/* * Copyright (c) 2017 Intel and/or its affiliates. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "POD IS" BPODIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * kp-plugin implements a MagLev-like load balancer. * http://research.google.com/pubs/pub44824.html * * It hasn't been tested for interoperability with the original MagLev * but intends to provide similar functionality. * The kube-proxy receives traffic destined to VIP (Virtual IP) * addresses from one or multiple(ECMP) routers. * The kube-proxy tunnels the traffic toward many application servers * ensuring session stickyness (i.e. that a single sessions is tunneled * towards a single application server). * */ #ifndef KP_PLUGIN_KP_KP_H_ #define KP_PLUGIN_KP_KP_H_ #include #include #include #include #include #include #include #define KP_DEFAULT_PER_CPU_STICKY_BUCKETS 1 << 10 #define KP_DEFAULT_FLOW_TIMEOUT 40 #define KP_MAPPING_BUCKETS 1024 #define KP_MAPPING_MEMORY_SIZE 64<<20 typedef enum { KP_NEXT_DROP, KP_N_NEXT, } kp_next_t; typedef enum { KP_NAT4_IN2OUT_NEXT_DROP, KP_NAT4_IN2OUT_NEXT_LOOKUP, KP_NAT4_IN2OUT_N_NEXT, } kp_nat4_in2out_next_t; #define foreach_kp_nat_in2out_error \ _(UNSUPPORTED_PROTOCOL, "Unsupported protocol") \ _(IN2OUT_PACKETS, "Good in2out packets processed") \ _(NO_TRANSLATION, "No translation") typedef enum { #define _(sym,str) KP_NAT_IN2OUT_ERROR_##sym, foreach_kp_nat_in2out_error #undef _ KP_NAT_IN2OUT_N_ERROR, } kp_nat_in2out_error_t; /** * kube-proxy supports three types of service */ typedef enum { KP_SVR_TYPE_VIP_PORT, KP_SVR_TYPE_NODEIP_PORT, KP_SVR_TYPE_EXT_LB, KP_SVR_N_TYPES, } kp_svr_type_t; typedef enum { KP_NODEPORT_NEXT_IP4_NAT4, KP_NODEPORT_NEXT_IP4_NAT6, KP_NODEPORT_NEXT_IP6_NAT4, KP_NODEPORT_NEXT_IP6_NAT6, KP_NODEPORT_NEXT_DROP, KP_NODEPORT_N_NEXT, } kp_nodeport_next_t; /** * Each VIP is configured with a set of PODs */ typedef struct { /** * Registration to FIB event. */ fib_node_t fib_node; /** * Destination address used to transfer traffic towards to that POD. * The address is also used pod ID and pseudo-random * seed for the load-balancing process. */ ip46_address_t address; /** * PODs are indexed by address and VIP Index. * Which means there will be duplicated if the same server * address is used for multiple VIPs. */ u32 vip_index; /** * Some per-POD flags. * For now only KP_POD_FLAGS_USED is defined. */ u8 flags; #define KP_POD_FLAGS_USED 0x1 /** * Rotating timestamp of when KP_POD_FLAGS_USED flag was last set. * * POD removal is based on garbage collection and reference counting. * When an POD is removed, there is a race between configuration core * and worker cores which may still add a reference while it should not * be used. This timestamp is used to not remove the POD while a race condition * may happen. */ u32 last_used; /** * The FIB entry index for the next-hop */ fib_node_index_t next_hop_fib_entry_index; /** * The child index on the FIB entry */ u32 next_hop_child_index; /** * The next DPO in the graph to follow. */ dpo_id_t dpo; } kp_pod_t; format_function_t format_kp_pod; typedef struct { u32 pod_index; } kp_new_flow_entry_t; #define kp_foreach_vip_counter \ _(NEXT_PACKET, "packet from existing sessions", 0) \ _(FIRST_PACKET, "first session packet", 1) \ _(UNTRACKED_PACKET, "untracked packet", 2) \ _(NO_SERVER, "no server configured", 3) typedef enum { #define _(a,b,c) KP_VIP_COUNTER_##a = c, kp_foreach_vip_counter #undef _ KP_N_VIP_COUNTERS } kp_vip_counter_t; /** * kube-proxy supports IPv4 and IPv6 traffic * and NAT4 and NAT6. */ typedef enum { KP_VIP_TYPE_IP4_NAT44, KP_VIP_TYPE_IP4_NAT46, KP_VIP_TYPE_IP6_NAT64, KP_VIP_TYPE_IP6_NAT66, KP_VIP_N_TYPES, } kp_vip_type_t; format_function_t format_kp_vip_type; unformat_function_t unformat_kp_vip_type; /** * Load balancing service is provided per VIP. * In this data model, a VIP can be a whole prefix. * But load balancing only * occurs on a per-source-address/port basis. Meaning that if a given source * reuses the same port for multiple destinations within the same VIP, * they will be considered as a single flow. */ typedef struct { //Runtime /** * Vector mapping (flow-hash & new_connect_table_mask) to POD index. * This is used for new flows. */ kp_new_flow_entry_t *new_flow_table; /** * New flows table length - 1 * (length MUST be a power of 2) */ u32 new_flow_table_mask; /** * last time garbage collection was run to free the PODs. */ u32 last_garbage_collection; //Not runtime /** * A Virtual IP represents a given service delivered * by a set of PODs. It can be a single * address or a prefix. * IPv4 prefixes are encoded using IPv4-in-IPv6 embedded address * (i.e. ::/96 prefix). */ ip46_address_t prefix; /** * The VIP prefix length. * In case of IPv4, plen = 96 + ip4_plen. */ u8 plen; /** * Service port. network byte order */ u16 port; /** * Pod's port corresponding to specific service. network byte order */ u16 target_port; /** * Node's port, can access service via NodeIP:node_port. network byte order */ u16 node_port; /** * The type of traffic for this. * KP_TYPE_UNDEFINED if unknown. */ kp_vip_type_t type; /** * Flags related to this VIP. * KP_VIP_FLAGS_USED means the VIP is active. * When it is not set, the VIP in the process of being removed. * We cannot immediately remove a VIP because the VIP index still may be stored * in the adjacency index. */ u8 flags; #define KP_VIP_FLAGS_USED 0x1 /** * Pool of POD indexes used for this VIP. * This also includes PODs that have been removed (but are still referenced). */ u32 *pod_indexes; } kp_vip_t; /* * mapping from nodeport to vip_index */ typedef struct { u32 vip_index; } kp_nodeport_t; #define kp_vip_is_ip4(vip) ((vip)->type == KP_VIP_TYPE_IP4_NAT44 \ || (vip)->type == KP_VIP_TYPE_IP4_NAT46) #define kp_vip_is_nat4(vip) ((vip)->type == KP_VIP_TYPE_IP6_NAT64 \ || (vip)->type == KP_VIP_TYPE_IP4_NAT44) format_function_t format_kp_vip; format_function_t format_kp_vip_detailed; #define foreach_kp_nat_protocol \ _(UDP, 0, udp, "udp") \ _(TCP, 1, tcp, "tcp") typedef enum { #define _(N, i, n, s) KP_NAT_PROTOCOL_##N = i, foreach_kp_nat_protocol #undef _ } kp_nat_protocol_t; always_inline u32 kp_ip_proto_to_nat_proto (u8 ip_proto) { u32 nat_proto = ~0; nat_proto = (ip_proto == IP_PROTOCOL_UDP) ? KP_NAT_PROTOCOL_UDP : nat_proto; nat_proto = (ip_proto == IP_PROTOCOL_TCP) ? KP_NAT_PROTOCOL_TCP : nat_proto; return nat_proto; } /* Key for Pod's egress SNAT */ typedef struct { union { struct { ip4_address_t addr; u16 port; u16 protocol:3, fib_index:13; }; u64 as_u64; }; } kp_snat4_key_t; typedef struct { ip6_address_t prefix; u8 plen; u32 vrf_id; u32 fib_index; } kp_snat6_key_t; typedef struct { kp_svr_type_t svr_type; ip46_address_t vip; ip46_address_t node_ip; ip46_address_t pod_ip; u8 vip_is_ipv6; u8 node_ip_is_ipv6; u8 pod_ip_is_ipv6; u16 port; /* Network byte order */ u16 node_port; /* Network byte order */ u16 target_port; /* Network byte order */ u32 vrf_id; u32 fib_index; } kp_snat_mapping_t; typedef struct { /** * Each CPU has its own sticky flow hash table. * One single table is used for all VIPs. */ kp_hash_t *sticky_ht; } kp_per_cpu_t; typedef struct { /** * Pool of all Virtual IPs */ kp_vip_t *vips; /** * Pool of PODs. * PODs are referenced by address and vip index. * The first element (index 0) is special and used only to fill * new_flow_tables when no POD has been configured. */ kp_pod_t *pods; /** * Each POD has an associated reference counter. * As pods[0] has a special meaning, its associated counter * starts at 0 and is decremented instead. i.e. do not use it. */ vlib_refcount_t pod_refcount; /* hash lookup vip_index by key: {u16: nodeport} */ uword * nodeport_by_key; /** * Some global data is per-cpu */ kp_per_cpu_t *per_cpu; /** * Node next index for IP adjacencies, for each of the traffic types. */ u32 ip_lookup_next_index[KP_VIP_N_TYPES]; /** * Number of buckets in the per-cpu sticky hash table. */ u32 per_cpu_sticky_buckets; /** * Flow timeout in seconds. */ u32 flow_timeout; /** * Per VIP counter */ vlib_simple_counter_main_t vip_counters[KP_N_VIP_COUNTERS]; /** * DPO used to send packet from IP4/6 lookup to KP node. */ dpo_type_t dpo_nat4_type; dpo_type_t dpo_nat6_type; /** * Node type for registering to fib changes. */ fib_node_type_t fib_node_type; /* Find a static mapping by pod IP : target_port */ clib_bihash_8_8_t mapping_by_pod; /* Static mapping pool */ kp_snat_mapping_t * snat_mappings; /** * API dynamically registered base ID. */ u16 msg_id_base; volatile u32 *writer_lock; /* convenience */ vlib_main_t *vlib_main; vnet_main_t *vnet_main; } kp_main_t; #define ip46_address_type(ip46) (ip46_address_is_ip4(ip46)?IP46_TYPE_IP4:IP46_TYPE_IP6) #define ip46_prefix_is_ip4(ip46, len) ((len) >= 96 && ip46_address_is_ip4(ip46)) #define ip46_prefix_type(ip46, len) (ip46_prefix_is_ip4(ip46, len)?IP46_TYPE_IP4:IP46_TYPE_IP6) void ip46_prefix_normalize(ip46_address_t *prefix, u8 plen); uword unformat_ip46_prefix (unformat_input_t * input, va_list * args); u8 *format_ip46_prefix (u8 * s, va_list * args); extern kp_main_t kp_main; extern vlib_node_registration_t kp4_node; extern vlib_node_registration_t kp6_node; extern vlib_node_registration_t kp4_nodeport_node; extern vlib_node_registration_t kp6_nodeport_node; extern vlib_node_registration_t kp_nat4_in2out_node; /** * Fix global kube-proxy parameters. * @return 0 on success. VNET_KP_ERR_XXX on error */ int kp_conf(u32 sticky_buckets, u32 flow_timeout); int kp_vip_add(ip46_address_t *prefix, u8 plen, kp_vip_type_t type, u32 new_length, u32 *vip_index, u16 port, u16 target_port, u16 node_port); int kp_vip_del(u32 vip_index); int kp_vip_find_index(ip46_address_t *prefix, u8 plen, u32 *vip_index); #define kp_vip_get_by_index(index) (pool_is_free_index(kp_main.vips, index)?NULL:pool_elt_at_index(kp_main.vips, index)) int kp_vip_add_pods(u32 vip_index, ip46_address_t *addresses, u32 n); int kp_vip_del_pods(u32 vip_index, ip46_address_t *addresses, u32 n); u32 kp_hash_time_now(vlib_main_t * vm); void kp_garbage_collection(); int kp_nat4_interface_add_del (u32 sw_if_index, int is_del); format_function_t format_kp_main; #endif /* KP_PLUGIN_KP_KP_H_ */