X-Git-Url: https://gerrit.fd.io/r/gitweb?p=deb_dpdk.git;a=blobdiff_plain;f=app%2Ftest%2Ftest_timer.c;fp=app%2Ftest%2Ftest_timer.c;h=944e2adc93bbdf4473571d9483be285977143656;hp=0000000000000000000000000000000000000000;hb=97f17497d162afdb82c8704bf097f0fee3724b2e;hpb=e04be89c2409570e0055b2cda60bd11395bb93b0 diff --git a/app/test/test_timer.c b/app/test/test_timer.c new file mode 100644 index 00000000..944e2adc --- /dev/null +++ b/app/test/test_timer.c @@ -0,0 +1,633 @@ +/*- + * BSD LICENSE + * + * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include "test.h" + +/* + * Timer + * ===== + * + * #. Stress test 1. + * + * The objective of the timer stress tests is to check that there are no + * race conditions in list and status management. This test launches, + * resets and stops the timer very often on many cores at the same + * time. + * + * - Only one timer is used for this test. + * - On each core, the rte_timer_manage() function is called from the main + * loop every 3 microseconds. + * - In the main loop, the timer may be reset (randomly, with a + * probability of 0.5 %) 100 microseconds later on a random core, or + * stopped (with a probability of 0.5 % also). + * - In callback, the timer is can be reset (randomly, with a + * probability of 0.5 %) 100 microseconds later on the same core or + * on another core (same probability), or stopped (same + * probability). + * + * # Stress test 2. + * + * The objective of this test is similar to the first in that it attempts + * to find if there are any race conditions in the timer library. However, + * it is less complex in terms of operations performed and duration, as it + * is designed to have a predictable outcome that can be tested. + * + * - A set of timers is initialized for use by the test + * - All cores then simultaneously are set to schedule all the timers at + * the same time, so conflicts should occur. + * - Then there is a delay while we wait for the timers to expire + * - Then the master lcore calls timer_manage() and we check that all + * timers have had their callbacks called exactly once - no more no less. + * - Then we repeat the process, except after setting up the timers, we have + * all cores randomly reschedule them. + * - Again we check that the expected number of callbacks has occurred when + * we call timer-manage. + * + * #. Basic test. + * + * This test performs basic functional checks of the timers. The test + * uses four different timers that are loaded and stopped under + * specific conditions in specific contexts. + * + * - Four timers are used for this test. + * - On each core, the rte_timer_manage() function is called from main loop + * every 3 microseconds. + * + * The autotest python script checks that the behavior is correct: + * + * - timer0 + * + * - At initialization, timer0 is loaded by the master core, on master core + * in "single" mode (time = 1 second). + * - In the first 19 callbacks, timer0 is reloaded on the same core, + * then, it is explicitly stopped at the 20th call. + * - At t=25s, timer0 is reloaded once by timer2. + * + * - timer1 + * + * - At initialization, timer1 is loaded by the master core, on the + * master core in "single" mode (time = 2 seconds). + * - In the first 9 callbacks, timer1 is reloaded on another + * core. After the 10th callback, timer1 is not reloaded anymore. + * + * - timer2 + * + * - At initialization, timer2 is loaded by the master core, on the + * master core in "periodical" mode (time = 1 second). + * - In the callback, when t=25s, it stops timer3 and reloads timer0 + * on the current core. + * + * - timer3 + * + * - At initialization, timer3 is loaded by the master core, on + * another core in "periodical" mode (time = 1 second). + * - It is stopped at t=25s by timer2. + */ + +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define TEST_DURATION_S 20 /* in seconds */ +#define NB_TIMER 4 + +#define RTE_LOGTYPE_TESTTIMER RTE_LOGTYPE_USER3 + +static volatile uint64_t end_time; +static volatile int test_failed; + +struct mytimerinfo { + struct rte_timer tim; + unsigned id; + unsigned count; +}; + +static struct mytimerinfo mytiminfo[NB_TIMER]; + +static void timer_basic_cb(struct rte_timer *tim, void *arg); + +static void +mytimer_reset(struct mytimerinfo *timinfo, uint64_t ticks, + enum rte_timer_type type, unsigned tim_lcore, + rte_timer_cb_t fct) +{ + rte_timer_reset_sync(&timinfo->tim, ticks, type, tim_lcore, + fct, timinfo); +} + +/* timer callback for stress tests */ +static void +timer_stress_cb(__attribute__((unused)) struct rte_timer *tim, + __attribute__((unused)) void *arg) +{ + long r; + unsigned lcore_id = rte_lcore_id(); + uint64_t hz = rte_get_timer_hz(); + + if (rte_timer_pending(tim)) + return; + + r = rte_rand(); + if ((r & 0xff) == 0) { + mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id, + timer_stress_cb); + } + else if ((r & 0xff) == 1) { + mytimer_reset(&mytiminfo[0], hz, SINGLE, + rte_get_next_lcore(lcore_id, 0, 1), + timer_stress_cb); + } + else if ((r & 0xff) == 2) { + rte_timer_stop(&mytiminfo[0].tim); + } +} + +static int +timer_stress_main_loop(__attribute__((unused)) void *arg) +{ + uint64_t hz = rte_get_timer_hz(); + unsigned lcore_id = rte_lcore_id(); + uint64_t cur_time; + int64_t diff = 0; + long r; + + while (diff >= 0) { + + /* call the timer handler on each core */ + rte_timer_manage(); + + /* simulate the processing of a packet + * (1 us = 2000 cycles at 2 Ghz) */ + rte_delay_us(1); + + /* randomly stop or reset timer */ + r = rte_rand(); + lcore_id = rte_get_next_lcore(lcore_id, 0, 1); + if ((r & 0xff) == 0) { + /* 100 us */ + mytimer_reset(&mytiminfo[0], hz/10000, SINGLE, lcore_id, + timer_stress_cb); + } + else if ((r & 0xff) == 1) { + rte_timer_stop_sync(&mytiminfo[0].tim); + } + cur_time = rte_get_timer_cycles(); + diff = end_time - cur_time; + } + + lcore_id = rte_lcore_id(); + RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id); + + return 0; +} + +/* Need to synchronize slave lcores through multiple steps. */ +enum { SLAVE_WAITING = 1, SLAVE_RUN_SIGNAL, SLAVE_RUNNING, SLAVE_FINISHED }; +static rte_atomic16_t slave_state[RTE_MAX_LCORE]; + +static void +master_init_slaves(void) +{ + unsigned i; + + RTE_LCORE_FOREACH_SLAVE(i) { + rte_atomic16_set(&slave_state[i], SLAVE_WAITING); + } +} + +static void +master_start_slaves(void) +{ + unsigned i; + + RTE_LCORE_FOREACH_SLAVE(i) { + rte_atomic16_set(&slave_state[i], SLAVE_RUN_SIGNAL); + } + RTE_LCORE_FOREACH_SLAVE(i) { + while (rte_atomic16_read(&slave_state[i]) != SLAVE_RUNNING) + rte_pause(); + } +} + +static void +master_wait_for_slaves(void) +{ + unsigned i; + + RTE_LCORE_FOREACH_SLAVE(i) { + while (rte_atomic16_read(&slave_state[i]) != SLAVE_FINISHED) + rte_pause(); + } +} + +static void +slave_wait_to_start(void) +{ + unsigned lcore_id = rte_lcore_id(); + + while (rte_atomic16_read(&slave_state[lcore_id]) != SLAVE_RUN_SIGNAL) + rte_pause(); + rte_atomic16_set(&slave_state[lcore_id], SLAVE_RUNNING); +} + +static void +slave_finish(void) +{ + unsigned lcore_id = rte_lcore_id(); + + rte_atomic16_set(&slave_state[lcore_id], SLAVE_FINISHED); +} + + +static volatile int cb_count = 0; + +/* callback for second stress test. will only be called + * on master lcore */ +static void +timer_stress2_cb(struct rte_timer *tim __rte_unused, void *arg __rte_unused) +{ + cb_count++; +} + +#define NB_STRESS2_TIMERS 8192 + +static int +timer_stress2_main_loop(__attribute__((unused)) void *arg) +{ + static struct rte_timer *timers; + int i, ret; + uint64_t delay = rte_get_timer_hz() / 4; + unsigned lcore_id = rte_lcore_id(); + unsigned master = rte_get_master_lcore(); + int32_t my_collisions = 0; + static rte_atomic32_t collisions; + + if (lcore_id == master) { + cb_count = 0; + test_failed = 0; + rte_atomic32_set(&collisions, 0); + master_init_slaves(); + timers = rte_malloc(NULL, sizeof(*timers) * NB_STRESS2_TIMERS, 0); + if (timers == NULL) { + printf("Test Failed\n"); + printf("- Cannot allocate memory for timers\n" ); + test_failed = 1; + master_start_slaves(); + goto cleanup; + } + for (i = 0; i < NB_STRESS2_TIMERS; i++) + rte_timer_init(&timers[i]); + master_start_slaves(); + } else { + slave_wait_to_start(); + if (test_failed) + goto cleanup; + } + + /* have all cores schedule all timers on master lcore */ + for (i = 0; i < NB_STRESS2_TIMERS; i++) { + ret = rte_timer_reset(&timers[i], delay, SINGLE, master, + timer_stress2_cb, NULL); + /* there will be collisions when multiple cores simultaneously + * configure the same timers */ + if (ret != 0) + my_collisions++; + } + if (my_collisions != 0) + rte_atomic32_add(&collisions, my_collisions); + + /* wait long enough for timers to expire */ + rte_delay_ms(500); + + /* all cores rendezvous */ + if (lcore_id == master) { + master_wait_for_slaves(); + } else { + slave_finish(); + } + + /* now check that we get the right number of callbacks */ + if (lcore_id == master) { + my_collisions = rte_atomic32_read(&collisions); + if (my_collisions != 0) + printf("- %d timer reset collisions (OK)\n", my_collisions); + rte_timer_manage(); + if (cb_count != NB_STRESS2_TIMERS) { + printf("Test Failed\n"); + printf("- Stress test 2, part 1 failed\n"); + printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS, + cb_count); + test_failed = 1; + master_start_slaves(); + goto cleanup; + } + cb_count = 0; + + /* proceed */ + master_start_slaves(); + } else { + /* proceed */ + slave_wait_to_start(); + if (test_failed) + goto cleanup; + } + + /* now test again, just stop and restart timers at random after init*/ + for (i = 0; i < NB_STRESS2_TIMERS; i++) + rte_timer_reset(&timers[i], delay, SINGLE, master, + timer_stress2_cb, NULL); + + /* pick random timer to reset, stopping them first half the time */ + for (i = 0; i < 100000; i++) { + int r = rand() % NB_STRESS2_TIMERS; + if (i % 2) + rte_timer_stop(&timers[r]); + rte_timer_reset(&timers[r], delay, SINGLE, master, + timer_stress2_cb, NULL); + } + + /* wait long enough for timers to expire */ + rte_delay_ms(500); + + /* now check that we get the right number of callbacks */ + if (lcore_id == master) { + master_wait_for_slaves(); + + rte_timer_manage(); + if (cb_count != NB_STRESS2_TIMERS) { + printf("Test Failed\n"); + printf("- Stress test 2, part 2 failed\n"); + printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS, + cb_count); + test_failed = 1; + } else { + printf("Test OK\n"); + } + } + +cleanup: + if (lcore_id == master) { + master_wait_for_slaves(); + if (timers != NULL) { + rte_free(timers); + timers = NULL; + } + } else { + slave_finish(); + } + + return 0; +} + +/* timer callback for basic tests */ +static void +timer_basic_cb(struct rte_timer *tim, void *arg) +{ + struct mytimerinfo *timinfo = arg; + uint64_t hz = rte_get_timer_hz(); + unsigned lcore_id = rte_lcore_id(); + uint64_t cur_time = rte_get_timer_cycles(); + + if (rte_timer_pending(tim)) + return; + + timinfo->count ++; + + RTE_LOG(INFO, TESTTIMER, + "%"PRIu64": callback id=%u count=%u on core %u\n", + cur_time, timinfo->id, timinfo->count, lcore_id); + + /* reload timer 0 on same core */ + if (timinfo->id == 0 && timinfo->count < 20) { + mytimer_reset(timinfo, hz, SINGLE, lcore_id, timer_basic_cb); + return; + } + + /* reload timer 1 on next core */ + if (timinfo->id == 1 && timinfo->count < 10) { + mytimer_reset(timinfo, hz*2, SINGLE, + rte_get_next_lcore(lcore_id, 0, 1), + timer_basic_cb); + return; + } + + /* Explicitelly stop timer 0. Once stop() called, we can even + * erase the content of the structure: it is not referenced + * anymore by any code (in case of dynamic structure, it can + * be freed) */ + if (timinfo->id == 0 && timinfo->count == 20) { + + /* stop_sync() is not needed, because we know that the + * status of timer is only modified by this core */ + rte_timer_stop(tim); + memset(tim, 0xAA, sizeof(struct rte_timer)); + return; + } + + /* stop timer3, and restart a new timer0 (it was removed 5 + * seconds ago) for a single shot */ + if (timinfo->id == 2 && timinfo->count == 25) { + rte_timer_stop_sync(&mytiminfo[3].tim); + + /* need to reinit because structure was erased with 0xAA */ + rte_timer_init(&mytiminfo[0].tim); + mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id, + timer_basic_cb); + } +} + +static int +timer_basic_main_loop(__attribute__((unused)) void *arg) +{ + uint64_t hz = rte_get_timer_hz(); + unsigned lcore_id = rte_lcore_id(); + uint64_t cur_time; + int64_t diff = 0; + + /* launch all timers on core 0 */ + if (lcore_id == rte_get_master_lcore()) { + mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id, + timer_basic_cb); + mytimer_reset(&mytiminfo[1], hz*2, SINGLE, lcore_id, + timer_basic_cb); + mytimer_reset(&mytiminfo[2], hz, PERIODICAL, lcore_id, + timer_basic_cb); + mytimer_reset(&mytiminfo[3], hz, PERIODICAL, + rte_get_next_lcore(lcore_id, 0, 1), + timer_basic_cb); + } + + while (diff >= 0) { + + /* call the timer handler on each core */ + rte_timer_manage(); + + /* simulate the processing of a packet + * (3 us = 6000 cycles at 2 Ghz) */ + rte_delay_us(3); + + cur_time = rte_get_timer_cycles(); + diff = end_time - cur_time; + } + RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id); + + return 0; +} + +static int +timer_sanity_check(void) +{ +#ifdef RTE_LIBEAL_USE_HPET + if (eal_timer_source != EAL_TIMER_HPET) { + printf("Not using HPET, can't sanity check timer sources\n"); + return 0; + } + + const uint64_t t_hz = rte_get_tsc_hz(); + const uint64_t h_hz = rte_get_hpet_hz(); + printf("Hertz values: TSC = %"PRIu64", HPET = %"PRIu64"\n", t_hz, h_hz); + + const uint64_t tsc_start = rte_get_tsc_cycles(); + const uint64_t hpet_start = rte_get_hpet_cycles(); + rte_delay_ms(100); /* delay 1/10 second */ + const uint64_t tsc_end = rte_get_tsc_cycles(); + const uint64_t hpet_end = rte_get_hpet_cycles(); + printf("Measured cycles: TSC = %"PRIu64", HPET = %"PRIu64"\n", + tsc_end-tsc_start, hpet_end-hpet_start); + + const double tsc_time = (double)(tsc_end - tsc_start)/t_hz; + const double hpet_time = (double)(hpet_end - hpet_start)/h_hz; + /* get the percentage that the times differ by */ + const double time_diff = fabs(tsc_time - hpet_time)*100/tsc_time; + printf("Measured time: TSC = %.4f, HPET = %.4f\n", tsc_time, hpet_time); + + printf("Elapsed time measured by TSC and HPET differ by %f%%\n", + time_diff); + if (time_diff > 0.1) { + printf("Error times differ by >0.1%%"); + return -1; + } +#endif + return 0; +} + +static int +test_timer(void) +{ + unsigned i; + uint64_t cur_time; + uint64_t hz; + + /* sanity check our timer sources and timer config values */ + if (timer_sanity_check() < 0) { + printf("Timer sanity checks failed\n"); + return TEST_FAILED; + } + + if (rte_lcore_count() < 2) { + printf("not enough lcores for this test\n"); + return TEST_FAILED; + } + + /* init timer */ + for (i=0; i