New upstream version 17.11-rc3
[deb_dpdk.git] / lib / librte_member / rte_member_vbf.c
diff --git a/lib/librte_member/rte_member_vbf.c b/lib/librte_member/rte_member_vbf.c
new file mode 100644 (file)
index 0000000..1a98ac8
--- /dev/null
@@ -0,0 +1,350 @@
+/*-
+ *   BSD LICENSE
+ *
+ *   Copyright(c) 2017 Intel Corporation. All rights reserved.
+ *   All rights reserved.
+ *
+ *   Redistribution and use in source and binary forms, with or without
+ *   modification, are permitted provided that the following conditions
+ *   are met:
+ *
+ *     * Redistributions of source code must retain the above copyright
+ *       notice, this list of conditions and the following disclaimer.
+ *     * Redistributions in binary form must reproduce the above copyright
+ *       notice, this list of conditions and the following disclaimer in
+ *       the documentation and/or other materials provided with the
+ *       distribution.
+ *     * Neither the name of Intel Corporation nor the names of its
+ *       contributors may be used to endorse or promote products derived
+ *       from this software without specific prior written permission.
+ *
+ *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <math.h>
+#include <string.h>
+
+#include <rte_malloc.h>
+#include <rte_memory.h>
+#include <rte_errno.h>
+#include <rte_log.h>
+
+#include "rte_member.h"
+#include "rte_member_vbf.h"
+
+/*
+ * vBF currently implemented as a big array.
+ * The BFs have a vertical layout. Bits in same location of all bfs will stay
+ * in the same cache line.
+ * For example, if we have 32 bloom filters, we use a uint32_t array to
+ * represent all of them. array[0] represent the first location of all the
+ * bloom filters, array[1] represents the second location of all the
+ * bloom filters, etc. The advantage of this layout is to minimize the average
+ * number of memory accesses to test all bloom filters.
+ *
+ * Currently the implementation supports vBF containing 1,2,4,8,16,32 BFs.
+ */
+int
+rte_member_create_vbf(struct rte_member_setsum *ss,
+               const struct rte_member_parameters *params)
+{
+
+       if (params->num_set > RTE_MEMBER_MAX_BF ||
+                       !rte_is_power_of_2(params->num_set) ||
+                       params->num_keys == 0 ||
+                       params->false_positive_rate == 0 ||
+                       params->false_positive_rate > 1) {
+               rte_errno = EINVAL;
+               RTE_MEMBER_LOG(ERR, "Membership vBF create with invalid parameters\n");
+               return -EINVAL;
+       }
+
+       /* We assume expected keys evenly distribute to all BFs */
+       uint32_t num_keys_per_bf = 1 + (params->num_keys - 1) / ss->num_set;
+
+       /*
+        * Note that the false positive rate is for all BFs in the vBF
+        * such that the single BF's false positive rate needs to be
+        * calculated.
+        * Assume each BF's False positive rate is fp_one_bf. The total false
+        * positive rate is fp = 1-(1-fp_one_bf)^n.
+        * => fp_one_bf = 1 - (1-fp)^(1/n)
+        */
+
+       float fp_one_bf = 1 - pow((1 - params->false_positive_rate),
+                                       1.0 / ss->num_set);
+
+       if (fp_one_bf == 0) {
+               rte_errno = EINVAL;
+               RTE_MEMBER_LOG(ERR, "Membership BF false positive rate is too small\n");
+               return -EINVAL;
+       }
+
+       uint32_t bits = ceil((num_keys_per_bf *
+                               log(fp_one_bf)) /
+                               log(1.0 / (pow(2.0, log(2.0)))));
+
+       /* We round to power of 2 for performance during lookup */
+       ss->bits = rte_align32pow2(bits);
+
+       ss->num_hashes = (uint32_t)(log(2.0) * bits / num_keys_per_bf);
+       ss->bit_mask = ss->bits - 1;
+
+       /*
+        * Since we round the bits to power of 2, the final false positive
+        * rate will probably not be same as the user specified. We log the
+        * new value as debug message.
+        */
+       float new_fp = pow((1 - pow((1 - 1.0 / ss->bits), num_keys_per_bf *
+                                       ss->num_hashes)), ss->num_hashes);
+       new_fp = 1 - pow((1 - new_fp), ss->num_set);
+
+       /*
+        * Reduce hash function count, until we approach the user specified
+        * false-positive rate. Otherwise it is too conservative
+        */
+       int tmp_num_hash = ss->num_hashes;
+
+       while (tmp_num_hash > 1) {
+               float tmp_fp = new_fp;
+
+               tmp_num_hash--;
+               new_fp = pow((1 - pow((1 - 1.0 / ss->bits), num_keys_per_bf *
+                                       tmp_num_hash)), tmp_num_hash);
+               new_fp = 1 - pow((1 - new_fp), ss->num_set);
+
+               if (new_fp > params->false_positive_rate) {
+                       new_fp = tmp_fp;
+                       tmp_num_hash++;
+                       break;
+               }
+       }
+
+       ss->num_hashes = tmp_num_hash;
+
+       /*
+        * To avoid multiplication and division:
+        * mul_shift is used for multiplication shift during bit test
+        * div_shift is used for division shift, to be divided by number of bits
+        * represented by a uint32_t variable
+        */
+       ss->mul_shift = __builtin_ctzl(ss->num_set);
+       ss->div_shift = __builtin_ctzl(32 >> ss->mul_shift);
+
+       RTE_MEMBER_LOG(DEBUG, "vector bloom filter created, "
+               "each bloom filter expects %u keys, needs %u bits, %u hashes, "
+               "with false positive rate set as %.5f, "
+               "The new calculated vBF false positive rate is %.5f\n",
+               num_keys_per_bf, ss->bits, ss->num_hashes, fp_one_bf, new_fp);
+
+       ss->table = rte_zmalloc_socket(NULL, ss->num_set * (ss->bits >> 3),
+                                       RTE_CACHE_LINE_SIZE, ss->socket_id);
+       if (ss->table == NULL)
+               return -ENOMEM;
+
+       return 0;
+}
+
+static inline uint32_t
+test_bit(uint32_t bit_loc, const struct rte_member_setsum *ss)
+{
+       uint32_t *vbf = ss->table;
+       uint32_t n = ss->num_set;
+       uint32_t div_shift = ss->div_shift;
+       uint32_t mul_shift = ss->mul_shift;
+       /*
+        * a is how many bits in one BF are represented by one 32bit
+        * variable.
+        */
+       uint32_t a = 32 >> mul_shift;
+       /*
+        * x>>b is the divide, x & (a-1) is the mod, & (1<<n-1) to mask out bits
+        * we do not need
+        */
+       return (vbf[bit_loc >> div_shift] >>
+                       ((bit_loc & (a - 1)) << mul_shift)) & ((1ULL << n) - 1);
+}
+
+static inline void
+set_bit(uint32_t bit_loc, const struct rte_member_setsum *ss, int32_t set)
+{
+       uint32_t *vbf = ss->table;
+       uint32_t div_shift = ss->div_shift;
+       uint32_t mul_shift = ss->mul_shift;
+       uint32_t a = 32 >> mul_shift;
+
+       vbf[bit_loc >> div_shift] |=
+                       1UL << (((bit_loc & (a - 1)) << mul_shift) + set - 1);
+}
+
+int
+rte_member_lookup_vbf(const struct rte_member_setsum *ss, const void *key,
+               member_set_t *set_id)
+{
+       uint32_t j;
+       uint32_t h1 = MEMBER_HASH_FUNC(key, ss->key_len, ss->prim_hash_seed);
+       uint32_t h2 = MEMBER_HASH_FUNC(&h1, sizeof(uint32_t),
+                                               ss->sec_hash_seed);
+       uint32_t mask = ~0;
+       uint32_t bit_loc;
+
+       for (j = 0; j < ss->num_hashes; j++) {
+               bit_loc = (h1 + j * h2) & ss->bit_mask;
+               mask &= test_bit(bit_loc, ss);
+       }
+
+       if (mask) {
+               *set_id = __builtin_ctzl(mask) + 1;
+               return 1;
+       }
+
+       *set_id = RTE_MEMBER_NO_MATCH;
+       return 0;
+}
+
+uint32_t
+rte_member_lookup_bulk_vbf(const struct rte_member_setsum *ss,
+               const void **keys, uint32_t num_keys, member_set_t *set_ids)
+{
+       uint32_t i, k;
+       uint32_t num_matches = 0;
+       uint32_t mask[RTE_MEMBER_LOOKUP_BULK_MAX];
+       uint32_t h1[RTE_MEMBER_LOOKUP_BULK_MAX], h2[RTE_MEMBER_LOOKUP_BULK_MAX];
+       uint32_t bit_loc;
+
+       for (i = 0; i < num_keys; i++)
+               h1[i] = MEMBER_HASH_FUNC(keys[i], ss->key_len,
+                                               ss->prim_hash_seed);
+       for (i = 0; i < num_keys; i++)
+               h2[i] = MEMBER_HASH_FUNC(&h1[i], sizeof(uint32_t),
+                                               ss->sec_hash_seed);
+       for (i = 0; i < num_keys; i++) {
+               mask[i] = ~0;
+               for (k = 0; k < ss->num_hashes; k++) {
+                       bit_loc = (h1[i] + k * h2[i]) & ss->bit_mask;
+                       mask[i] &= test_bit(bit_loc, ss);
+               }
+       }
+       for (i = 0; i < num_keys; i++) {
+               if (mask[i]) {
+                       set_ids[i] = __builtin_ctzl(mask[i]) + 1;
+                       num_matches++;
+               } else
+                       set_ids[i] = RTE_MEMBER_NO_MATCH;
+       }
+       return num_matches;
+}
+
+uint32_t
+rte_member_lookup_multi_vbf(const struct rte_member_setsum *ss,
+               const void *key, uint32_t match_per_key,
+               member_set_t *set_id)
+{
+       uint32_t num_matches = 0;
+       uint32_t j;
+       uint32_t h1 = MEMBER_HASH_FUNC(key, ss->key_len, ss->prim_hash_seed);
+       uint32_t h2 = MEMBER_HASH_FUNC(&h1, sizeof(uint32_t),
+                                               ss->sec_hash_seed);
+       uint32_t mask = ~0;
+       uint32_t bit_loc;
+
+       for (j = 0; j < ss->num_hashes; j++) {
+               bit_loc = (h1 + j * h2) & ss->bit_mask;
+               mask &= test_bit(bit_loc, ss);
+       }
+       while (mask) {
+               uint32_t loc = __builtin_ctzl(mask);
+               set_id[num_matches] = loc + 1;
+               num_matches++;
+               if (num_matches >= match_per_key)
+                       return num_matches;
+               mask &= ~(1UL << loc);
+       }
+       return num_matches;
+}
+
+uint32_t
+rte_member_lookup_multi_bulk_vbf(const struct rte_member_setsum *ss,
+               const void **keys, uint32_t num_keys, uint32_t match_per_key,
+               uint32_t *match_count,
+               member_set_t *set_ids)
+{
+       uint32_t i, k;
+       uint32_t num_matches = 0;
+       uint32_t match_cnt_t;
+       uint32_t mask[RTE_MEMBER_LOOKUP_BULK_MAX];
+       uint32_t h1[RTE_MEMBER_LOOKUP_BULK_MAX], h2[RTE_MEMBER_LOOKUP_BULK_MAX];
+       uint32_t bit_loc;
+
+       for (i = 0; i < num_keys; i++)
+               h1[i] = MEMBER_HASH_FUNC(keys[i], ss->key_len,
+                                               ss->prim_hash_seed);
+       for (i = 0; i < num_keys; i++)
+               h2[i] = MEMBER_HASH_FUNC(&h1[i], sizeof(uint32_t),
+                                               ss->sec_hash_seed);
+       for (i = 0; i < num_keys; i++) {
+               mask[i] = ~0;
+               for (k = 0; k < ss->num_hashes; k++) {
+                       bit_loc = (h1[i] + k * h2[i]) & ss->bit_mask;
+                       mask[i] &= test_bit(bit_loc, ss);
+               }
+       }
+       for (i = 0; i < num_keys; i++) {
+               match_cnt_t = 0;
+               while (mask[i]) {
+                       uint32_t loc = __builtin_ctzl(mask[i]);
+                       set_ids[i * match_per_key + match_cnt_t] = loc + 1;
+                       match_cnt_t++;
+                       if (match_cnt_t >= match_per_key)
+                               break;
+                       mask[i] &= ~(1UL << loc);
+               }
+               match_count[i] = match_cnt_t;
+               if (match_cnt_t != 0)
+                       num_matches++;
+       }
+       return num_matches;
+}
+
+int
+rte_member_add_vbf(const struct rte_member_setsum *ss,
+               const void *key, member_set_t set_id)
+{
+       uint32_t i, h1, h2;
+       uint32_t bit_loc;
+
+       if (set_id > ss->num_set || set_id == RTE_MEMBER_NO_MATCH)
+               return -EINVAL;
+
+       h1 = MEMBER_HASH_FUNC(key, ss->key_len, ss->prim_hash_seed);
+       h2 = MEMBER_HASH_FUNC(&h1, sizeof(uint32_t), ss->sec_hash_seed);
+
+       for (i = 0; i < ss->num_hashes; i++) {
+               bit_loc = (h1 + i * h2) & ss->bit_mask;
+               set_bit(bit_loc, ss, set_id);
+       }
+       return 0;
+}
+
+void
+rte_member_free_vbf(struct rte_member_setsum *ss)
+{
+       rte_free(ss->table);
+}
+
+void
+rte_member_reset_vbf(const struct rte_member_setsum *ss)
+{
+       uint32_t *vbf = ss->table;
+       memset(vbf, 0, (ss->num_set * ss->bits) >> 3);
+}