From: jdenisco Date: Tue, 30 Oct 2018 12:46:02 +0000 (-0400) Subject: docs: Add VPP with iperf and trex X-Git-Tag: v19.04-rc0~495 X-Git-Url: https://gerrit.fd.io/r/gitweb?p=vpp.git;a=commitdiff_plain;h=1511a4e953a608eeca9cf566c40ef23232f50f57 docs: Add VPP with iperf and trex Change-Id: I9f238b6092bc072fd875facfee5262c6b155043e Signed-off-by: jdenisco --- diff --git a/docs/_images/build-a-fast-network-stack-terminal-2.png b/docs/_images/build-a-fast-network-stack-terminal-2.png new file mode 100644 index 00000000000..f58c47ada14 Binary files /dev/null and b/docs/_images/build-a-fast-network-stack-terminal-2.png differ diff --git a/docs/_images/build-a-fast-network-stack-terminal-3.png b/docs/_images/build-a-fast-network-stack-terminal-3.png new file mode 100644 index 00000000000..382234b6caa Binary files /dev/null and b/docs/_images/build-a-fast-network-stack-terminal-3.png differ diff --git a/docs/_images/build-a-fast-network-stack-terminal.png b/docs/_images/build-a-fast-network-stack-terminal.png new file mode 100644 index 00000000000..86dc329d19e Binary files /dev/null and b/docs/_images/build-a-fast-network-stack-terminal.png differ diff --git a/docs/_images/iperf3fig1.png b/docs/_images/iperf3fig1.png new file mode 100644 index 00000000000..3e5e8bb53e1 Binary files /dev/null and b/docs/_images/iperf3fig1.png differ diff --git a/docs/_images/trex.png b/docs/_images/trex.png new file mode 100644 index 00000000000..785a13a8462 Binary files /dev/null and b/docs/_images/trex.png differ diff --git a/docs/usecases/containers.rst b/docs/usecases/containers.rst index 90e41db6cb8..65bf2aee5de 100644 --- a/docs/usecases/containers.rst +++ b/docs/usecases/containers.rst @@ -1,7 +1,7 @@ .. _containers: -FD.io VPP with Containers -========================= +VPP with Containers +==================== This section will cover connecting two Linux containers with VPP. A container is essentially a more efficient and faster VM, due to the fact that a container does not simulate a separate kernel and hardware. You can read more about `Linux containers here `_. diff --git a/docs/usecases/index.rst b/docs/usecases/index.rst index 28070453692..e6287f38931 100644 --- a/docs/usecases/index.rst +++ b/docs/usecases/index.rst @@ -9,7 +9,8 @@ extensive list, but should give a sampling of the many features contained in FD. .. toctree:: - contiv/index containers + simpleperf/index.rst vhost/index.rst homegateway + contiv/index.rst diff --git a/docs/usecases/simpleperf/index.rst b/docs/usecases/simpleperf/index.rst new file mode 100644 index 00000000000..0f1d30737eb --- /dev/null +++ b/docs/usecases/simpleperf/index.rst @@ -0,0 +1,17 @@ +.. _simpleperf: + +************************ +VPP with Iperf3 and TRex +************************ + +.. toctree:: + :maxdepth: 2 + + iperf3 + iperf31 + trex + trex1 + + + + diff --git a/docs/usecases/simpleperf/iperf3.rst b/docs/usecases/simpleperf/iperf3.rst new file mode 100644 index 00000000000..1d159d0eef2 --- /dev/null +++ b/docs/usecases/simpleperf/iperf3.rst @@ -0,0 +1,237 @@ +.. _iperf3: + +Introduction +============ + +This tutorial shows how to use VPP use iperf3 and Trex to get some basic peformance +numbers from a few basic configurations. Four examples are shown. In the first two +examples, the **iperf3** tool is used to generate traffic, and in the last two examples +the Cisco's `TRex Realistic Traffic Generator `_ is used. For +comparison purposes, the first example shows packet forwarding using ordinary kernel +IP forwarding, and the second example shows packet forwarding using VPP. + +Three Intel Xeon processor platform systems are used to connect to the VPP host to pass traffic +using **iperf3** and Cisco’s `TRex `_. + +Intel 40 Gigabit Ethernet (GbE) network interface cards (NICs) are used to connect the hosts. + + +Using Kernel Packet Forwarding with Iperf3 +=========================================== + +In this test, 40 GbE Intel Ethernet Network Adapters are used to connect the three +systems. Figure 1 illustrates this configuration. + +.. figure:: /_images/iperf3fig1.png + +Figure 1: VPP runs on a host that connects to two other systems via 40 GbE NICs. + +For comparison purposes, in the first example, we configure kernel forwarding in +*csp2s22c03* and use the **iperf3** tool to measure network bandwidth between +*csp2s22c03* and *net2s22c05*. + +In the second example, we start the VPP engine in *csp2s22c03* instead of using +kernel forwarding. On *csp2s22c03*, we configure the system to have the addresses +10.10.1.1/24 and 10.10.2.1/24 on the two 40-GbE NICs. To find all network interfaces +available on the system, use the lshw Linux command to list all network interfaces +and the corresponding slots *[0000:xx:yy.z]*. + +In this example, the 40-GbE interfaces are *ens802f0* and *ens802f1*. + +.. code-block:: console + + csp2s22c03$ sudo lshw -class network -businfo + Bus info Device Class Description + ======================================================== + pci@0000:03:00.0 enp3s0f0 network Ethernet Controller 10-Gig + pci@0000:03:00.1 enp3s0f1 network Ethernet Controller 10-Gig + pci@0000:82:00.0 ens802f0 network Ethernet Controller XL710 + pci@0000:82:00.1 ens802f1 network Ethernet Controller XL710 + pci@0000:82:00.0 ens802f0d1 network Ethernet interface + pci@0000:82:00.1 ens802f1d1 network Ethernet interface + + +Configure the system *csp2s22c03* to have 10.10.1.1 and 10.10.2.1 on the two 40-GbE NICs +*ens802f0* and *ens802f1*, respectively. + +.. code-block:: console + + csp2s22c03$ sudo ip addr add 10.10.1.1/24 dev ens802f0 + csp2s22c03$ sudo ip link set dev ens802f0 up + csp2s22c03$ sudo ip addr add 10.10.2.1/24 dev ens802f1 + csp2s22c03$ sudo ip link set dev ens802f1 up + +List the route table: + +.. code-block:: console + + csp2s22c03$ route + Kernel IP routing table + Destination Gateway Genmask Flags Metric Ref Use Iface + default jf111-ldr1a-530 0.0.0.0 UG 0 0 0 enp3s0f1 + default 192.168.0.50 0.0.0.0 UG 100 0 0 enp3s0f0 + 10.10.1.0 * 255.255.255.0 U 0 0 0 ens802f0 + 10.10.2.0 * 255.255.255.0 U 0 0 0 ens802f1 + 10.23.3.0 * 255.255.255.0 U 0 0 0 enp3s0f1 + link-local * 255.255.0.0 U 1000 0 0 enp3s0f1 + 192.168.0.0 * 255.255.255.0 U 100 0 0 enp3s0f0 + +.. code-block:: console + + csp2s22c03$ ip route + default via 10.23.3.1 dev enp3s0f1 + default via 192.168.0.50 dev enp3s0f0 proto static metric 100 + 10.10.1.0/24 dev ens802f0 proto kernel scope link src 10.10.1.1 + 10.10.2.0/24 dev ens802f1 proto kernel scope link src 10.10.2.1 + 10.23.3.0/24 dev enp3s0f1 proto kernel scope link src 10.23.3.67 + 169.254.0.0/16 dev enp3s0f1 scope link metric 1000 + 192.168.0.0/24 dev enp3s0f0 proto kernel scope link src 192.168.0.142 metric 100 + +On *csp2s22c04*, we configure the system to have the address 10.10.1.2 and use +the interface *ens802* to route IP packets 10.10.2.0/24. Use the lshw Linux +command to list all network interfaces and the corresponding slots *[0000:xx:yy.z]*. + +For example, the interface *ens802d1* *(ens802)* is connected to slot *[82:00.0]*: + +.. code-block:: console + + csp2s22c04$ sudo lshw -class network -businfo + Bus info Device Class Description + ===================================================== + pci@0000:03:00.0 enp3s0f0 network Ethernet Controller 10-Gigabit X540-AT2 + pci@0000:03:00.1 enp3s0f1 network Ethernet Controller 10-Gigabit X540-AT2 + pci@0000:82:00.0 ens802d1 network Ethernet Controller XL710 for 40GbE QSFP+ + pci@0000:82:00.0 ens802 network Ethernet interface + +For kernel forwarding, set 10.10.1.2 to the interface *ens802*, and add a static +route for IP packet 10.10.2.0/24: + +.. code-block:: console + + csp2s22c04$ sudo ip addr add 10.10.1.2/24 dev ens802 + csp2s22c04$ sudo ip link set dev ens802 up + csp2s22c04$ sudo ip route add 10.10.2.0/24 via 10.10.1.1 + +.. code-block:: console + + csp2s22c04$ ifconfig + enp3s0f0 Link encap:Ethernet HWaddr a4:bf:01:00:92:73 + inet addr:10.23.3.62 Bcast:10.23.3.255 Mask:255.255.255.0 + inet6 addr: fe80::a6bf:1ff:fe00:9273/64 Scope:Link + UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 + RX packets:3411 errors:0 dropped:0 overruns:0 frame:0 + TX packets:1179 errors:0 dropped:0 overruns:0 carrier:0 + collisions:0 txqueuelen:1000 + RX bytes:262230 (262.2 KB) TX bytes:139975 (139.9 KB) + + ens802 Link encap:Ethernet HWaddr 68:05:ca:2e:76:e0 + inet addr:10.10.1.2 Bcast:0.0.0.0 Mask:255.255.255.0 + inet6 addr: fe80::6a05:caff:fe2e:76e0/64 Scope:Link + UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 + RX packets:0 errors:0 dropped:0 overruns:0 frame:0 + TX packets:40 errors:0 dropped:0 overruns:0 carrier:0 + collisions:0 txqueuelen:1000 + RX bytes:0 (0.0 B) TX bytes:5480 (5.4 KB) + + lo Link encap:Local Loopback + inet addr:127.0.0.1 Mask:255.0.0.0 + inet6 addr: ::1/128 Scope:Host + UP LOOPBACK RUNNING MTU:65536 Metric:1 + RX packets:31320 errors:0 dropped:0 overruns:0 frame:0 + TX packets:31320 errors:0 dropped:0 overruns:0 carrier:0 + collisions:0 txqueuelen:1 + RX bytes:40301788 (40.3 MB) TX bytes:40301788 (40.3 MB) + +After setting the route, we can ping from *csp2s22c03* to *csp2s22c04*, and vice versa: + +.. code-block:: console + + csp2s22c03$ ping 10.10.1.2 -c 3 + PING 10.10.1.2 (10.10.1.2) 56(84) bytes of data. + 64 bytes from 10.10.1.2: icmp_seq=1 ttl=64 time=0.122 ms + 64 bytes from 10.10.1.2: icmp_seq=2 ttl=64 time=0.109 ms + 64 bytes from 10.10.1.2: icmp_seq=3 ttl=64 time=0.120 ms + +.. code-block:: console + + csp2s22c04$ ping 10.10.1.1 -c 3 + PING 10.10.1.1 (10.10.1.1) 56(84) bytes of data. + 64 bytes from 10.10.1.1: icmp_seq=1 ttl=64 time=0.158 ms + 64 bytes from 10.10.1.1: icmp_seq=2 ttl=64 time=0.096 ms + 64 bytes from 10.10.1.1: icmp_seq=3 ttl=64 time=0.102 ms + +Similarly, on *net2s22c05*, we configure the system to have the address *10.10.2.2* +and use the interface *ens803f0* to route IP packets *10.10.1.0/24*. Use the lshw +Linux command to list all network interfaces and the corresponding slots +*[0000:xx:yy.z]*. For example, the interface *ens803f0* is connected to slot *[87:00.0]*: + +.. code-block:: console + + NET2S22C05$ sudo lshw -class network -businfo + Bus info Device Class Description + ======================================================== + pci@0000:03:00.0 enp3s0f0 network Ethernet Controller 10-Gigabit X540-AT2 + pci@0000:03:00.1 enp3s0f1 network Ethernet Controller 10-Gigabit X540-AT2 + pci@0000:81:00.0 ens787f0 network 82599 10 Gigabit TN Network Connection + pci@0000:81:00.1 ens787f1 network 82599 10 Gigabit TN Network Connection + pci@0000:87:00.0 ens803f0 network Ethernet Controller XL710 for 40GbE QSFP+ + pci@0000:87:00.1 ens803f1 network Ethernet Controller XL710 for 40GbE QSFP+ + +For kernel forwarding, set 10.10.2.2 to the interface ens803f0, and add a static +route for IP packet 10.10.1.0/24: + +.. code-block:: console + + NET2S22C05$ sudo ip addr add 10.10.2.2/24 dev ens803f0 + NET2S22C05$ sudo ip link set dev ens803f0 up + NET2S22C05$ sudo ip route add 10.10.1.0/24 via 10.10.2.1 + +After setting the route, you can ping from *csp2s22c03* to *net2s22c05*, and vice +versa. However, in order to ping between *net2s22c05* and *csp2s22c04*, kernel IP +forwarding in *csp2s22c03* has to be enabled: + +.. code-block:: console + + csp2s22c03$ sysctl net.ipv4.ip_forward + net.ipv4.ip_forward = 0 + csp2s22c03$ echo 1 | sudo tee /proc/sys/net/ipv4/ip_forward + csp2s22c03$ sysctl net.ipv4.ip_forward + net.ipv4.ip_forward = 1 + +If successful, verify that now you can ping between *net2s22c05* and *csp2s22c04*: + +.. code-block:: console + + NET2S22C05$ ping 10.10.1.2 -c 3 + PING 10.10.1.2 (10.10.1.2) 56(84) bytes of data. + 64 bytes from 10.10.1.2: icmp_seq=1 ttl=63 time=0.239 ms + 64 bytes from 10.10.1.2: icmp_seq=2 ttl=63 time=0.224 ms + 64 bytes from 10.10.1.2: icmp_seq=3 ttl=63 time=0.230 ms + +We use the **iperf3** utility to measure network bandwidth between hosts. In this +test, we download the **iperf3** utility tool on both *net2s22c05* and *csp2s22c04*. +On *csp2s22c04*, we start the **iperf3** server with “iperf3 –s”, and then on *net2s22c05*, +we start the **iperf3** client to connect to the server: + +.. code-block:: console + + NET2S22C05$ iperf3 -c 10.10.1.2 + Connecting to host 10.10.1.2, port 5201 + [ 4] local 10.10.2.2 port 54074 connected to 10.10.1.2 port 5201 + [ ID] Interval Transfer Bandwidth Retr Cwnd + [ 4] 0.00-1.00 sec 936 MBytes 7.85 Gbits/sec 2120 447 KBytes + [ 4] 1.00-2.00 sec 952 MBytes 7.99 Gbits/sec 1491 611 KBytes + [ 4] 2.00-3.00 sec 949 MBytes 7.96 Gbits/sec 2309 604 KBytes + [ 4] 3.00-4.00 sec 965 MBytes 8.10 Gbits/sec 1786 571 KBytes + [ 4] 4.00-5.00 sec 945 MBytes 7.93 Gbits/sec 1984 424 KBytes + [ 4] 5.00-6.00 sec 946 MBytes 7.94 Gbits/sec 1764 611 KBytes + [ 4] 6.00-7.00 sec 979 MBytes 8.21 Gbits/sec 1499 655 KBytes + [ 4] 7.00-8.00 sec 980 MBytes 8.22 Gbits/sec 1182 867 KBytes + [ 4] 8.00-9.00 sec 1008 MBytes 8.45 Gbits/sec 945 625 KBytes + [ 4] 9.00-10.00 sec 1015 MBytes 8.51 Gbits/sec 1394 611 KBytes + - - - - - - - - - - - - - - - - - - - - - - - - - + [ ID] Interval Transfer Bandwidth Retr + [ 4] 0.00-10.00 sec 9.45 GBytes 8.12 Gbits/sec 16474 sender + [ 4] 0.00-10.00 sec 9.44 GBytes 8.11 Gbits/sec receiver + + iperf Done. diff --git a/docs/usecases/simpleperf/iperf31.rst b/docs/usecases/simpleperf/iperf31.rst new file mode 100644 index 00000000000..50abfdf0396 --- /dev/null +++ b/docs/usecases/simpleperf/iperf31.rst @@ -0,0 +1,119 @@ +.. _iperf31: + +Using VPP with Iperf3 +===================== + +First, disable kernel IP forward in *csp2s22c03* to ensure the host cannot use +kernel forwarding (all the settings in *net2s22c05* and *csp2s22c04* remain unchanged): + +.. code-block:: console + + csp2s22c03$ echo 0 | sudo tee /proc/sys/net/ipv4/ip_forward + 0 + csp2s22c03$ sysctl net.ipv4.ip_forward + net.ipv4.ip_forward = 0 + +You can use DPDK’s device binding utility (./install-vpp-native/dpdk/sbin/dpdk-devbind) +to list network devices and bind/unbind them from specific drivers. The flag “-s/--status” +shows the status of devices; the flag “-b/--bind” selects the driver to bind. The +status of devices in our system indicates that the two 40-GbE XL710 devices are located +at 82:00.0 and 82:00.1. Use the device’s slots to bind them to the driver uio_pci_generic: + +.. code-block:: console + + csp2s22c03$ ./install-vpp-native/dpdk/sbin/dpdk-devbind -s + + Network devices using DPDK-compatible driver + ============================================ + + + Network devices using kernel driver + =================================== + 0000:03:00.0 'Ethernet Controller 10-Gigabit X540-AT2' if=enp3s0f0 drv=ixgbe unused=vfio-pci,uio_pci_generic *Active* + 0000:03:00.1 'Ethernet Controller 10-Gigabit X540-AT2' if=enp3s0f1 drv=ixgbe unused=vfio-pci,uio_pci_generic *Active* + 0000:82:00.0 'Ethernet Controller XL710 for 40GbE QSFP+' if=ens802f0d1,ens802f0 drv=i40e unused=uio_pci_generic + 0000:82:00.1 'Ethernet Controller XL710 for 40GbE QSFP+' if=ens802f1d1,ens802f1 drv=i40e unused=uio_pci_generic + + Other network devices + ===================== + + + csp2s22c03$ sudo modprobe uio_pci_generic + csp2s22c03$ sudo ./install-vpp-native/dpdk/sbin/dpdk-devbind --bind uio_pci_generic 82:00.0 + csp2s22c03$ sudo ./install-vpp-native/dpdk/sbin/dpdk-devbind --bind uio_pci_generic 82:00.1 + + csp2s22c03$ sudo ./install-vpp-native/dpdk/sbin/dpdk-devbind -s + + Network devices using DPDK-compatible driver + ============================================ + 0000:82:00.0 'Ethernet Controller XL710 for 40GbE QSFP+' drv=uio_pci_generic unused=i40e,vfio-pci + 0000:82:00.1 'Ethernet Controller XL710 for 40GbE QSFP+' drv=uio_pci_generic unused=i40e,vfio-pci + + Network devices using kernel driver + =================================== + 0000:03:00.0 'Ethernet Controller 10-Gigabit X540-AT2' if=enp3s0f0 drv=ixgbe unused=vfio-pci,uio_pci_generic *Active* + 0000:03:00.1 'Ethernet Controller 10-Gigabit X540-AT2' if=enp3s0f1 drv=ixgbe unused=vfio-pci,uio_pci_generic *Active* + +Start the VPP service, and verify that VPP is running: + +.. code-block:: console + + csp2s22c03$ sudo service vpp start + csp2s22c03$ ps -ef | grep vpp + root 105655 1 98 17:34 ? 00:00:02 /usr/bin/vpp -c /etc/vpp/startup.conf + :w + 105675 105512 0 17:34 pts/4 00:00:00 grep --color=auto vpp + +To access the VPP CLI, issue the command sudo vppctl . From the VPP interface, list +all interfaces that are bound to DPDK using the command show interface: + +VPP shows that the two 40-Gbps ports located at 82:0:0 and 82:0:1 are bound. Next, +you need to assign IP addresses to those interfaces, bring them up, and verify: + +.. code-block:: console + + vpp# set interface ip address FortyGigabitEthernet82/0/0 10.10.1.1/24 + vpp# set interface ip address FortyGigabitEthernet82/0/1 10.10.2.1/24 + vpp# set interface state FortyGigabitEthernet82/0/0 up + vpp# set interface state FortyGigabitEthernet82/0/1 up + vpp# show interface address + FortyGigabitEthernet82/0/0 (up): + 10.10.1.1/24 + FortyGigabitEthernet82/0/1 (up): + 10.10.2.1/24 + local0 (dn): + +At this point VPP is operational. You can ping these interfaces either from *net2s22c05* +or *csp2s22c04*. Moreover, VPP can forward packets whose IP address are 10.10.1.0/24 and +10.10.2.0/24, so you can ping between *net2s22c05* and *csp2s22c04*. Also, you can +run iperf3 as illustrated in the previous example, and the result from running iperf3 +between *net2s22c05* and *csp2s22c04* increases to 20.3 Gbits per second. + +.. code-block:: console + + ET2S22C05$ iperf3 -c 10.10.1.2 + Connecting to host 10.10.1.2, port 5201 + [ 4] local 10.10.2.2 port 54078 connected to 10.10.1.2 port 5201 + [ ID] Interval Transfer Bandwidth Retr Cwnd + [ 4] 0.00-1.00 sec 2.02 GBytes 17.4 Gbits/sec 460 1.01 MBytes + [ 4] 1.00-2.00 sec 3.28 GBytes 28.2 Gbits/sec 0 1.53 MBytes + [ 4] 2.00-3.00 sec 2.38 GBytes 20.4 Gbits/sec 486 693 KBytes + [ 4] 3.00-4.00 sec 2.06 GBytes 17.7 Gbits/sec 1099 816 KBytes + [ 4] 4.00-5.00 sec 2.07 GBytes 17.8 Gbits/sec 614 1.04 MBytes + [ 4] 5.00-6.00 sec 2.25 GBytes 19.3 Gbits/sec 2869 716 KBytes + [ 4] 6.00-7.00 sec 2.26 GBytes 19.4 Gbits/sec 3321 683 KBytes + [ 4] 7.00-8.00 sec 2.33 GBytes 20.0 Gbits/sec 2322 594 KBytes + [ 4] 8.00-9.00 sec 2.28 GBytes 19.6 Gbits/sec 1690 1.23 MBytes + [ 4] 9.00-10.00 sec 2.73 GBytes 23.5 Gbits/sec 573 680 KBytes + - - - - - - - - - - - - - - - - - - - - - - - - - + [ ID] Interval Transfer Bandwidth Retr + [ 4] 0.00-10.00 sec 23.7 GBytes 20.3 Gbits/sec 13434 sender + [ 4] 0.00-10.00 sec 23.7 GBytes 20.3 Gbits/sec receiver + + iperf Done. + +The **show run** command displays the graph runtime statistics. Observe that the +average vector per node is 6.76, which means on average, a vector of 6.76 packets +is handled in a graph node. + +.. figure:: /_images/build-a-fast-network-stack-terminal.png diff --git a/docs/usecases/simpleperf/trex.rst b/docs/usecases/simpleperf/trex.rst new file mode 100644 index 00000000000..3dffcab4675 --- /dev/null +++ b/docs/usecases/simpleperf/trex.rst @@ -0,0 +1,133 @@ +.. _trex: + +Using VPP with TRex +=================== + +In this example we use only two systems, *csp2s22c03* and *net2s22c05*, to run +**TRex** VPP is installed on **csp2s22c03** and run as a packet forwarding +engine. On *net2s22c05*, TRex is used to generate both client and server-side +traffic. **TRex** is a high-performance traffic generator. It leverages DPDK and +run in user space. Figure 2 illustrates this configuration. + +VPP is set up on *csp2s22c03* exactly as it was in the previous example. Only +the setup on *net2s22c05* is modified slightly to run TRex preconfigured traffic +files. + +.. figure:: /_images/trex.png + +Figure 2: The TRex traffic generator sends packages to the host that has VPP running. + + +First we install **TRex**. + +.. code-block:: console + + NET2S22C05$ wget --no-cache http://trex-tgn.cisco.com/trex/release/latest + NET2S22C05$ tar -xzvf latest + NET2S22C05$ cd v2.37 + +Then show the devices we have. + +.. code-block:: console + + NET2S22C05$ sudo ./dpdk_nic_bind.py -s + + Network devices using DPDK-compatible driver + ============================================ + 0000:87:00.0 'Ethernet Controller XL710 for 40GbE QSFP+' drv=vfio-pci unused=i40e + 0000:87:00.1 'Ethernet Controller XL710 for 40GbE QSFP+' drv=vfio-pci unused=i40e + + Network devices using kernel driver + =================================== + 0000:03:00.0 'Ethernet Controller 10-Gigabit X540-AT2' if=enp3s0f0 drv=ixgbe unused=vfio-pci *Active* + 0000:03:00.1 'Ethernet Controller 10-Gigabit X540-AT2' if=enp3s0f1 drv=ixgbe unused=vfio-pci + 0000:81:00.0 '82599 10 Gigabit TN Network Connection' if=ens787f0 drv=ixgbe unused=vfio-pci + 0000:81:00.1 '82599 10 Gigabit TN Network Connection' if=ens787f1 drv=ixgbe unused=vfio-pci + + Other network devices + ===================== + + +Create the */etc/trex_cfg.yaml* configuration file. In this configuration file, +the port should match the interfaces available in the target system, which is +*net2s22c05* in our example. The IP addresses correspond to Figure 2. For more +information on the configuration file, please refer to the `TRex Manual `_. + +.. code-block:: console + + NET2S22C05$ cat /etc/trex_cfg.yaml + - port_limit: 2 + version: 2 + interfaces: ['87:00.0', '87:00.1'] + port_bandwidth_gb: 40 + port_info: + - ip: 10.10.2.2 + default_gw: 10.10.2.1 + - ip: 10.10.1.2 + default_gw: 10.10.1.1 + + platform: + master_thread_id: 0 + latency_thread_id: 1 + dual_if: + - socket: 1 + threads: [22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43] + +Stop the previous VPP session and start it again in order to add a route for new +IP addresses 16.0.0.0/8 and 48.0.0.0/8, according to Figure 2. Those IP addresses +are needed because TRex generates packets that use these addresses. Refer to the +`TRex Manual `_ for details on +these traffic templates. + +.. code-block:: console + + csp2s22c03$ sudo service vpp stop + csp2s22c03$ sudo service vpp start + csp2s22c03$ sudo vppctl + _______ _ _ _____ ___ + __/ __/ _ \ (_)__ | | / / _ \/ _ \ + _/ _// // / / / _ \ | |/ / ___/ ___/ + /_/ /____(_)_/\___/ |___/_/ /_/ + + vpp# sho int + Name Idx State Counter Count + FortyGigabitEthernet82/0/0 1 down + FortyGigabitEthernet82/0/1 2 down + local0 0 down + + vpp# + vpp# set interface ip address FortyGigabitEthernet82/0/0 10.10.1.1/24 + vpp# set interface ip address FortyGigabitEthernet82/0/1 10.10.2.1/24 + vpp# set interface state FortyGigabitEthernet82/0/0 up + vpp# set interface state FortyGigabitEthernet82/0/1 up + vpp# ip route add 16.0.0.0/8 via 10.10.1.2 + vpp# ip route add 48.0.0.0/8 via 10.10.2.2 + vpp# clear run + +Now, you can generate a simple traffic flow from *net2s22c05* using the traffic +configuration file "cap2/dns.yaml". + +.. code-block:: console + + NET2S22C05$ sudo ./t-rex-64 -f cap2/dns.yaml -d 1 -l 1000 + summary stats + -------------- + Total-pkt-drop : 0 pkts + Total-tx-bytes : 166886 bytes + Total-tx-sw-bytes : 166716 bytes + Total-rx-bytes : 166886 byte + + Total-tx-pkt : 2528 pkts + Total-rx-pkt : 2528 pkts + Total-sw-tx-pkt : 2526 pkts + Total-sw-err : 0 pkts + Total ARP sent : 4 pkts + Total ARP received : 2 pkts + maximum-latency : 35 usec + average-latency : 8 usec + latency-any-error : OK + +On *csp2s22c03*, the *show run* command displays the graph runtime statistics. + +.. figure:: /_images/build-a-fast-network-stack-terminal-2.png + diff --git a/docs/usecases/simpleperf/trex1.rst b/docs/usecases/simpleperf/trex1.rst new file mode 100644 index 00000000000..d1101edb85a --- /dev/null +++ b/docs/usecases/simpleperf/trex1.rst @@ -0,0 +1,44 @@ +.. _trex1: + +Using VPP with TRex Mixed Traffic Templates +=========================================== + +In this example, a more complicated traffic with delay profile on *net2s22c05* is +generated using the traffic configuration file "avl/sfr_delay_10_1g.yaml": + +.. code-block:: console + + NET2S22C05$ sudo ./t-rex-64 -f avl/sfr_delay_10_1g.yaml -c 2 -m 20 -d 100 -l 1000 + summary stats + -------------- + Total-pkt-drop : 43309 pkts + Total-tx-bytes : 251062132504 bytes + Total-tx-sw-bytes : 21426636 bytes + Total-rx-bytes : 251040139922 byte + + Total-tx-pkt : 430598064 pkts + Total-rx-pkt : 430554755 pkts + Total-sw-tx-pkt : 324646 pkts + Total-sw-err : 0 pkts + Total ARP sent : 5 pkts + Total ARP received : 4 pkts + maximum-latency : 1278 usec + average-latency : 9 usec + latency-any-error : ERROR + +On *csp2s22c03*, use the VCC CLI command show run to display the graph runtime statistics. +Observe that the average vector per node is 10.69 and 14.47: + +.. figure:: /_images/build-a-fast-network-stack-terminal-3.png + +Summary +======= + +This tutorial showed how to download, compile, and install the VPP binary on an +Intel® Architecture platform. Examples of /etc/sysctl.d/80-vpp.conf and +/etc/vpp/startup.conf/startup.conf configuration files were provided to get the +user up and running with VPP. The tutorial also illustrated how to detect and bind +the network interfaces to a DPDK-compatible driver. You can use the VPP CLI to assign +IP addresses to these interfaces and bring them up. Finally, four examples using iperf3 +and TRex were included, to show how VPP processes packets in batches. +