New upstream version 18.02
[deb_dpdk.git] / app / test-crypto-perf / cperf_test_latency.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4
5 #include <rte_malloc.h>
6 #include <rte_cycles.h>
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9
10 #include "cperf_test_latency.h"
11 #include "cperf_ops.h"
12 #include "cperf_test_common.h"
13
14 struct cperf_op_result {
15         uint64_t tsc_start;
16         uint64_t tsc_end;
17         enum rte_crypto_op_status status;
18 };
19
20 struct cperf_latency_ctx {
21         uint8_t dev_id;
22         uint16_t qp_id;
23         uint8_t lcore_id;
24
25         struct rte_mempool *pool;
26
27         struct rte_cryptodev_sym_session *sess;
28
29         cperf_populate_ops_t populate_ops;
30
31         uint32_t src_buf_offset;
32         uint32_t dst_buf_offset;
33
34         const struct cperf_options *options;
35         const struct cperf_test_vector *test_vector;
36         struct cperf_op_result *res;
37 };
38
39 struct priv_op_data {
40         struct cperf_op_result *result;
41 };
42
43 #define max(a, b) (a > b ? (uint64_t)a : (uint64_t)b)
44 #define min(a, b) (a < b ? (uint64_t)a : (uint64_t)b)
45
46 static void
47 cperf_latency_test_free(struct cperf_latency_ctx *ctx)
48 {
49         if (ctx) {
50                 if (ctx->sess) {
51                         rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
52                         rte_cryptodev_sym_session_free(ctx->sess);
53                 }
54
55                 if (ctx->pool)
56                         rte_mempool_free(ctx->pool);
57
58                 rte_free(ctx->res);
59                 rte_free(ctx);
60         }
61 }
62
63 void *
64 cperf_latency_test_constructor(struct rte_mempool *sess_mp,
65                 uint8_t dev_id, uint16_t qp_id,
66                 const struct cperf_options *options,
67                 const struct cperf_test_vector *test_vector,
68                 const struct cperf_op_fns *op_fns)
69 {
70         struct cperf_latency_ctx *ctx = NULL;
71         size_t extra_op_priv_size = sizeof(struct priv_op_data);
72
73         ctx = rte_malloc(NULL, sizeof(struct cperf_latency_ctx), 0);
74         if (ctx == NULL)
75                 goto err;
76
77         ctx->dev_id = dev_id;
78         ctx->qp_id = qp_id;
79
80         ctx->populate_ops = op_fns->populate_ops;
81         ctx->options = options;
82         ctx->test_vector = test_vector;
83
84         /* IV goes at the end of the crypto operation */
85         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
86                 sizeof(struct rte_crypto_sym_op) +
87                 sizeof(struct cperf_op_result *);
88
89         ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector,
90                         iv_offset);
91         if (ctx->sess == NULL)
92                 goto err;
93
94         if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id,
95                         extra_op_priv_size,
96                         &ctx->src_buf_offset, &ctx->dst_buf_offset,
97                         &ctx->pool) < 0)
98                 goto err;
99
100         ctx->res = rte_malloc(NULL, sizeof(struct cperf_op_result) *
101                         ctx->options->total_ops, 0);
102
103         if (ctx->res == NULL)
104                 goto err;
105
106         return ctx;
107 err:
108         cperf_latency_test_free(ctx);
109
110         return NULL;
111 }
112
113 static inline void
114 store_timestamp(struct rte_crypto_op *op, uint64_t timestamp)
115 {
116         struct priv_op_data *priv_data;
117
118         priv_data = (struct priv_op_data *) (op->sym + 1);
119         priv_data->result->status = op->status;
120         priv_data->result->tsc_end = timestamp;
121 }
122
123 int
124 cperf_latency_test_runner(void *arg)
125 {
126         struct cperf_latency_ctx *ctx = arg;
127         uint16_t test_burst_size;
128         uint8_t burst_size_idx = 0;
129         uint32_t imix_idx = 0;
130
131         static int only_once;
132
133         if (ctx == NULL)
134                 return 0;
135
136         struct rte_crypto_op *ops[ctx->options->max_burst_size];
137         struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
138         uint64_t i;
139         struct priv_op_data *priv_data;
140
141         uint32_t lcore = rte_lcore_id();
142
143 #ifdef CPERF_LINEARIZATION_ENABLE
144         struct rte_cryptodev_info dev_info;
145         int linearize = 0;
146
147         /* Check if source mbufs require coalescing */
148         if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
149                 rte_cryptodev_info_get(ctx->dev_id, &dev_info);
150                 if ((dev_info.feature_flags &
151                                 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
152                         linearize = 1;
153         }
154 #endif /* CPERF_LINEARIZATION_ENABLE */
155
156         ctx->lcore_id = lcore;
157
158         /* Warm up the host CPU before starting the test */
159         for (i = 0; i < ctx->options->total_ops; i++)
160                 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
161
162         /* Get first size from range or list */
163         if (ctx->options->inc_burst_size != 0)
164                 test_burst_size = ctx->options->min_burst_size;
165         else
166                 test_burst_size = ctx->options->burst_size_list[0];
167
168         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
169                 sizeof(struct rte_crypto_sym_op) +
170                 sizeof(struct cperf_op_result *);
171
172         while (test_burst_size <= ctx->options->max_burst_size) {
173                 uint64_t ops_enqd = 0, ops_deqd = 0;
174                 uint64_t b_idx = 0;
175
176                 uint64_t tsc_val, tsc_end, tsc_start;
177                 uint64_t tsc_max = 0, tsc_min = ~0UL, tsc_tot = 0, tsc_idx = 0;
178                 uint64_t enqd_max = 0, enqd_min = ~0UL, enqd_tot = 0;
179                 uint64_t deqd_max = 0, deqd_min = ~0UL, deqd_tot = 0;
180
181                 while (enqd_tot < ctx->options->total_ops) {
182
183                         uint16_t burst_size = ((enqd_tot + test_burst_size)
184                                         <= ctx->options->total_ops) ?
185                                                         test_burst_size :
186                                                         ctx->options->total_ops -
187                                                         enqd_tot;
188
189                         /* Allocate objects containing crypto operations and mbufs */
190                         if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
191                                                 burst_size) != 0) {
192                                 RTE_LOG(ERR, USER1,
193                                         "Failed to allocate more crypto operations "
194                                         "from the crypto operation pool.\n"
195                                         "Consider increasing the pool size "
196                                         "with --pool-sz\n");
197                                 return -1;
198                         }
199
200                         /* Setup crypto op, attach mbuf etc */
201                         (ctx->populate_ops)(ops, ctx->src_buf_offset,
202                                         ctx->dst_buf_offset,
203                                         burst_size, ctx->sess, ctx->options,
204                                         ctx->test_vector, iv_offset,
205                                         &imix_idx);
206
207                         tsc_start = rte_rdtsc_precise();
208
209 #ifdef CPERF_LINEARIZATION_ENABLE
210                         if (linearize) {
211                                 /* PMD doesn't support scatter-gather and source buffer
212                                  * is segmented.
213                                  * We need to linearize it before enqueuing.
214                                  */
215                                 for (i = 0; i < burst_size; i++)
216                                         rte_pktmbuf_linearize(ops[i]->sym->m_src);
217                         }
218 #endif /* CPERF_LINEARIZATION_ENABLE */
219
220                         /* Enqueue burst of ops on crypto device */
221                         ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
222                                         ops, burst_size);
223
224                         /* Dequeue processed burst of ops from crypto device */
225                         ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
226                                         ops_processed, test_burst_size);
227
228                         tsc_end = rte_rdtsc_precise();
229
230                         /* Free memory for not enqueued operations */
231                         if (ops_enqd != burst_size)
232                                 rte_mempool_put_bulk(ctx->pool,
233                                                 (void **)&ops[ops_enqd],
234                                                 burst_size - ops_enqd);
235
236                         for (i = 0; i < ops_enqd; i++) {
237                                 ctx->res[tsc_idx].tsc_start = tsc_start;
238                                 /*
239                                  * Private data structure starts after the end of the
240                                  * rte_crypto_sym_op structure.
241                                  */
242                                 priv_data = (struct priv_op_data *) (ops[i]->sym + 1);
243                                 priv_data->result = (void *)&ctx->res[tsc_idx];
244                                 tsc_idx++;
245                         }
246
247                         if (likely(ops_deqd))  {
248                                 /* Free crypto ops so they can be reused. */
249                                 for (i = 0; i < ops_deqd; i++)
250                                         store_timestamp(ops_processed[i], tsc_end);
251
252                                 rte_mempool_put_bulk(ctx->pool,
253                                                 (void **)ops_processed, ops_deqd);
254
255                                 deqd_tot += ops_deqd;
256                                 deqd_max = max(ops_deqd, deqd_max);
257                                 deqd_min = min(ops_deqd, deqd_min);
258                         }
259
260                         enqd_tot += ops_enqd;
261                         enqd_max = max(ops_enqd, enqd_max);
262                         enqd_min = min(ops_enqd, enqd_min);
263
264                         b_idx++;
265                 }
266
267                 /* Dequeue any operations still in the crypto device */
268                 while (deqd_tot < ctx->options->total_ops) {
269                         /* Sending 0 length burst to flush sw crypto device */
270                         rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
271
272                         /* dequeue burst */
273                         ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
274                                         ops_processed, test_burst_size);
275
276                         tsc_end = rte_rdtsc_precise();
277
278                         if (ops_deqd != 0) {
279                                 for (i = 0; i < ops_deqd; i++)
280                                         store_timestamp(ops_processed[i], tsc_end);
281
282                                 rte_mempool_put_bulk(ctx->pool,
283                                                 (void **)ops_processed, ops_deqd);
284
285                                 deqd_tot += ops_deqd;
286                                 deqd_max = max(ops_deqd, deqd_max);
287                                 deqd_min = min(ops_deqd, deqd_min);
288                         }
289                 }
290
291                 for (i = 0; i < tsc_idx; i++) {
292                         tsc_val = ctx->res[i].tsc_end - ctx->res[i].tsc_start;
293                         tsc_max = max(tsc_val, tsc_max);
294                         tsc_min = min(tsc_val, tsc_min);
295                         tsc_tot += tsc_val;
296                 }
297
298                 double time_tot, time_avg, time_max, time_min;
299
300                 const uint64_t tunit = 1000000; /* us */
301                 const uint64_t tsc_hz = rte_get_tsc_hz();
302
303                 uint64_t enqd_avg = enqd_tot / b_idx;
304                 uint64_t deqd_avg = deqd_tot / b_idx;
305                 uint64_t tsc_avg = tsc_tot / tsc_idx;
306
307                 time_tot = tunit*(double)(tsc_tot) / tsc_hz;
308                 time_avg = tunit*(double)(tsc_avg) / tsc_hz;
309                 time_max = tunit*(double)(tsc_max) / tsc_hz;
310                 time_min = tunit*(double)(tsc_min) / tsc_hz;
311
312                 if (ctx->options->csv) {
313                         if (!only_once)
314                                 printf("\n# lcore, Buffer Size, Burst Size, Pakt Seq #, "
315                                                 "Packet Size, cycles, time (us)");
316
317                         for (i = 0; i < ctx->options->total_ops; i++) {
318
319                                 printf("\n%u;%u;%u;%"PRIu64";%"PRIu64";%.3f",
320                                         ctx->lcore_id, ctx->options->test_buffer_size,
321                                         test_burst_size, i + 1,
322                                         ctx->res[i].tsc_end - ctx->res[i].tsc_start,
323                                         tunit * (double) (ctx->res[i].tsc_end
324                                                         - ctx->res[i].tsc_start)
325                                                 / tsc_hz);
326
327                         }
328                         only_once = 1;
329                 } else {
330                         printf("\n# Device %d on lcore %u\n", ctx->dev_id,
331                                 ctx->lcore_id);
332                         printf("\n# total operations: %u", ctx->options->total_ops);
333                         printf("\n# Buffer size: %u", ctx->options->test_buffer_size);
334                         printf("\n# Burst size: %u", test_burst_size);
335                         printf("\n#     Number of bursts: %"PRIu64,
336                                         b_idx);
337
338                         printf("\n#");
339                         printf("\n#          \t       Total\t   Average\t   "
340                                         "Maximum\t   Minimum");
341                         printf("\n#  enqueued\t%12"PRIu64"\t%10"PRIu64"\t"
342                                         "%10"PRIu64"\t%10"PRIu64, enqd_tot,
343                                         enqd_avg, enqd_max, enqd_min);
344                         printf("\n#  dequeued\t%12"PRIu64"\t%10"PRIu64"\t"
345                                         "%10"PRIu64"\t%10"PRIu64, deqd_tot,
346                                         deqd_avg, deqd_max, deqd_min);
347                         printf("\n#    cycles\t%12"PRIu64"\t%10"PRIu64"\t"
348                                         "%10"PRIu64"\t%10"PRIu64, tsc_tot,
349                                         tsc_avg, tsc_max, tsc_min);
350                         printf("\n# time [us]\t%12.0f\t%10.3f\t%10.3f\t%10.3f",
351                                         time_tot, time_avg, time_max, time_min);
352                         printf("\n\n");
353
354                 }
355
356                 /* Get next size from range or list */
357                 if (ctx->options->inc_burst_size != 0)
358                         test_burst_size += ctx->options->inc_burst_size;
359                 else {
360                         if (++burst_size_idx == ctx->options->burst_size_count)
361                                 break;
362                         test_burst_size =
363                                 ctx->options->burst_size_list[burst_size_idx];
364                 }
365         }
366
367         return 0;
368 }
369
370 void
371 cperf_latency_test_destructor(void *arg)
372 {
373         struct cperf_latency_ctx *ctx = arg;
374
375         if (ctx == NULL)
376                 return;
377
378         cperf_latency_test_free(ctx);
379 }