rls1801 report: edits to static content for vpp and dpdk perf sections.
[csit.git] / docs / report / vpp_performance_tests / overview.rst
1 Overview
2 ========
3
4 .. _tested_physical_topologies:
5
6 Tested Physical Topologies
7 --------------------------
8
9 CSIT VPP performance tests are executed on physical baremetal servers hosted by
10 :abbr:`LF (Linux Foundation)` FD.io project. Testbed physical topology is shown
11 in the figure below.::
12
13         +------------------------+           +------------------------+
14         |                        |           |                        |
15         |  +------------------+  |           |  +------------------+  |
16         |  |                  |  |           |  |                  |  |
17         |  |                  <----------------->                  |  |
18         |  |       DUT1       |  |           |  |       DUT2       |  |
19         |  +--^---------------+  |           |  +---------------^--+  |
20         |     |                  |           |                  |     |
21         |     |            SUT1  |           |  SUT2            |     |
22         +------------------------+           +------------------^-----+
23               |                                                 |
24               |                                                 |
25               |                  +-----------+                  |
26               |                  |           |                  |
27               +------------------>    TG     <------------------+
28                                  |           |
29                                  +-----------+
30
31 SUT1 and SUT2 are two System Under Test servers (Cisco UCS C240, each with two
32 Intel XEON CPUs), TG is a Traffic Generator (TG, another Cisco UCS C240, with
33 two Intel XEON CPUs). SUTs run VPP SW application in Linux user-mode as a
34 Device Under Test (DUT). TG runs TRex SW application as a packet Traffic
35 Generator. Physical connectivity between SUTs and to TG is provided using
36 different NIC models that need to be tested for performance. Currently
37 installed and tested NIC models include:
38
39 #. 2port10GE X520-DA2 Intel.
40 #. 2port10GE X710 Intel.
41 #. 2port10GE VIC1227 Cisco.
42 #. 2port40GE VIC1385 Cisco.
43 #. 2port40GE XL710 Intel.
44
45 From SUT and DUT perspective, all performance tests involve forwarding packets
46 between two physical Ethernet ports (10GE or 40GE). Due to the number of
47 listed NIC models tested and available PCI slot capacity in SUT servers, in
48 all of the above cases both physical ports are located on the same NIC. In
49 some test cases this results in measured packet throughput being limited not
50 by VPP DUT but by either the physical interface or the NIC capacity.
51
52 Going forward CSIT project will be looking to add more hardware into FD.io
53 performance labs to address larger scale multi-interface and multi-NIC
54 performance testing scenarios.
55
56 For service chain topology test cases that require DUT (VPP) to communicate with
57 VirtualMachines (VMs) or with Linux/Docker Containers (Ctrs) over
58 vhost-user/memif interfaces, N of VM/Ctr instances are created on SUT1
59 and SUT2. Three types of service chain topologies are tested in CSIT |release|:
60
61 #. "Parallel" topology with packets flowing from NIC via DUT (VPP) to
62    VM/Container and back to VPP and NIC;
63
64 #. "Chained" topology (a.k.a. "Snake") with packets flowing via DUT (VPP) to
65    VM/Container, back to DUT, then to the next VM/Container, back to DUT and
66    so on until the last VM/Container in a chain, then back to DUT and NIC;
67
68 #. "Horizontal" topology with packets flowing via DUT (VPP) to Container,
69    then via "horizontal" memif to the next Container, and so on until the
70    last Container, then back to DUT and NIC. "Horizontal" topology is not
71    supported for VMs;
72
73 For each of the above topologies, DUT (VPP) is tested in a range of L2
74 or IPv4/IPv6 configurations depending on the test suite. A sample DUT
75 "Chained" service topology with N of VM/Ctr instances is shown in the
76 figure below. Packet flow thru the DUTs and VMs/Ctrs is marked with
77 ``***``::
78
79         +-------------------------+           +-------------------------+
80         | +---------+ +---------+ |           | +---------+ +---------+ |
81         | |VM/Ctr[1]| |VM/Ctr[N]| |           | |VM/Ctr[1]| |VM/Ctr[N]| |
82         | |  *****  | |  *****  | |           | |  *****  | |  *****  | |
83         | +--^---^--+ +--^---^--+ |           | +--^---^--+ +--^---^--+ |
84         |   *|   |*     *|   |*   |           |   *|   |*     *|   |*   |
85         | +--v---v-------v---v--+ |           | +--v---v-------v---v--+ |
86         | |  *   *       *   *  |*|***********|*|  *   *       *   *  | |
87         | |  *   *********   ***<-|-----------|->***   *********   *  | |
88         | |  *    DUT1          | |           | |       DUT2       *  | |
89         | +--^------------------+ |           | +------------------^--+ |
90         |   *|                    |           |                    |*   |
91         |   *|            SUT1    |           |  SUT2              |*   |
92         +-------------------------+           +-------------------------+
93             *|                                                     |*
94             *|                                                     |*
95             *|                    +-----------+                    |*
96             *|                    |           |                    |*
97             *+-------------------->    TG     <--------------------+*
98             **********************|           |**********************
99                                   +-----------+
100
101 In above "Chained" topology, packets are switched by DUT multiple times:
102 twice for a single VM/Ctr, three times for two VMs/Ctrs, N+1 times for N
103 VMs/Ctrs. Hence the external throughput rates measured by TG and listed
104 in this report must be multiplied by (N+1) to represent the actual DUT
105 aggregate packet forwarding rate.
106
107 For a "Parallel" and "Horizontal" service topologies packets are always
108 switched by DUT twice per service chain.
109
110 Note that reported DUT (VPP) performance results are specific to the SUTs
111 tested. Current :abbr:`LF (Linux Foundation)` FD.io SUTs are based on Intel
112 XEON E5-2699v3 2.3GHz CPUs. SUTs with other CPUs are likely to yield different
113 results. A good rule of thumb, that can be applied to estimate VPP packet
114 thoughput for Phy-to-Phy (NIC-to-NIC, PCI-to-PCI) topology, is to expect
115 the forwarding performance to be proportional to CPU core frequency,
116 assuming CPU is the only limiting factor and all other SUT parameters
117 equivalent to FD.io CSIT environment. The same rule of thumb can be also
118 applied for Phy-to-VM/Ctr-to-Phy (NIC-to-VM/Ctr-to-NIC) topology, but due to
119 much higher dependency on intensive memory operations and sensitivity to Linux
120 kernel scheduler settings and behaviour, this estimation may not always yield
121 good enough accuracy.
122
123 For detailed FD.io CSIT testbed specification and topology, as well as
124 configuration and setup of SUTs and DUTs testbeds please refer to
125 :ref:`test_environment`.
126
127 Similar SUT compute node and DUT VPP settings can be arrived to in a
128 standalone VPP setup by using a `vpp-config configuration tool
129 <https://wiki.fd.io/view/VPP/Configuration_Tool>`_ developed within the
130 VPP project using CSIT recommended settings and scripts.
131
132 Performance Tests Coverage
133 --------------------------
134
135 Performance tests are split into two main categories:
136
137 - Throughput discovery - discovery of packet forwarding rate using binary search
138   in accordance to :rfc:`2544`.
139
140   - NDR - discovery of Non Drop Rate packet throughput, at zero packet loss;
141     followed by one-way packet latency measurements at 10%, 50% and 100% of
142     discovered NDR throughput.
143   - PDR - discovery of Partial Drop Rate, with specified non-zero packet loss
144     currently set to 0.5%; followed by one-way packet latency measurements at
145     100% of discovered PDR throughput.
146
147 - Throughput verification - verification of packet forwarding rate against
148   previously discovered throughput rate. These tests are currently done against
149   0.9 of reference NDR, with reference rates updated periodically.
150
151 CSIT |release| includes following performance test suites, listed per NIC type:
152
153 - 2port10GE X520-DA2 Intel
154
155   - **L2XC** - L2 Cross-Connect switched-forwarding of untagged, dot1q, dot1ad
156     VLAN tagged Ethernet frames.
157   - **L2BD** - L2 Bridge-Domain switched-forwarding of untagged Ethernet frames
158     with MAC learning; disabled MAC learning i.e. static MAC tests to be added.
159   - **L2BD Scale** - L2 Bridge-Domain switched-forwarding of untagged Ethernet
160     frames with MAC learning; disabled MAC learning i.e. static MAC tests to be
161     added with 20k, 200k and 2M FIB entries.
162   - **IPv4** - IPv4 routed-forwarding.
163   - **IPv6** - IPv6 routed-forwarding.
164   - **IPv4 Scale** - IPv4 routed-forwarding with 20k, 200k and 2M FIB entries.
165   - **IPv6 Scale** - IPv6 routed-forwarding with 20k, 200k and 2M FIB entries.
166   - **VMs with vhost-user** - virtual topologies with 1 VM and service chains
167     of 2 VMs using vhost-user interfaces, with VPP forwarding modes incl. L2
168     Cross-Connect, L2 Bridge-Domain, VXLAN with L2BD, IPv4 routed-forwarding.
169   - **COP** - IPv4 and IPv6 routed-forwarding with COP address security.
170   - **ACL** - L2 Bridge-Domain switched-forwarding and IPv4 and IPv6 routed-
171     forwarding with iACL and oACL IP address, MAC address and L4 port security.
172   - **LISP** - LISP overlay tunneling for IPv4-over-IPv4, IPv6-over-IPv4,
173     IPv6-over-IPv6, IPv4-over-IPv6 in IPv4 and IPv6 routed-forwarding modes.
174   - **VXLAN** - VXLAN overlay tunnelling integration with L2XC and L2BD.
175   - **QoS Policer** - ingress packet rate measuring, marking and limiting
176     (IPv4).
177   - **NAT** - (Source) Network Address Translation tests with varying
178     number of users and ports per user.
179   - **Container memif connections** - VPP memif virtual interface tests to
180     interconnect VPP instances with L2XC and L2BD.
181   - **Container K8s Orchestrated Topologies** - Container topologies connected
182     over the memif virtual interface.
183   - **SRv6** - Segment Routing IPv6 tests.
184
185 - 2port40GE XL710 Intel
186
187   - **L2XC** - L2 Cross-Connect switched-forwarding of untagged Ethernet frames.
188   - **L2BD** - L2 Bridge-Domain switched-forwarding of untagged Ethernet frames
189     with MAC learning.
190   - **IPv4** - IPv4 routed-forwarding.
191   - **IPv6** - IPv6 routed-forwarding.
192   - **VMs with vhost-user** - virtual topologies with 1 VM and service chains
193     of 2 VMs using vhost-user interfaces, with VPP forwarding modes incl. L2
194     Cross-Connect, L2 Bridge-Domain, VXLAN with L2BD, IPv4 routed-forwarding.
195   - **IPSecSW** - IPSec encryption with AES-GCM, CBC-SHA1 ciphers, in
196     combination with IPv4 routed-forwarding.
197   - **IPSecHW** - IPSec encryption with AES-GCM, CBC-SHA1 ciphers, in
198     combination with IPv4 routed-forwarding. Intel QAT HW acceleration.
199   - **IPSec+LISP** - IPSec encryption with CBC-SHA1 ciphers, in combination
200     with LISP-GPE overlay tunneling for IPv4-over-IPv4.
201   - **VPP TCP/IP stack** - tests of VPP TCP/IP stack used with VPP built-in HTTP
202     server.
203
204 - 2port10GE X710 Intel
205
206   - **L2BD** - L2 Bridge-Domain switched-forwarding of untagged Ethernet frames
207     with MAC learning.
208   - **VMs with vhost-user** - virtual topologies with 1 VM using vhost-user
209     interfaces, with VPP forwarding modes incl. L2 Bridge-Domain.
210
211 - 2port10GE VIC1227 Cisco
212
213   - **L2BD** - L2 Bridge-Domain switched-forwarding of untagged Ethernet frames
214     with MAC learning.
215
216 - 2port40GE VIC1385 Cisco
217
218   - **L2BD** - L2 Bridge-Domain switched-forwarding of untagged Ethernet frames
219      with MAC learning.
220
221 Execution of performance tests takes time, especially the throughput discovery
222 tests. Due to limited HW testbed resources available within FD.io labs hosted
223 by :abbr:`LF (Linux Foundation)`, the number of tests for NICs other than X520
224 (a.k.a. Niantic) has been limited to few baseline tests. CSIT team expect the
225 HW testbed resources to grow over time, so that complete set of performance
226 tests can be regularly and(or) continuously executed against all models of
227 hardware present in FD.io labs.
228
229 Performance Tests Naming
230 ------------------------
231
232 CSIT |release| follows a common structured naming convention for all performance
233 and system functional tests, introduced in CSIT |release-1|.
234
235 The naming should be intuitive for majority of the tests. Complete description
236 of CSIT test naming convention is provided on `CSIT test naming wiki
237 <https://wiki.fd.io/view/CSIT/csit-test-naming>`_.
238
239 Methodology: Multi-Core and Multi-Threading
240 -------------------------------------------
241
242 **Intel Hyper-Threading** - CSIT |release| performance tests are executed with
243 SUT servers' Intel XEON processors configured in Intel Hyper-Threading Disabled
244 mode (BIOS setting). This is the simplest configuration used to establish
245 baseline single-thread single-core application packet processing and forwarding
246 performance. Subsequent releases of CSIT will add performance tests with Intel
247 Hyper-Threading Enabled (requires BIOS settings change and hard reboot of
248 server).
249
250 **Multi-core Tests** - CSIT |release| multi-core tests are executed in the
251 following VPP thread and core configurations:
252
253 #. 1t1c - 1 VPP worker thread on 1 CPU physical core.
254 #. 2t2c - 2 VPP worker threads on 2 CPU physical cores.
255 #. 4t4c - 4 VPP worker threads on 4 CPU physical cores.
256
257 VPP worker threads are the data plane threads. VPP control thread is
258 running on a separate non-isolated core together with other Linux
259 processes. Note that in quite a few test cases running VPP workers on 2
260 or 4 physical cores hits the I/O bandwidth or packets-per-second limit
261 of tested NIC.
262
263 Section :ref:`throughput_speedup_multi_core` includes a set of graphs
264 illustrating packet throughout speedup when running VPP on multiple
265 cores.
266
267 Methodology: Packet Throughput
268 ------------------------------
269
270 Following values are measured and reported for packet throughput tests:
271
272 - NDR binary search per :rfc:`2544`:
273
274   - Packet rate: "RATE: <aggregate packet rate in packets-per-second> pps
275     (2x <per direction packets-per-second>)";
276   - Aggregate bandwidth: "BANDWIDTH: <aggregate bandwidth in Gigabits per
277     second> Gbps (untagged)";
278
279 - PDR binary search per :rfc:`2544`:
280
281   - Packet rate: "RATE: <aggregate packet rate in packets-per-second> pps (2x
282     <per direction packets-per-second>)";
283   - Aggregate bandwidth: "BANDWIDTH: <aggregate bandwidth in Gigabits per
284     second> Gbps (untagged)";
285   - Packet loss tolerance: "LOSS_ACCEPTANCE <accepted percentage of packets
286     lost at PDR rate>";
287
288 - NDR and PDR are measured for the following L2 frame sizes:
289
290   - IPv4: 64B, IMIX_v4_1 (28x64B,16x570B,4x1518B), 1518B, 9000B;
291   - IPv6: 78B, 1518B, 9000B;
292
293 - NDR and PDR binary search resolution is determined by the final value of the
294   rate change, referred to as the final step:
295
296   - The final step is set to 50kpps for all NIC to NIC tests and all L2
297     frame sizes except 9000B (changed from 100kpps used in previous
298     releases).
299
300   - The final step is set to 10kpps for all remaining tests, including 9000B
301     and all vhost VM and memif Container tests.
302
303 All rates are reported from external Traffic Generator perspective.
304
305 Methodology: Packet Latency
306 ---------------------------
307
308 TRex Traffic Generator (TG) is used for measuring latency of VPP DUTs. Reported
309 latency values are measured using following methodology:
310
311 - Latency tests are performed at 10%, 50% of discovered NDR rate (non drop rate)
312   for each NDR throughput test and packet size (except IMIX).
313 - TG sends dedicated latency streams, one per direction, each at the rate of
314   10kpps at the prescribed packet size; these are sent in addition to the main
315   load streams.
316 - TG reports min/avg/max latency values per stream direction, hence two sets
317   of latency values are reported per test case; future release of TRex is
318   expected to report latency percentiles.
319 - Reported latency values are aggregate across two SUTs due to three node
320   topology used for all performance tests; for per SUT latency, reported value
321   should be divided by two.
322 - 1usec is the measurement accuracy advertised by TRex TG for the setup used in
323   FD.io labs used by CSIT project.
324 - TRex setup introduces an always-on error of about 2*2usec per latency flow -
325   additonal Tx/Rx interface latency induced by TRex SW writing and reading
326   packet timestamps on CPU cores without HW acceleration on NICs closer to the
327   interface line.
328
329
330 Methodology: KVM VM vhost
331 -------------------------
332
333 CSIT |release| introduced test environment configuration changes to KVM Qemu
334 vhost-user tests in order to more representatively measure |vpp-release|
335 performance in configurations with vhost-user interfaces and different Qemu
336 settings.
337
338 FD.io CSIT performance lab is testing VPP vhost with KVM VMs using following
339 environment settings:
340
341 - Tests with varying Qemu virtio queue (a.k.a. vring) sizes: [vr256] default 256
342   descriptors, [vr1024] 1024 descriptors to optimize for packet throughput;
343
344 - Tests with varying Linux :abbr:`CFS (Completely Fair Scheduler)` settings:
345   [cfs] default settings, [cfsrr1] CFS RoundRobin(1) policy applied to all data
346   plane threads handling test packet path including all VPP worker threads and
347   all Qemu testpmd poll-mode threads;
348
349 - Resulting test cases are all combinations with [vr256,vr1024] and
350   [cfs,cfsrr1] settings;
351
352 - Adjusted Linux kernel :abbr:`CFS (Completely Fair Scheduler)` scheduler policy
353   for data plane threads used in CSIT is documented in
354   `CSIT Performance Environment Tuning wiki <https://wiki.fd.io/view/CSIT/csit-perf-env-tuning-ubuntu1604>`_.
355   The purpose is to verify performance impact (NDR, PDR throughput) and
356   same test measurements repeatability, by making VPP and VM data plane
357   threads less susceptible to other Linux OS system tasks hijacking CPU
358   cores running those data plane threads.
359
360 Methodology: LXC and Docker Containers memif
361 --------------------------------------------
362
363 CSIT |release| introduced additional tests taking advantage of VPP memif
364 virtual interface (shared memory interface) tests to interconnect VPP
365 instances. VPP vswitch instance runs in bare-metal user-mode handling
366 Intel x520 NIC 10GbE interfaces and connecting over memif (Master side)
367 virtual interfaces to more instances of VPP running in :abbr:`LXC (Linux
368 Container)` or in Docker Containers,  both with memif virtual interfaces
369 (Slave side). LXCs and Docker Containers run in a priviliged mode with
370 VPP data plane worker threads pinned to dedicated physical CPU cores per
371 usual CSIT practice. All VPP instances run the same version of software.
372 This test topology is equivalent to existing tests with vhost-user and
373 VMs as described earlier in :ref:`tested_physical_topologies`.
374
375 More information about CSIT LXC and Docker Container setup and control
376 is available in :ref:`container_orchestration_in_csit`.
377
378 Methodology: Container Topologies Orchestrated by K8s
379 -----------------------------------------------------
380
381 CSIT |release| introduced new tests of Container topologies connected
382 over the memif virtual interface (shared memory interface). In order to
383 provide simple topology coding flexibility and extensibility container
384 orchestration is done with `Kubernetes <https://github.com/kubernetes>`_
385 using `Docker <https://github.com/docker>`_ images for all container
386 applications including VPP. `Ligato <https://github.com/ligato>`_ is
387 used to address the container networking orchestration that is
388 integrated with K8s, including memif support.
389
390 For these tests VPP vswitch instance runs in a Docker Container handling
391 Intel x520 NIC 10GbE interfaces and connecting over memif (Master side)
392 virtual interfaces to more instances of VPP running in Docker Containers
393 with memif virtual interfaces (Slave side). All Docker Containers run in
394 a priviliged mode with VPP data plane worker threads pinned to dedicated
395 physical CPU cores per usual CSIT practice. All VPP instances run the
396 same version of software. This test topology is equivalent to existing
397 tests with vhost-user and VMs as described earlier in
398 :ref:`tested_physical_topologies`.
399
400 More information about CSIT Container Topologies Orchestrated by K8s is
401 available in :ref:`container_orchestration_in_csit`.
402
403 Methodology: IPSec with Intel QAT HW cards
404 ------------------------------------------
405
406 VPP IPSec performance tests are using DPDK cryptodev device driver in
407 combination with HW cryptodev devices - Intel QAT 8950 50G - present in
408 LF FD.io physical testbeds. DPDK cryptodev can be used for all IPSec
409 data plane functions supported by VPP.
410
411 Currently CSIT |release| implements following IPSec test cases:
412
413 - AES-GCM, CBC-SHA1 ciphers, in combination with IPv4 routed-forwarding
414   with Intel xl710 NIC.
415 - CBC-SHA1 ciphers, in combination with LISP-GPE overlay tunneling for
416   IPv4-over-IPv4 with Intel xl710 NIC.
417
418 Methodology: TRex Traffic Generator Usage
419 -----------------------------------------
420
421 `TRex traffic generator <https://wiki.fd.io/view/TRex>`_ is used for all
422 CSIT performance tests. TRex stateless mode is used to measure NDR and PDR
423 throughputs using binary search (NDR and PDR discovery tests) and for quick
424 checks of DUT performance against the reference NDRs (NDR check tests) for
425 specific configuration.
426
427 TRex is installed and run on the TG compute node. The typical procedure is:
428
429 - If the TRex is not already installed on TG, it is installed in the
430   suite setup phase - see `TRex intallation`_.
431 - TRex configuration is set in its configuration file
432   ::
433
434   /etc/trex_cfg.yaml
435
436 - TRex is started in the background mode
437   ::
438
439   $ sh -c 'cd <t-rex-install-dir>/scripts/ && sudo nohup ./t-rex-64 -i -c 7 --iom 0 > /tmp/trex.log 2>&1 &' > /dev/null
440
441 - There are traffic streams dynamically prepared for each test, based on traffic
442   profiles. The traffic is sent and the statistics obtained using
443   :command:`trex_stl_lib.api.STLClient`.
444
445 **Measuring packet loss**
446
447 - Create an instance of STLClient
448 - Connect to the client
449 - Add all streams
450 - Clear statistics
451 - Send the traffic for defined time
452 - Get the statistics
453
454 If there is a warm-up phase required, the traffic is sent also before test and
455 the statistics are ignored.
456
457 **Measuring latency**
458
459 If measurement of latency is requested, two more packet streams are created (one
460 for each direction) with TRex flow_stats parameter set to STLFlowLatencyStats. In
461 that case, returned statistics will also include min/avg/max latency values.
462
463 Methodology: TCP/IP tests with WRK tool
464 ---------------------------------------
465
466 `WRK HTTP benchmarking tool <https://github.com/wg/wrk>`_ is used for
467 experimental TCP/IP and HTTP tests of VPP TCP/IP stack and built-in
468 static HTTP server. WRK has been chosen as it is capable of generating
469 significant TCP/IP and HTTP loads by scaling number of threads across
470 multi-core processors.
471
472 This in turn enables quite high scale benchmarking of the main TCP/IP
473 and HTTP service including HTTP TCP/IP Connections-Per-Second (CPS),
474 HTTP Requests-Per-Second and HTTP Bandwidth Throughput.
475
476 The initial tests are designed as follows:
477
478 - HTTP and TCP/IP Connections-Per-Second (CPS)
479
480   - WRK configured to use 8 threads across 8 cores, 1 thread per core.
481   - Maximum of 50 concurrent connections across all WRK threads.
482   - Timeout for server responses set to 5 seconds.
483   - Test duration is 30 seconds.
484   - Expected HTTP test sequence:
485
486     - Single HTTP GET Request sent per open connection.
487     - Connection close after valid HTTP reply.
488     - Resulting flow sequence - 8 packets: >S,<S-A,>A,>Req,<Rep,>F,<F,> A.
489
490 - HTTP Requests-Per-Second
491
492   - WRK configured to use 8 threads across 8 cores, 1 thread per core.
493   - Maximum of 50 concurrent connections across all WRK threads.
494   - Timeout for server responses set to 5 seconds.
495   - Test duration is 30 seconds.
496   - Expected HTTP test sequence:
497
498     - Multiple HTTP GET Requests sent in sequence per open connection.
499     - Connection close after set test duration time.
500     - Resulting flow sequence: >S,<S-A,>A,>Req[1],<Rep[1],..,>Req[n],<Rep[n],>F,<F,>A.

©2016 FD.io a Linux Foundation Collaborative Project. All Rights Reserved.
Linux Foundation is a registered trademark of The Linux Foundation. Linux is a registered trademark of Linus Torvalds.
Please see our privacy policy and terms of use.