3bb1cb057bd903b634f5727038cfb0c146d39a44
[deb_dpdk.git] / app / test-crypto-perf / cperf_test_throughput.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Intel Corporation nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <rte_malloc.h>
34 #include <rte_cycles.h>
35 #include <rte_crypto.h>
36 #include <rte_cryptodev.h>
37
38 #include "cperf_test_throughput.h"
39 #include "cperf_ops.h"
40
41 struct cperf_throughput_ctx {
42         uint8_t dev_id;
43         uint16_t qp_id;
44         uint8_t lcore_id;
45
46         struct rte_mempool *pkt_mbuf_pool_in;
47         struct rte_mempool *pkt_mbuf_pool_out;
48         struct rte_mbuf **mbufs_in;
49         struct rte_mbuf **mbufs_out;
50
51         struct rte_mempool *crypto_op_pool;
52
53         struct rte_cryptodev_sym_session *sess;
54
55         cperf_populate_ops_t populate_ops;
56
57         const struct cperf_options *options;
58         const struct cperf_test_vector *test_vector;
59 };
60
61 static void
62 cperf_throughput_test_free(struct cperf_throughput_ctx *ctx, uint32_t mbuf_nb)
63 {
64         uint32_t i;
65
66         if (ctx) {
67                 if (ctx->sess) {
68                         rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
69                         rte_cryptodev_sym_session_free(ctx->sess);
70                 }
71
72                 if (ctx->mbufs_in) {
73                         for (i = 0; i < mbuf_nb; i++)
74                                 rte_pktmbuf_free(ctx->mbufs_in[i]);
75
76                         rte_free(ctx->mbufs_in);
77                 }
78
79                 if (ctx->mbufs_out) {
80                         for (i = 0; i < mbuf_nb; i++) {
81                                 if (ctx->mbufs_out[i] != NULL)
82                                         rte_pktmbuf_free(ctx->mbufs_out[i]);
83                         }
84
85                         rte_free(ctx->mbufs_out);
86                 }
87
88                 if (ctx->pkt_mbuf_pool_in)
89                         rte_mempool_free(ctx->pkt_mbuf_pool_in);
90
91                 if (ctx->pkt_mbuf_pool_out)
92                         rte_mempool_free(ctx->pkt_mbuf_pool_out);
93
94                 if (ctx->crypto_op_pool)
95                         rte_mempool_free(ctx->crypto_op_pool);
96
97                 rte_free(ctx);
98         }
99 }
100
101 static struct rte_mbuf *
102 cperf_mbuf_create(struct rte_mempool *mempool,
103                 uint32_t segments_nb,
104                 const struct cperf_options *options,
105                 const struct cperf_test_vector *test_vector)
106 {
107         struct rte_mbuf *mbuf;
108         uint32_t segment_sz = options->max_buffer_size / segments_nb;
109         uint32_t last_sz = options->max_buffer_size % segments_nb;
110         uint8_t *mbuf_data;
111         uint8_t *test_data =
112                         (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
113                                         test_vector->plaintext.data :
114                                         test_vector->ciphertext.data;
115
116         mbuf = rte_pktmbuf_alloc(mempool);
117         if (mbuf == NULL)
118                 goto error;
119
120         mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
121         if (mbuf_data == NULL)
122                 goto error;
123
124         memcpy(mbuf_data, test_data, segment_sz);
125         test_data += segment_sz;
126         segments_nb--;
127
128         while (segments_nb) {
129                 struct rte_mbuf *m;
130
131                 m = rte_pktmbuf_alloc(mempool);
132                 if (m == NULL)
133                         goto error;
134
135                 rte_pktmbuf_chain(mbuf, m);
136
137                 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
138                 if (mbuf_data == NULL)
139                         goto error;
140
141                 memcpy(mbuf_data, test_data, segment_sz);
142                 test_data += segment_sz;
143                 segments_nb--;
144         }
145
146         if (last_sz) {
147                 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz);
148                 if (mbuf_data == NULL)
149                         goto error;
150
151                 memcpy(mbuf_data, test_data, last_sz);
152         }
153
154         if (options->op_type != CPERF_CIPHER_ONLY) {
155                 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf,
156                                 options->digest_sz);
157                 if (mbuf_data == NULL)
158                         goto error;
159         }
160
161         if (options->op_type == CPERF_AEAD) {
162                 uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf,
163                         RTE_ALIGN_CEIL(options->aead_aad_sz, 16));
164
165                 if (aead == NULL)
166                         goto error;
167
168                 memcpy(aead, test_vector->aad.data, test_vector->aad.length);
169         }
170
171         return mbuf;
172 error:
173         if (mbuf != NULL)
174                 rte_pktmbuf_free(mbuf);
175
176         return NULL;
177 }
178
179 void *
180 cperf_throughput_test_constructor(struct rte_mempool *sess_mp,
181                 uint8_t dev_id, uint16_t qp_id,
182                 const struct cperf_options *options,
183                 const struct cperf_test_vector *test_vector,
184                 const struct cperf_op_fns *op_fns)
185 {
186         struct cperf_throughput_ctx *ctx = NULL;
187         unsigned int mbuf_idx = 0;
188         char pool_name[32] = "";
189
190         ctx = rte_malloc(NULL, sizeof(struct cperf_throughput_ctx), 0);
191         if (ctx == NULL)
192                 goto err;
193
194         ctx->dev_id = dev_id;
195         ctx->qp_id = qp_id;
196
197         ctx->populate_ops = op_fns->populate_ops;
198         ctx->options = options;
199         ctx->test_vector = test_vector;
200
201         /* IV goes at the end of the cryptop operation */
202         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
203                 sizeof(struct rte_crypto_sym_op);
204
205         ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector,
206                                         iv_offset);
207         if (ctx->sess == NULL)
208                 goto err;
209
210         snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d",
211                         dev_id);
212
213         ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name,
214                         options->pool_sz * options->segments_nb, 0, 0,
215                         RTE_PKTMBUF_HEADROOM +
216                         RTE_CACHE_LINE_ROUNDUP(
217                                 (options->max_buffer_size / options->segments_nb) +
218                                 (options->max_buffer_size % options->segments_nb) +
219                                         options->digest_sz),
220                         rte_socket_id());
221
222         if (ctx->pkt_mbuf_pool_in == NULL)
223                 goto err;
224
225         /* Generate mbufs_in with plaintext populated for test */
226         ctx->mbufs_in = rte_malloc(NULL,
227                         (sizeof(struct rte_mbuf *) * ctx->options->pool_sz), 0);
228
229         for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
230                 ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create(
231                                 ctx->pkt_mbuf_pool_in, options->segments_nb,
232                                 options, test_vector);
233                 if (ctx->mbufs_in[mbuf_idx] == NULL)
234                         goto err;
235         }
236
237         if (options->out_of_place == 1) {
238
239                 snprintf(pool_name, sizeof(pool_name), "cperf_pool_out_cdev_%d",
240                                 dev_id);
241
242                 ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create(
243                                 pool_name, options->pool_sz, 0, 0,
244                                 RTE_PKTMBUF_HEADROOM +
245                                 RTE_CACHE_LINE_ROUNDUP(
246                                         options->max_buffer_size +
247                                         options->digest_sz),
248                                 rte_socket_id());
249
250                 if (ctx->pkt_mbuf_pool_out == NULL)
251                         goto err;
252         }
253
254         ctx->mbufs_out = rte_malloc(NULL,
255                         (sizeof(struct rte_mbuf *) *
256                         ctx->options->pool_sz), 0);
257
258         for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
259                 if (options->out_of_place == 1) {
260                         ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create(
261                                         ctx->pkt_mbuf_pool_out, 1,
262                                         options, test_vector);
263                         if (ctx->mbufs_out[mbuf_idx] == NULL)
264                                 goto err;
265                 } else {
266                         ctx->mbufs_out[mbuf_idx] = NULL;
267                 }
268         }
269
270         snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d",
271                         dev_id);
272
273         uint16_t priv_size = test_vector->cipher_iv.length +
274                 test_vector->auth_iv.length + test_vector->aead_iv.length;
275
276         ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name,
277                         RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz,
278                         512, priv_size, rte_socket_id());
279         if (ctx->crypto_op_pool == NULL)
280                 goto err;
281
282         return ctx;
283 err:
284         cperf_throughput_test_free(ctx, mbuf_idx);
285
286         return NULL;
287 }
288
289 int
290 cperf_throughput_test_runner(void *test_ctx)
291 {
292         struct cperf_throughput_ctx *ctx = test_ctx;
293         uint16_t test_burst_size;
294         uint8_t burst_size_idx = 0;
295
296         static int only_once;
297
298         struct rte_crypto_op *ops[ctx->options->max_burst_size];
299         struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
300         uint64_t i;
301
302         uint32_t lcore = rte_lcore_id();
303
304 #ifdef CPERF_LINEARIZATION_ENABLE
305         struct rte_cryptodev_info dev_info;
306         int linearize = 0;
307
308         /* Check if source mbufs require coalescing */
309         if (ctx->options->segments_nb > 1) {
310                 rte_cryptodev_info_get(ctx->dev_id, &dev_info);
311                 if ((dev_info.feature_flags &
312                                 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
313                         linearize = 1;
314         }
315 #endif /* CPERF_LINEARIZATION_ENABLE */
316
317         ctx->lcore_id = lcore;
318
319         /* Warm up the host CPU before starting the test */
320         for (i = 0; i < ctx->options->total_ops; i++)
321                 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
322
323         /* Get first size from range or list */
324         if (ctx->options->inc_burst_size != 0)
325                 test_burst_size = ctx->options->min_burst_size;
326         else
327                 test_burst_size = ctx->options->burst_size_list[0];
328
329         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
330                 sizeof(struct rte_crypto_sym_op);
331
332         while (test_burst_size <= ctx->options->max_burst_size) {
333                 uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
334                 uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
335
336                 uint64_t m_idx = 0, tsc_start, tsc_end, tsc_duration;
337
338                 uint16_t ops_unused = 0;
339
340                 tsc_start = rte_rdtsc_precise();
341
342                 while (ops_enqd_total < ctx->options->total_ops) {
343
344                         uint16_t burst_size = ((ops_enqd_total + test_burst_size)
345                                         <= ctx->options->total_ops) ?
346                                                         test_burst_size :
347                                                         ctx->options->total_ops -
348                                                         ops_enqd_total;
349
350                         uint16_t ops_needed = burst_size - ops_unused;
351
352                         /* Allocate crypto ops from pool */
353                         if (ops_needed != rte_crypto_op_bulk_alloc(
354                                         ctx->crypto_op_pool,
355                                         RTE_CRYPTO_OP_TYPE_SYMMETRIC,
356                                         ops, ops_needed)) {
357                                 RTE_LOG(ERR, USER1,
358                                         "Failed to allocate more crypto operations "
359                                         "from the the crypto operation pool.\n"
360                                         "Consider increasing the pool size "
361                                         "with --pool-sz\n");
362                                 return -1;
363                         }
364
365                         /* Setup crypto op, attach mbuf etc */
366                         (ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx],
367                                         &ctx->mbufs_out[m_idx],
368                                         ops_needed, ctx->sess, ctx->options,
369                                         ctx->test_vector, iv_offset);
370
371                         /**
372                          * When ops_needed is smaller than ops_enqd, the
373                          * unused ops need to be moved to the front for
374                          * next round use.
375                          */
376                         if (unlikely(ops_enqd > ops_needed)) {
377                                 size_t nb_b_to_mov = ops_unused * sizeof(
378                                                 struct rte_crypto_op *);
379
380                                 memmove(&ops[ops_needed], &ops[ops_enqd],
381                                         nb_b_to_mov);
382                         }
383
384 #ifdef CPERF_LINEARIZATION_ENABLE
385                         if (linearize) {
386                                 /* PMD doesn't support scatter-gather and source buffer
387                                  * is segmented.
388                                  * We need to linearize it before enqueuing.
389                                  */
390                                 for (i = 0; i < burst_size; i++)
391                                         rte_pktmbuf_linearize(ops[i]->sym->m_src);
392                         }
393 #endif /* CPERF_LINEARIZATION_ENABLE */
394
395                         /* Enqueue burst of ops on crypto device */
396                         ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
397                                         ops, burst_size);
398                         if (ops_enqd < burst_size)
399                                 ops_enqd_failed++;
400
401                         /**
402                          * Calculate number of ops not enqueued (mainly for hw
403                          * accelerators whose ingress queue can fill up).
404                          */
405                         ops_unused = burst_size - ops_enqd;
406                         ops_enqd_total += ops_enqd;
407
408
409                         /* Dequeue processed burst of ops from crypto device */
410                         ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
411                                         ops_processed, test_burst_size);
412
413                         if (likely(ops_deqd))  {
414                                 /* free crypto ops so they can be reused. We don't free
415                                  * the mbufs here as we don't want to reuse them as
416                                  * the crypto operation will change the data and cause
417                                  * failures.
418                                  */
419                                 rte_mempool_put_bulk(ctx->crypto_op_pool,
420                                                 (void **)ops_processed, ops_deqd);
421
422                                 ops_deqd_total += ops_deqd;
423                         } else {
424                                 /**
425                                  * Count dequeue polls which didn't return any
426                                  * processed operations. This statistic is mainly
427                                  * relevant to hw accelerators.
428                                  */
429                                 ops_deqd_failed++;
430                         }
431
432                         m_idx += ops_needed;
433                         m_idx = m_idx + test_burst_size > ctx->options->pool_sz ?
434                                         0 : m_idx;
435                 }
436
437                 /* Dequeue any operations still in the crypto device */
438
439                 while (ops_deqd_total < ctx->options->total_ops) {
440                         /* Sending 0 length burst to flush sw crypto device */
441                         rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
442
443                         /* dequeue burst */
444                         ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
445                                         ops_processed, test_burst_size);
446                         if (ops_deqd == 0)
447                                 ops_deqd_failed++;
448                         else {
449                                 rte_mempool_put_bulk(ctx->crypto_op_pool,
450                                                 (void **)ops_processed, ops_deqd);
451
452                                 ops_deqd_total += ops_deqd;
453                         }
454                 }
455
456                 tsc_end = rte_rdtsc_precise();
457                 tsc_duration = (tsc_end - tsc_start);
458
459                 /* Calculate average operations processed per second */
460                 double ops_per_second = ((double)ctx->options->total_ops /
461                                 tsc_duration) * rte_get_tsc_hz();
462
463                 /* Calculate average throughput (Gbps) in bits per second */
464                 double throughput_gbps = ((ops_per_second *
465                                 ctx->options->test_buffer_size * 8) / 1000000000);
466
467                 /* Calculate average cycles per packet */
468                 double cycles_per_packet = ((double)tsc_duration /
469                                 ctx->options->total_ops);
470
471                 if (!ctx->options->csv) {
472                         if (!only_once)
473                                 printf("%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
474                                         "lcore id", "Buf Size", "Burst Size",
475                                         "Enqueued", "Dequeued", "Failed Enq",
476                                         "Failed Deq", "MOps", "Gbps",
477                                         "Cycles/Buf");
478                         only_once = 1;
479
480                         printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
481                                         "%12"PRIu64"%12.4f%12.4f%12.2f\n",
482                                         ctx->lcore_id,
483                                         ctx->options->test_buffer_size,
484                                         test_burst_size,
485                                         ops_enqd_total,
486                                         ops_deqd_total,
487                                         ops_enqd_failed,
488                                         ops_deqd_failed,
489                                         ops_per_second/1000000,
490                                         throughput_gbps,
491                                         cycles_per_packet);
492                 } else {
493                         if (!only_once)
494                                 printf("#lcore id,Buffer Size(B),"
495                                         "Burst Size,Enqueued,Dequeued,Failed Enq,"
496                                         "Failed Deq,Ops(Millions),Throughput(Gbps),"
497                                         "Cycles/Buf\n\n");
498                         only_once = 1;
499
500                         printf("%u;%u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
501                                         "%.3f;%.3f;%.3f\n",
502                                         ctx->lcore_id,
503                                         ctx->options->test_buffer_size,
504                                         test_burst_size,
505                                         ops_enqd_total,
506                                         ops_deqd_total,
507                                         ops_enqd_failed,
508                                         ops_deqd_failed,
509                                         ops_per_second/1000000,
510                                         throughput_gbps,
511                                         cycles_per_packet);
512                 }
513
514                 /* Get next size from range or list */
515                 if (ctx->options->inc_burst_size != 0)
516                         test_burst_size += ctx->options->inc_burst_size;
517                 else {
518                         if (++burst_size_idx == ctx->options->burst_size_count)
519                                 break;
520                         test_burst_size = ctx->options->burst_size_list[burst_size_idx];
521                 }
522
523         }
524
525         return 0;
526 }
527
528
529 void
530 cperf_throughput_test_destructor(void *arg)
531 {
532         struct cperf_throughput_ctx *ctx = arg;
533
534         if (ctx == NULL)
535                 return;
536
537         rte_cryptodev_stop(ctx->dev_id);
538
539         cperf_throughput_test_free(ctx, ctx->options->pool_sz);
540 }