IETF: Update MLRsearch draft
[csit.git] / docs / ietf / draft-ietf-bmwg-mlrsearch-00.md
diff --git a/docs/ietf/draft-ietf-bmwg-mlrsearch-00.md b/docs/ietf/draft-ietf-bmwg-mlrsearch-00.md
deleted file mode 100644 (file)
index 05bc41f..0000000
+++ /dev/null
@@ -1,556 +0,0 @@
----
-title: Multiple Loss Ratio Search for Packet Throughput (MLRsearch)
-# abbrev: MLRsearch
-docname: draft-ietf-bmwg-mlrsearch-00
-date: 2021-02-05
-
-ipr: trust200902
-area: ops
-wg: Benchmarking Working Group
-kw: Internet-Draft
-cat: info
-
-coding: us-ascii
-pi:    # can use array (if all yes) or hash here
-#  - toc
-#  - sortrefs
-#  - symrefs
-  toc: yes
-  sortrefs:   # defaults to yes
-  symrefs: yes
-
-author:
-      -
-        ins: M. Konstantynowicz
-        name: Maciek Konstantynowicz
-        org: Cisco Systems
-        role: editor
-        email: mkonstan@cisco.com
-      -
-        ins: V. Polak
-        name: Vratko Polak
-        org: Cisco Systems
-        role: editor
-        email: vrpolak@cisco.com
-
-normative:
-  RFC2544:
-  RFC8174:
-
-informative:
-  FDio-CSIT-MLRsearch:
-    target: https://docs.fd.io/csit/rls2001/report/introduction/methodology_data_plane_throughput/methodology_mlrsearch_tests.html
-    title: "FD.io CSIT Test Methodology - MLRsearch"
-    date: 2020-02
-  PyPI-MLRsearch:
-    target: https://pypi.org/project/MLRsearch/0.3.0/
-    title: "MLRsearch 0.3.0, Python Package Index"
-    date: 2020-02
-
---- abstract
-
-This document proposes changes to [RFC2544], specifically to packet
-throughput search methodology, by defining a new search algorithm
-referred to as Multiple Loss Ratio search (MLRsearch for short). Instead
-of relying on binary search with pre-set starting offered load, it
-proposes a novel approach discovering the starting point in the initial
-phase, and then searching for packet throughput based on defined packet
-loss ratio (PLR) input criteria and defined final trial duration time.
-One of the key design principles behind MLRsearch is minimizing the
-total test duration and searching for multiple packet throughput rates
-(each with a corresponding PLR) concurrently, instead of doing it
-sequentially.
-
-The main motivation behind MLRsearch is the new set of challenges and
-requirements posed by NFV (Network Function Virtualization),
-specifically software based implementations of NFV data planes. Using
-[RFC2544] in the experience of the authors yields often not repetitive
-and not replicable end results due to a large number of factors that are
-out of scope for this draft. MLRsearch aims to address this challenge
-in a simple way of getting the same result sooner, so more repetitions
-can be done to describe the replicability.
-
---- middle
-
-# Terminology
-
-* Frame size: size of an Ethernet Layer-2 frame on the wire, including
-  any VLAN tags (dot1q, dot1ad) and Ethernet FCS, but excluding Ethernet
-  preamble and inter-frame gap. Measured in bytes.
-* Packet size: same as frame size, both terms used interchangeably.
-* Device Under Test (DUT): In software networking, "device" denotes a
-  specific piece of software tasked with packet processing. Such device
-  is surrounded with other software components (such as operating system
-  kernel). It is not possible to run devices without also running the
-  other components, and hardware resources are shared between both. For
-  purposes of testing, the whole set of hardware and software components
-  is called "system under test" (SUT). As SUT is the part of the whole
-  test setup performance of which can be measured by [RFC2544] methods,
-  this document uses SUT instead of [RFC2544] DUT. Device under test
-  (DUT) can be re-introduced when analysing test results using whitebox
-  techniques, but this document sticks to blackbox testing.
-* System Under Test (SUT): System under test (SUT) is a part of the
-  whole test setup whose performance is to be benchmarked. The complete
-  test setup contains other parts, whose performance is either already
-  established, or not affecting the benchmarking result.
-* Bi-directional throughput tests: involve packets/frames flowing in
-  both transmit and receive directions over every tested interface of
-  SUT/DUT. Packet flow metrics are measured per direction, and can be
-  reported as aggregate for both directions and/or separately
-  for each measured direction. In most cases bi-directional tests
-  use the same (symmetric) load in both directions.
-* Uni-directional throughput tests: involve packets/frames flowing in
-  only one direction, i.e. either transmit or receive direction, over
-  every tested interface of SUT/DUT. Packet flow metrics are measured
-  and are reported for measured direction.
-* Packet Loss Ratio (PLR): ratio of packets received relative to packets
-  transmitted over the test trial duration, calculated using formula:
-  PLR = ( pkts_transmitted - pkts_received ) / pkts_transmitted.
-  For bi-directional throughput tests aggregate PLR is calculated based
-  on the aggregate number of packets transmitted and received.
-* Packet Throughput Rate: maximum packet offered load DUT/SUT forwards
-  within the specified Packet Loss Ratio (PLR). In many cases the rate
-  depends on the frame size processed by DUT/SUT. Hence packet
-  throughput rate MUST be quoted with specific frame size as received by
-  DUT/SUT during the measurement. For bi-directional tests, packet
-  throughput rate should be reported as aggregate for both directions.
-  Measured in packets-per-second (pps) or frames-per-second (fps),
-  equivalent metrics.
-* Bandwidth Throughput Rate: a secondary metric calculated from packet
-  throughput rate using formula: bw_rate = pkt_rate * (frame_size +
-  L1_overhead) * 8, where L1_overhead for Ethernet includes preamble (8
-  Bytes) and inter-frame gap (12 Bytes). For bi-directional tests,
-  bandwidth throughput rate should be reported as aggregate for both
-  directions. Expressed in bits-per-second (bps).
-* Non Drop Rate (NDR): maximum packet/bandwith throughput rate sustained
-  by DUT/SUT at PLR equal zero (zero packet loss) specific to tested
-  frame size(s). MUST be quoted with specific packet size as received by
-  DUT/SUT during the measurement. Packet NDR measured in
-  packets-per-second (or fps), bandwidth NDR expressed in
-  bits-per-second (bps).
-* Partial Drop Rate (PDR): maximum packet/bandwith throughput rate
-  sustained by DUT/SUT at PLR greater than zero (non-zero packet loss)
-  specific to tested frame size(s). MUST be quoted with specific packet
-  size as received by DUT/SUT during the measurement. Packet PDR
-  measured in packets-per-second (or fps), bandwidth PDR expressed in
-  bits-per-second (bps).
-* Maximum Receive Rate (MRR): packet/bandwidth rate regardless of PLR
-  sustained by DUT/SUT under specified Maximum Transmit Rate (MTR)
-  packet load offered by traffic generator. MUST be quoted with both
-  specific packet size and MTR as received by DUT/SUT during the
-  measurement. Packet MRR measured in packets-per-second (or fps),
-  bandwidth MRR expressed in bits-per-second (bps).
-* Trial: a single measurement step. See [RFC2544] section 23.
-* Trial duration: amount of time over which packets are transmitted
-  in a single measurement step.
-
-# MLRsearch Background
-
-Multiple Loss Ratio search (MLRsearch) is a packet throughput search
-algorithm suitable for deterministic systems (as opposed to
-probabilistic systems). MLRsearch discovers multiple packet throughput
-rates in a single search, with each rate associated with a distinct
-Packet Loss Ratio (PLR) criteria.
-
-For cases when multiple rates need to be found, this property makes
-MLRsearch more efficient in terms of time execution, compared to
-traditional throughput search algorithms that discover a single packet
-rate per defined search criteria (e.g. a binary search specified by
-[RFC2544]). MLRsearch reduces execution time even further by relying on
-shorter trial durations of intermediate steps, with only the final
-measurements conducted at the specified final trial duration. This
-results in the shorter overall search execution time when compared to a
-traditional binary search, while guaranteeing the same results for
-deterministic systems.
-
-In practice two rates with distinct PLRs are commonly used for packet
-throughput measurements of NFV systems: Non Drop Rate (NDR) with PLR=0
-and Partial Drop Rate (PDR) with PLR>0. The rest of this document
-describes MLRsearch for NDR and PDR. If needed, MLRsearch can be
-adapted to discover more throughput rates with different pre-defined
-PLRs.
-
-Similarly to other throughput search approaches like binary search,
-MLRsearch is effective for SUTs/DUTs with PLR curve that is continuously
-flat or increasing with growing offered load. It may not be as
-effective for SUTs/DUTs with abnormal PLR curves.
-
-MLRsearch relies on traffic generator to qualify the received packet
-stream as error-free, and invalidate the results if any disqualifying
-errors are present e.g. out-of-sequence frames.
-
-MLRsearch can be applied to both uni-directional and bi-directional
-throughput tests.
-
-For bi-directional tests, MLRsearch rates and ratios are aggregates of
-both directions, based on the following assumptions:
-
-* Traffic transmitted by traffic generator and received by SUT/DUT
-  has the same packet rate in each direction,
-  in other words the offered load is symmetric.
-* SUT/DUT packet processing capacity is the same in both directions,
-  resulting in the same packet loss under load.
-
-# MLRsearch Overview
-
-The main properties of MLRsearch:
-
-* MLRsearch is a duration aware multi-phase multi-rate search algorithm:
-  * Initial Phase determines promising starting interval for the search.
-  * Intermediate Phases progress towards defined final search criteria.
-  * Final Phase executes measurements according to the final search
-    criteria.
-  * Final search criteria are defined by following inputs:
-    * PLRs associated with NDR and PDR.
-    * Final trial duration.
-    * Measurement resolution.
-* Initial Phase:
-  * Measure MRR over initial trial duration.
-  * Measured MRR is used as an input to the first intermediate phase.
-* Multiple Intermediate Phases:
-  * Trial duration:
-    * Start with initial trial duration in the first intermediate phase.
-    * Converge geometrically towards the final trial duration.
-  * Track two values for NDR and two for PDR:
-    * The values are called lower_bound and upper_bound.
-    * Each value comes from a specific trial measurement:
-      * Most recent for that transmit rate.
-      * As such the value is associated with that measurement's duration
-        and loss.
-    * A bound can be valid or invalid:
-      * Valid lower_bound must conform with PLR search criteria.
-      * Valid upper_bound must not conform with PLR search criteria.
-      * Example of invalid NDR lower_bound is if it has been measured
-        with non-zero loss.
-      * Invalid bounds are not real boundaries for the searched value:
-        * They are needed to track interval widths.
-      * Valid bounds are real boundaries for the searched value.
-      * Each non-initial phase ends with all bounds valid.
-      * Bound can become invalid if it re-measured at a longer trial
-        duration in a sub-sequent phase.
-  * Search:
-    * Start with a large (lower_bound, upper_bound) interval width, that
-      determines measurement resolution.
-    * Geometrically converge towards the width goal of the phase.
-    * Each phase halves the previous width goal.
-      * First measurement of the next phase will be internal search
-        which always gives a valid bound and brings the width to the new goal.
-      * Only one bound then needs to be re-measured with new duration.
-  * Use of internal and external searches:
-    * External search:
-      * Measures at transmit rates outside the (lower_bound,
-        upper_bound) interval.
-      * Activated when a bound is invalid, to search for a new valid
-        bound by multiplying (for example doubling) the interval width.
-      * It is a variant of "exponential search".
-    * Internal search:
-      * A "binary search" that measures at transmit rates within the
-        (lower_bound, upper_bound) valid interval, halving the interval
-        width.
-* Final Phase:
-  * Executed with the final test trial duration, and the final width
-    goal that determines resolution of the overall search.
-* Intermediate Phases together with the Final Phase are called
-  Non-Initial Phases.
-
-The main benefits of MLRsearch vs. binary search include:
-
-* In general MLRsearch is likely to execute more trials overall, but
-  likely less trials at a set final trial duration.
-* In well behaving cases, e.g. when results do not depend on trial
-  duration, it greatly reduces (>50%) the overall duration compared to a
-  single PDR (or NDR) binary search over duration, while finding
-  multiple drop rates.
-* In all cases MLRsearch yields the same or similar results to binary
-  search.
-* Note: both binary search and MLRsearch are susceptible to reporting
-  non-repeatable results across multiple runs for very bad behaving
-  cases.
-
-Caveats:
-
-* Worst case MLRsearch can take longer than a binary search e.g. in case of
-  drastic changes in behaviour for trials at varying durations.
-
-# Sample Implementation
-
-Following is a brief description of a sample MLRsearch implementation,
-which is a simlified version of the existing implementation.
-
-## Input Parameters
-
-1. **maximum_transmit_rate** - Maximum Transmit Rate (MTR) of packets to
-   be used by external traffic generator implementing MLRsearch,
-   limited by the actual Ethernet link(s) rate, NIC model or traffic
-   generator capabilities.
-2. **minimum_transmit_rate** - minimum packet transmit rate to be used for
-   measurements. MLRsearch fails if lower transmit rate needs to be
-   used to meet search criteria.
-3. **final_trial_duration** - required trial duration for final rate
-   measurements.
-4. **initial_trial_duration** - trial duration for initial MLRsearch phase.
-5. **final_relative_width** - required measurement resolution expressed as
-   (lower_bound, upper_bound) interval width relative to upper_bound.
-6. **packet_loss_ratio** - maximum acceptable PLR search criterion for
-   PDR measurements.
-7. **number_of_intermediate_phases** - number of phases between the initial
-   phase and the final phase. Impacts the overall MLRsearch duration.
-   Less phases are required for well behaving cases, more phases
-   may be needed to reduce the overall search duration for worse behaving cases.
-
-## Initial Phase
-
-1. First trial measures at configured maximum transmit rate (MTR) and
-   discovers maximum receive rate (MRR).
-   * IN: trial_duration = initial_trial_duration.
-   * IN: offered_transmit_rate = maximum_transmit_rate.
-   * DO: single trial.
-   * OUT: measured loss ratio.
-   * OUT: MRR = measured receive rate.
-   If loss ratio is zero, MRR is set below MTR so that interval width is equal
-   to the width goal of the first intermediate phase.
-2. Second trial measures at MRR and discovers MRR2.
-   * IN: trial_duration = initial_trial_duration.
-   * IN: offered_transmit_rate = MRR.
-   * DO: single trial.
-   * OUT: measured loss ratio.
-   * OUT: MRR2 = measured receive rate.
-   If loss ratio is zero, MRR2 is set above MRR so that interval width is equal
-   to the width goal of the first intermediate phase.
-   MRR2 could end up being equal to MTR (for example if both measurements so far
-   had zero loss), which was already measured, step 3 is skipped in that case.
-3. Third trial measures at MRR2.
-   * IN: trial_duration = initial_trial_duration.
-   * IN: offered_transmit_rate = MRR2.
-   * DO: single trial.
-   * OUT: measured loss ratio.
-
-## Non-Initial Phases
-
-1. Main loop:
-   1. IN: trial_duration for the current phase. Set to
-      initial_trial_duration for the first intermediate phase; to
-      final_trial_duration for the final phase; or to the element of
-      interpolating geometric sequence for other intermediate phases.
-      For example with two intermediate phases, trial_duration of the
-      second intermediate phase is the geometric average of
-      initial_trial_duration and final_trial_duration.
-   2. IN: relative_width_goal for the current phase. Set to
-      final_relative_width for the final phase; doubled for each
-      preceding phase. For example with two intermediate phases, the
-      first intermediate phase uses quadruple of final_relative_width
-      and the second intermediate phase uses double of
-      final_relative_width.
-   3. IN: ndr_interval, pdr_interval from the previous main loop
-      iteration or the previous phase. If the previous phase is the
-      initial phase, both intervals are formed by a (correctly ordered)
-      pair of MRR2 and MRR. Note that the initial phase is likely
-      to create intervals with invalid bounds.
-   4. DO: According to the procedure described in point 2., either exit
-      the phase (by jumping to 1.7.), or calculate new transmit rate to
-      measure with.
-   5. DO: Perform the trial measurement at the new transmit rate and
-      trial_duration, compute its loss ratio.
-   6. DO: Update the bounds of both intervals, based on the new
-      measurement. The actual update rules are numerous, as NDR external
-      search can affect PDR interval and vice versa, but the result
-      agrees with rules of both internal and external search. For
-      example, any new measurement below an invalid lower_bound becomes
-      the new lower_bound, while the old measurement (previously acting
-      as the invalid lower_bound) becomes a new and valid upper_bound.
-      Go to next iteration (1.3.), taking the updated intervals as new
-      input.
-   7. OUT: current ndr_interval and pdr_interval. In the final phase
-      this is also considered to be the result of the whole search. For
-      other phases, the next phase loop is started with the current
-      results as an input.
-2. New transmit rate (or exit) calculation (for point 1.4.):
-   1. If there is an invalid bound then prepare for external search:
-      * IF the most recent measurement at NDR lower_bound transmit
-        rate had the loss higher than zero, then the new transmit rate
-        is NDR lower_bound decreased by two NDR interval widths.
-      * Else, IF the most recent measurement at PDR lower_bound
-        transmit rate had the loss higher than PLR, then the new
-        transmit rate is PDR lower_bound decreased by two PDR interval
-        widths.
-      * Else, IF the most recent measurement at NDR upper_bound
-        transmit rate had no loss, then the new transmit rate is NDR
-        upper_bound increased by two NDR interval widths.
-      * Else, IF the most recent measurement at PDR upper_bound
-        transmit rate had the loss lower or equal to PLR, then the new
-        transmit rate is PDR upper_bound increased by two PDR interval
-        widths.
-   2. Else, if interval width is higher than the current phase goal:
-      * IF NDR interval does not meet the current phase width
-        goal, prepare for internal search. The new transmit rate is a
-        in the middle of NDR lower_bound and NDR upper_bound.
-      * IF PDR interval does not meet the current phase width
-        goal, prepare for internal search. The new transmit rate is a
-        in the middle of PDR lower_bound and PDR upper_bound.
-   3. Else, if some bound has still only been measured at a lower
-      duration, prepare to re-measure at the current duration (and the
-      same transmit rate). The order of priorities is:
-      * NDR lower_bound,
-      * PDR lower_bound,
-      * NDR upper_bound,
-      * PDR upper_bound.
-   4. Else, do not prepare any new rate, to exit the phase.
-      This ensures that at the end of each non-initial phase
-      all intervals are valid, narrow enough, and measured
-      at current phase trial duration.
-
-# FD.io CSIT Implementation
-
-The only known working implementation of MLRsearch is in
-the open-source code running in Linux Foundation
-FD.io CSIT project [FDio-CSIT-MLRsearch] as part of
-a Continuous Integration / Continuous Development (CI/CD) framework.
-
-MLRsearch is also available as a Python package in [PyPI-MLRsearch].
-
-## Additional details
-
-This document so far has been describing a simplified version of
-MLRsearch algorithm. The full algorithm as implemented in CSIT contains
-additional logic, which makes some of the details (but not general
-ideas) above incorrect. Here is a short description of the additional
-logic as a list of principles, explaining their main differences from
-(or additions to) the simplified description, but without detailing
-their mutual interaction.
-
-1. Logarithmic transmit rate.
-   * In order to better fit the relative width goal, the interval
-     doubling and halving is done differently.
-   * For example, the middle of 2 and 8 is 4, not 5.
-2. Optimistic maximum rate.
-   * The increased rate is never higher than the maximum rate.
-   * Upper bound at that rate is always considered valid.
-3. Pessimistic minimum rate.
-   * The decreased rate is never lower than the minimum rate.
-   * If a lower bound at that rate is invalid, a phase stops refining
-     the interval further (until it gets re-measured).
-4. Conservative interval updates.
-   * Measurements above the current upper bound never update a valid upper
-     bound, even if drop ratio is low.
-   * Measurements below the current lower bound always update any lower
-     bound if drop ratio is high.
-5. Ensure sufficient interval width.
-   * Narrow intervals make external search take more time to find a
-     valid bound.
-   * If the new transmit increased or decreased rate would result in
-     width less than the current goal, increase/decrease more.
-   * This can happen if the measurement for the other interval
-     makes the current interval too narrow.
-   * Similarly, take care the measurements in the initial phase create
-     wide enough interval.
-6. Timeout for bad cases.
-   * The worst case for MLRsearch is when each phase converges to
-     intervals way different than the results of the previous phase.
-   * Rather than suffer total search time several times larger than pure
-     binary search, the implemented tests fail themselves when the
-     search takes too long (given by argument *timeout*).
-7. Pessimistic external search.
-   * Valid bound becoming invalid on re-measurement with higher duration
-     is frequently a sign of SUT behaving in non-deterministic way
-     (from blackbox point of view). If the final width interval goal
-     is too narrow compared to width of rate region where SUT
-     is non-deterministic, it is quite likely that there will be multiple
-     invalid bounds before the external search finds a valid one.
-   * In this case, external search can be sped up by increasing interval width
-     more rapidly. As only powers of two ensure the subsequent internal search
-     will not result in needlessly narrow interval, a parameter *doublings*
-     is introduced to control the pessimism of external search.
-     For example three doublings result in interval width being multiplied
-     by eight in each external search iteration.
-
-### FD.io CSIT Input Parameters
-
-1. **maximum_transmit_rate** - Typical values: 2 * 14.88 Mpps for 64B
-   10GE link rate, 2 * 18.75 Mpps for 64B 40GE NIC (specific model).
-2. **minimum_transmit_rate** - Value: 2 * 10 kpps (traffic generator
-   limitation).
-3. **final_trial_duration** - Value: 30 seconds.
-4. **initial_trial_duration** - Value: 1 second.
-5. **final_relative_width** - Value: 0.005 (0.5%).
-6. **packet_loss_ratio** - Value: 0.005 (0.5%).
-7. **number_of_intermediate_phases** - Value: 2.
-   The value has been chosen based on limited experimentation to date.
-   More experimentation needed to arrive to clearer guidelines.
-8. **timeout** - Limit for the overall search duration (for one search).
-   If MLRsearch oversteps this limit, it immediatelly declares the test failed,
-   to avoid wasting even more time on a misbehaving SUT.
-   Value: 600 (seconds).
-9. **doublings** - Number of dublings when computing new interval width
-   in external search.
-   Value: 2 (interval width is quadroupled).
-   Value of 1 is best for well-behaved SUTs, but value of 2 has been found
-   to decrease overall search time for worse-behaved SUT configurations,
-   contributing more to the overall set of different SUT configurations tested.
-
-## Example MLRsearch Run
-
-The following table shows data from a real test run in CSIT
-(using the default input values as above).
-The first column is the phase, the second is the trial measurement performed
-(aggregate bidirectional offered load in megapackets per second,
-and trial duration in seconds).
-Each of last four columns show one bound as updated after the measurement
-(duration truncated to save space).
-Loss ratio is not shown, but invalid bounds are marked with a plus sign.
-
-| Phase |   Trial    | NDR lower | NDR upper | PDR lower | PDR upper |
-| ----: | ---------: | --------: | --------: | --------: | --------: |
-| init. | 37.50 1.00 |    N/A    |  37.50 1. |    N/A    |  37.50 1. |
-| init. | 10.55 1.00 | +10.55 1. |  37.50 1. | +10.55 1. |  37.50 1. |
-| init. | 9.437 1.00 | +9.437 1. |  10.55 1. | +9.437 1. |  10.55 1. |
-| int 1 | 6.053 1.00 |  6.053 1. |  9.437 1. |  6.053 1. |  9.437 1. |
-| int 1 | 7.558 1.00 |  7.558 1. |  9.437 1. |  7.558 1. |  9.437 1. |
-| int 1 | 8.446 1.00 |  8.446 1. |  9.437 1. |  8.446 1. |  9.437 1. |
-| int 1 | 8.928 1.00 |  8.928 1. |  9.437 1. |  8.928 1. |  9.437 1. |
-| int 1 | 9.179 1.00 |  8.928 1. |  9.179 1. |  9.179 1. |  9.437 1. |
-| int 1 | 9.052 1.00 |  9.052 1. |  9.179 1. |  9.179 1. |  9.437 1. |
-| int 1 | 9.307 1.00 |  9.052 1. |  9.179 1. |  9.179 1. |  9.307 1. |
-| int 2 | 9.115 5.48 |  9.115 5. |  9.179 1. |  9.179 1. |  9.307 1. |
-| int 2 | 9.243 5.48 |  9.115 5. |  9.179 1. |  9.243 5. |  9.307 1. |
-| int 2 | 9.179 5.48 |  9.115 5. |  9.179 5. |  9.243 5. |  9.307 1. |
-| int 2 | 9.307 5.48 |  9.115 5. |  9.179 5. |  9.243 5. | +9.307 5. |
-| int 2 | 9.687 5.48 |  9.115 5. |  9.179 5. |  9.307 5. |  9.687 5. |
-| int 2 | 9.495 5.48 |  9.115 5. |  9.179 5. |  9.307 5. |  9.495 5. |
-| int 2 | 9.401 5.48 |  9.115 5. |  9.179 5. |  9.307 5. |  9.401 5. |
-| final | 9.147 30.0 |  9.115 5. |  9.147 30 |  9.307 5. |  9.401 5. |
-| final | 9.354 30.0 |  9.115 5. |  9.147 30 |  9.307 5. |  9.354 30 |
-| final | 9.115 30.0 | +9.115 30 |  9.147 30 |  9.307 5. |  9.354 30 |
-| final | 8.935 30.0 |  8.935 30 |  9.115 30 |  9.307 5. |  9.354 30 |
-| final | 9.025 30.0 |  9.025 30 |  9.115 30 |  9.307 5. |  9.354 30 |
-| final | 9.070 30.0 |  9.070 30 |  9.115 30 |  9.307 5. |  9.354 30 |
-| final | 9.307 30.0 |  9.070 30 |  9.115 30 |  9.307 30 |  9.354 30 |
-
-# IANA Considerations
-
-No requests of IANA.
-
-# Security Considerations
-
-Benchmarking activities as described in this memo are limited to
-technology characterization of a DUT/SUT using controlled stimuli in a
-laboratory environment, with dedicated address space and the constraints
-specified in the sections above.
-
-The benchmarking network topology will be an independent test setup and
-MUST NOT be connected to devices that may forward the test traffic into
-a production network or misroute traffic to the test management network.
-
-Further, benchmarking is performed on a "black-box" basis, relying
-solely on measurements observable external to the DUT/SUT.
-
-Special capabilities SHOULD NOT exist in the DUT/SUT specifically for
-benchmarking purposes.  Any implications for network security arising
-from the DUT/SUT SHOULD be identical in the lab and in production
-networks.
-
-# Acknowledgements
-
-Many thanks to Alec Hothan of OPNFV NFVbench project for thorough
-review and numerous useful comments and suggestions.
-
---- back