       bkt->key_idx[i] * h->key_entry_size);
+                       if (rte_hash_cmp_eq(key, k->key, h) == 0) {
+                               if (data != NULL)
+                                       *data = k->pdata;
+                               /*
+                                * Return index where key is stored,
+                                * substracting the first dummy index
+                                */
+                               return bkt->key_idx[i] - 1;
+                       }
+               }
+       }
+
+       return -ENOENT;
+}
+
+int32_t
+rte_hash_lookup_with_hash(const struct rte_hash *h,
+                       const void *key, hash_sig_t sig)
+{
+       RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+       return __rte_hash_lookup_with_hash(h, key, sig, NULL);
+}
+
+int32_t
+rte_hash_lookup(const struct rte_hash *h, const void *key)
+{
+       RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+       return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), NULL);
+}
+
+int
+rte_hash_lookup_with_hash_data(const struct rte_hash *h,
+                       const void *key, hash_sig_t sig, void **data)
+{
+       RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+       return __rte_hash_lookup_with_hash(h, key, sig, data);
+}
+
+int
+rte_hash_lookup_data(const struct rte_hash *h, const void *key, void **data)
+{
+       RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+       return __rte_hash_lookup_with_hash(h, key, rte_hash_hash(h, key), data);
+}
+
+static inline void
+remove_entry(const struct rte_hash *h, struct rte_hash_bucket *bkt, unsigned i)
+{
+       unsigned lcore_id, n_slots;
+       struct lcore_cache *cached_free_slots;
+
+       bkt->signatures[i].sig = NULL_SIGNATURE;
+       if (h->hw_trans_mem_support) {
+               lcore_id = rte_lcore_id();
+               cached_free_slots = &h->local_free_slots[lcore_id];
+               /* Cache full, need to free it. */
+               if (cached_free_slots->len == LCORE_CACHE_SIZE) {
+                       /* Need to enqueue the free slots in global ring. */
+                       n_slots = rte_ring_mp_enqueue_burst(h->free_slots,
+                                               cached_free_slots->objs,
+                                               LCORE_CACHE_SIZE);
+                       cached_free_slots->len -= n_slots;
+               }
+               /* Put index of new free slot in cache. */
+               cached_free_slots->objs[cached_free_slots->len] =
+                               (void *)((uintptr_t)bkt->key_idx[i]);
+               cached_free_slots->len++;
+       } else {
+               rte_ring_sp_enqueue(h->free_slots,
+                               (void *)((uintptr_t)bkt->key_idx[i]));
+       }
+}
+
+static inline int32_t
+__rte_hash_del_key_with_hash(const struct rte_hash *h, const void *key,
+                                               hash_sig_t sig)
+{
+       uint32_t bucket_idx;
+       hash_sig_t alt_hash;
+       unsigned i;
+       struct rte_hash_bucket *bkt;
+       struct rte_hash_key *k, *keys = h->key_store;
+
+       bucket_idx = sig & h->bucket_bitmask;
+       bkt = &h->buckets[bucket_idx];
+
+       /* Check if key is in primary location */
+       for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+               if (bkt->signatures[i].current == sig &&
+                               bkt->signatures[i].sig != NULL_SIGNATURE) {
+                       k = (struct rte_hash_key *) ((char *)keys +
+                                       bkt->key_idx[i] * h->key_entry_size);
+                       if (rte_hash_cmp_eq(key, k->key, h) == 0) {
+                               remove_entry(h, bkt, i);
+
+                               /*
+                                * Return index where key is stored,
+                                * substracting the first dummy index
+                                */
+                               return bkt->key_idx[i] - 1;
+                       }
+               }
+       }
+
+       /* Calculate secondary hash */
+       alt_hash = rte_hash_secondary_hash(sig);
+       bucket_idx = alt_hash & h->bucket_bitmask;
+       bkt = &h->buckets[bucket_idx];
+
+       /* Check if key is in secondary location */
+       for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+               if (bkt->signatures[i].current == alt_hash &&
+                               bkt->signatures[i].sig != NULL_SIGNATURE) {
+                       k = (struct rte_hash_key *) ((char *)keys +
+                                       bkt->key_idx[i] * h->key_entry_size);
+                       if (rte_hash_cmp_eq(key, k->key, h) == 0) {
+                               remove_entry(h, bkt, i);
+
+                               /*
+                                * Return index where key is stored,
+                                * substracting the first dummy index
+                                */
+                               return bkt->key_idx[i] - 1;
+                       }
+               }
+       }
+
+       return -ENOENT;
+}
+
+int32_t
+rte_hash_del_key_with_hash(const struct rte_hash *h,
+                       const void *key, hash_sig_t sig)
+{
+       RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+       return __rte_hash_del_key_with_hash(h, key, sig);
+}
+
+int32_t
+rte_hash_del_key(const struct rte_hash *h, const void *key)
+{
+       RETURN_IF_TRUE(((h == NULL) || (key == NULL)), -EINVAL);
+       return __rte_hash_del_key_with_hash(h, key, rte_hash_hash(h, key));
+}
+
+/* Lookup bulk stage 0: Prefetch input key */
+static inline void
+lookup_stage0(unsigned *idx, uint64_t *lookup_mask,
+               const void * const *keys)
+{
+       *idx = __builtin_ctzl(*lookup_mask);
+       if (*lookup_mask == 0)
+               *idx = 0;
+
+       rte_prefetch0(keys[*idx]);
+       *lookup_mask &= ~(1llu << *idx);
+}
+
+/*
+ * Lookup bulk stage 1: Calculate primary/secondary hashes
+ * and prefetch primary/secondary buckets
+ */
+static inline void
+lookup_stage1(unsigned idx, hash_sig_t *prim_hash, hash_sig_t *sec_hash,
+               const struct rte_hash_bucket **primary_bkt,
+               const struct rte_hash_bucket **secondary_bkt,
+               hash_sig_t *hash_vals, const void * const *keys,
+               const struct rte_hash *h)
+{
+       *prim_hash = rte_hash_hash(h, keys[idx]);
+       hash_vals[idx] = *prim_hash;
+       *sec_hash = rte_hash_secondary_hash(*prim_hash);
+
+       *primary_bkt = &h->buckets[*prim_hash & h->bucket_bitmask];
+       *secondary_bkt = &h->buckets[*sec_hash & h->bucket_bitmask];
+
+       rte_prefetch0(*primary_bkt);
+       rte_prefetch0(*secondary_bkt);
+}
+
+/*
+ * Lookup bulk stage 2:  Search for match hashes in primary/secondary locations
+ * and prefetch first key slot
+ */
+static inline void
+lookup_stage2(unsigned idx, hash_sig_t prim_hash, hash_sig_t sec_hash,
+               const struct rte_hash_bucket *prim_bkt,
+               const struct rte_hash_bucket *sec_bkt,
+               const struct rte_hash_key **key_slot, int32_t *positions,
+               uint64_t *extra_hits_mask, const void *keys,
+               const struct rte_hash *h)
+{
+       unsigned prim_hash_matches, sec_hash_matches, key_idx, i;
+       unsigned total_hash_matches;
+
+       prim_hash_matches = 1 << RTE_HASH_BUCKET_ENTRIES;
+       sec_hash_matches = 1 << RTE_HASH_BUCKET_ENTRIES;
+       for (i = 0; i < RTE_HASH_BUCKET_ENTRIES; i++) {
+               prim_hash_matches |= ((prim_hash == prim_bkt->signatures[i].current) << i);
+               sec_hash_matches |= ((sec_hash == sec_bkt->signatures[i].current) << i);
+       }
+
+       key_idx = prim_bkt->key_idx[__builtin_ctzl(prim_hash_matches)];
+       if (key_idx == 0)
+               key_idx = sec_bkt->key_idx[__builtin_ctzl(sec_hash_matches)];
+
+       total_hash_matches = (prim_hash_matches |
+                               (sec_hash_matches << (RTE_HASH_BUCKET_ENTRIES + 1)));
+       *key_slot = (const struct rte_hash_key *) ((const char *)keys +
+                                       key_idx * h->key_entry_size);
+
+       rte_prefetch0(*key_slot);
+       /*
+        * Return index where key is stored,
+        * substracting the first dummy index
+        */
+       positions[idx] = (key_idx - 1);
+
+       *extra_hits_mask |= (uint64_t)(__builtin_popcount(total_hash_matches) > 3) << idx;
+
+}
+
+
+/* Lookup bulk stage 3: Check if key matches, update hit mask and return data */
+static inline void
+lookup_stage3(unsigned idx, const struct rte_hash_key *key_slot, const void * const *keys,
+               const int32_t *positions, void *data[], uint64_t *hits,
+               const struct rte_hash *h)
+{
+       unsigned hit;
+       unsigned key_idx;
+
+       hit = !rte_hash_cmp_eq(key_slot->key, keys[idx], h);
+       if (data != NULL)
+               data[idx] = key_slot->pdata;
+
+       key_idx = positions[idx] + 1;
+       /*
+        * If key index is 0, force hit to be 0, in case key to be looked up
+        * is all zero (as in the dummy slot), which would result in a wrong hit
+        */
+       *hits |= (uint64_t)(hit && !!key_idx)  << idx;
+}
+
+static inline void
+__rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
+                       uint32_t num_keys, int32_t *positions,
+                       uint64_t *hit_mask, void *data[])
+{
+       uint64_t hits = 0;
+       uint64_t extra_hits_mask = 0;
+       uint64_t lookup_mask, miss_mask;
+       unsigned idx;
+       const void *key_store = h->key_store;
+       int ret;
+       hash_sig_t hash_vals[RTE_HASH_LOOKUP_BULK_MAX];
+
+       unsigned idx00, idx01, idx10, idx11, idx20, idx21, idx30, idx31;
+       const struct rte_hash_bucket *primary_bkt10, *primary_bkt11;
+       const struct rte_hash_bucket *secondary_bkt10, *secondary_bkt11;
+       const struct rte_hash_bucket *primary_bkt20, *primary_bkt21;
+       const struct rte_hash_bucket *secondary_bkt20, *secondary_bkt21;
+       const struct rte_hash_key *k_slot20, *k_slot21, *k_slot30, *k_slot31;
+       hash_sig_t primary_hash10, primary_hash11;
+       hash_sig_t secondary_hash10, secondary_hash11;
+       hash_sig_t primary_hash20, primary_hash21;
+       hash_sig_t secondary_hash20, secondary_hash21;
+
+       lookup_mask = (uint64_t) -1 >> (64 - num_keys);
+       miss_mask = lookup_mask;
+
+       lookup_stage0(&idx00, &lookup_mask, keys);
+       lookup_stage0(&idx01, &lookup_mask, keys);
+
+       idx10 = idx00, idx11 = idx01;
+
+       lookup_stage0(&idx00, &lookup_mask, keys);
+       lookup_stage0(&idx01, &lookup_mask, keys);
+       lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
+                       &primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
+       lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
+                       &primary_bkt11, &secondary_bkt11, hash_vals, keys, h);
+
+       primary_bkt20 = primary_bkt10;
+       primary_bkt21 = primary_bkt11;
+       secondary_bkt20 = secondary_bkt10;
+       secondary_bkt21 = secondary_bkt11;
+       primary_hash20 = primary_hash10;
+       primary_hash21 = primary_hash11;
+       secondary_hash20 = secondary_hash10;
+       secondary_hash21 = secondary_hash11;
+       idx20 = idx10, idx21 = idx11;
+       idx10 = idx00, idx11 = idx01;
+
+       lookup_stage0(&idx00, &lookup_mask, keys);
+       lookup_stage0(&idx01, &lookup_mask, keys);
+       lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
+                       &primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
+       lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
+                       &primary_bkt11, &secondary_bkt11, hash_vals, keys, h);
+       lookup_stage2(idx20, primary_hash20, secondary_hash20, primary_bkt20,
+                       secondary_bkt20, &k_slot20, positions, &extra_hits_mask,
+                       key_store, h);
+       lookup_stage2(idx21, primary_hash21, secondary_hash21, primary_bkt21,
+                       secondary_bkt21, &k_slot21, positions, &extra_hits_mask,
+                       key_store, h);
+
+       while (lookup_mask) {
+               k_slot30 = k_slot20, k_slot31 = k_slot21;
+               idx30 = idx20, idx31 = idx21;
+               primary_bkt20 = primary_bkt10;
+               primary_bkt21 = primary_bkt11;
+               secondary_bkt20 = secondary_bkt10;
+               secondary_bkt21 = secondary_bkt11;
+               primary_hash20 = primary_hash10;
+               primary_hash21 = primary_hash11;
+               secondary_hash20 = secondary_hash10;
+               secondary_hash21 = secondary_hash11;
+               idx20 = idx10, idx21 = idx11;
+               idx10 = idx00, idx11 = idx01;
+
+               lookup_stage0(&idx00, &lookup_mask, keys);
+               lookup_stage0(&idx01, &lookup_mask, keys);
+               lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
+                       &primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
+               lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
+                       &primary_bkt11, &secondary_bkt11, hash_vals, keys, h);
+               lookup_stage2(idx20, primary_hash20, secondary_hash20,
+                       primary_bkt20, secondary_bkt20, &k_slot20, positions,
+                       &extra_hits_mask, key_store, h);
+               lookup_stage2(idx21, primary_hash21, secondary_hash21,
+                       primary_bkt21, secondary_bkt21, &k_slot21, positions,
+                       &extra_hits_mask, key_store, h);
+               lookup_stage3(idx30, k_slot30, keys, positions, data, &hits, h);
+               lookup_stage3(idx31, k_slot31, keys, positions, data, &hits, h);
+       }
+
+       k_slot30 = k_slot20, k_slot31 = k_slot21;
+       idx30 = idx20, idx31 = idx21;
+       primary_bkt20 = primary_bkt10;
+       primary_bkt21 = primary_bkt11;
+       secondary_bkt20 = secondary_bkt10;
+       secondary_bkt21 = secondary_bkt11;
+       primary_hash20 = primary_hash10;
+       primary_hash21 = primary_hash11;
+       secondary_hash20 = secondary_hash10;
+       secondary_hash21 = secondary_hash11;
+       idx20 = idx10, idx21 = idx11;
+       idx10 = idx00, idx11 = idx01;
+
+       lookup_stage1(idx10, &primary_hash10, &secondary_hash10,
+               &primary_bkt10, &secondary_bkt10, hash_vals, keys, h);
+       lookup_stage1(idx11, &primary_hash11, &secondary_hash11,
+               &primary_bkt11, &secondary_bkt11, hash_vals, keys, h);
+       lookup_stage2(idx20, primary_hash20, secondary_hash20, primary_bkt20,
+               secondary_bkt20, &k_slot20, positions, &extra_hits_mask,
+               key_store, h);
+       lookup_stage2(idx21, primary_hash21, secondary_hash21, primary_bkt21,
+               secondary_bkt21, &k_slot21, positions, &extra_hits_mask,
+               key_store, h);
+       lookup_stage3(idx30, k_slot30, keys, positions, data, &hits, h);
+       lookup_stage3(idx31, k_slot31, keys, positions, data, &hits, h);
+
+       k_slot30 = k_slot20, k_slot31 = k_slot21;
+       idx30 = idx20, idx31 = idx21;
+       primary_bkt20 = primary_bkt10;
+       primary_bkt21 = primary_bkt11;
+       secondary_bkt20 = secondary_bkt10;
+       secondary_bkt21 = secondary_bkt11;
+       primary_hash20 = primary_hash10;
+       primary_hash21 = primary_hash11;
+       secondary_hash20 = secondary_hash10;
+       secondary_hash21 = secondary_hash11;
+       idx20 = idx10, idx21 = idx11;
+
+       lookup_stage2(idx20, primary_hash20, secondary_hash20, primary_bkt20,
+               secondary_bkt20, &k_slot20, positions, &extra_hits_mask,
+               key_store, h);
+       lookup_stage2(idx21, primary_hash21, secondary_hash21, primary_bkt21,
+               secondary_bkt21, &k_slot21, positions, &extra_hits_mask,
+               key_store, h);
+       lookup_stage3(idx30, k_slot30, keys, positions, data, &hits, h);
+       lookup_stage3(idx31, k_slot31, keys, positions, data, &hits, h);
+
+       k_slot30 = k_slot20, k_slot31 = k_slot21;
+       idx30 = idx20, idx31 = idx21;
+
+       lookup_stage3(idx30, k_slot30, keys, positions, data, &hits, h);
+       lookup_stage3(idx31, k_slot31, keys, positions, data, &hits, h);
+
+       /* ignore any items we have already found */
+       extra_hits_mask &= ~hits;
+
+       if (unlikely(extra_hits_mask)) {
+               /* run a single search for each remaining item */
+               do {
+                       idx = __builtin_ctzl(extra_hits_mask);
+                       if (data != NULL) {
+                               ret = rte_hash_lookup_with_hash_data(h,
+                                               keys[idx], hash_vals[idx], &data[idx]);
+                               if (ret >= 0)
+                                       hits |= 1ULL << idx;
+                       } else {
+                               positions[idx] = rte_hash_lookup_with_hash(h,
+                                                       keys[idx], hash_vals[idx]);
+                               if (positions[idx] >= 0)
+                                       hits |= 1llu << idx;
+                       }
+                       extra_hits_mask &= ~(1llu << idx);
+               } while (extra_hits_mask);
+       }
+
+       miss_mask &= ~hits;
+       if (unlikely(miss_mask)) {
+               do {
+                       idx = __builtin_ctzl(miss_mask);
+                       positions[idx] = -ENOENT;
+                       miss_mask &= ~(1llu << idx);
+               } while (miss_mask);
+       }
+
+       if (hit_mask != NULL)
+               *hit_mask = hits;
+}
+
+int
+rte_hash_lookup_bulk(const struct rte_hash *h, const void **keys,
+                     uint32_t num_keys, int32_t *positions)
+{
+       RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
+                       (num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
+                       (positions == NULL)), -EINVAL);
+
+       __rte_hash_lookup_bulk(h, keys, num_keys, positions, NULL, NULL);
+       return 0;
+}
+
+int
+rte_hash_lookup_bulk_data(const struct rte_hash *h, const void **keys,
+                     uint32_t num_keys, uint64_t *hit_mask, void *data[])
+{
+       RETURN_IF_TRUE(((h == NULL) || (keys == NULL) || (num_keys == 0) ||
+                       (num_keys > RTE_HASH_LOOKUP_BULK_MAX) ||
+                       (hit_mask == NULL)), -EINVAL);
+
+       int32_t positions[num_keys];
+
+       __rte_hash_lookup_bulk(h, keys, num_keys, positions, hit_mask, data);
+
+       /* Return number of hits */
+       return __builtin_popcountl(*hit_mask);
+}
+
+int32_t
+rte_hash_iterate(const struct rte_hash *h, const void **key, void **data, uint32_t *next)
+{
+       uint32_t bucket_idx, idx, position;
+       struct rte_hash_key *next_key;
+
+       RETURN_IF_TRUE(((h == NULL) || (next == NULL)), -EINVAL);
+
+       const uint32_t total_entries = h->num_buckets * RTE_HASH_BUCKET_ENTRIES;
+       /* Out of bounds */
+       if (*next >= total_entries)
+               return -ENOENT;
+
+       /* Calculate bucket and index of current iterator */
+       bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
+       idx = *next % RTE_HASH_BUCKET_ENTRIES;
+
+       /* If current position is empty, go to the next one */
+       while (h->buckets[bucket_idx].signatures[idx].sig == NULL_SIGNATURE) {
+               (*next)++;
+               /* End of table */
+               if (*next == total_entries)
+                       return -ENOENT;
+               bucket_idx = *next / RTE_HASH_BUCKET_ENTRIES;
+               idx = *next % RTE_HASH_BUCKET_ENTRIES;
+       }
+
+       /* Get position of entry in key table */
+       position = h->buckets[bucket_idx].key_idx[idx];
+       next_key = (struct rte_hash_key *) ((char *)h->key_store +
+                               position * h->key_entry_size);
+       /* Return key and data */
+       *key = next_key->key;
+       *data = next_key->pdata;
+
+       /* Increment iterator */
+       (*next)++;
+
+       return position - 1;
+}