a314646c2d6d20bfe912557039e11d538d84afe8
[deb_dpdk.git] / app / test-crypto-perf / cperf_test_verify.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Intel Corporation nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <rte_malloc.h>
34 #include <rte_cycles.h>
35 #include <rte_crypto.h>
36 #include <rte_cryptodev.h>
37
38 #include "cperf_test_verify.h"
39 #include "cperf_ops.h"
40
41 struct cperf_verify_ctx {
42         uint8_t dev_id;
43         uint16_t qp_id;
44         uint8_t lcore_id;
45
46         struct rte_mempool *pkt_mbuf_pool_in;
47         struct rte_mempool *pkt_mbuf_pool_out;
48         struct rte_mbuf **mbufs_in;
49         struct rte_mbuf **mbufs_out;
50
51         struct rte_mempool *crypto_op_pool;
52
53         struct rte_cryptodev_sym_session *sess;
54
55         cperf_populate_ops_t populate_ops;
56
57         const struct cperf_options *options;
58         const struct cperf_test_vector *test_vector;
59 };
60
61 struct cperf_op_result {
62         enum rte_crypto_op_status status;
63 };
64
65 static void
66 cperf_verify_test_free(struct cperf_verify_ctx *ctx, uint32_t mbuf_nb)
67 {
68         uint32_t i;
69
70         if (ctx) {
71                 if (ctx->sess) {
72                         rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
73                         rte_cryptodev_sym_session_free(ctx->sess);
74                 }
75
76                 if (ctx->mbufs_in) {
77                         for (i = 0; i < mbuf_nb; i++)
78                                 rte_pktmbuf_free(ctx->mbufs_in[i]);
79
80                         rte_free(ctx->mbufs_in);
81                 }
82
83                 if (ctx->mbufs_out) {
84                         for (i = 0; i < mbuf_nb; i++) {
85                                 if (ctx->mbufs_out[i] != NULL)
86                                         rte_pktmbuf_free(ctx->mbufs_out[i]);
87                         }
88
89                         rte_free(ctx->mbufs_out);
90                 }
91
92                 if (ctx->pkt_mbuf_pool_in)
93                         rte_mempool_free(ctx->pkt_mbuf_pool_in);
94
95                 if (ctx->pkt_mbuf_pool_out)
96                         rte_mempool_free(ctx->pkt_mbuf_pool_out);
97
98                 if (ctx->crypto_op_pool)
99                         rte_mempool_free(ctx->crypto_op_pool);
100
101                 rte_free(ctx);
102         }
103 }
104
105 static struct rte_mbuf *
106 cperf_mbuf_create(struct rte_mempool *mempool,
107                 uint32_t segments_nb,
108                 const struct cperf_options *options,
109                 const struct cperf_test_vector *test_vector)
110 {
111         struct rte_mbuf *mbuf;
112         uint32_t segment_sz = options->max_buffer_size / segments_nb;
113         uint32_t last_sz = options->max_buffer_size % segments_nb;
114         uint8_t *mbuf_data;
115         uint8_t *test_data =
116                         (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
117                                         test_vector->plaintext.data :
118                                         test_vector->ciphertext.data;
119
120         mbuf = rte_pktmbuf_alloc(mempool);
121         if (mbuf == NULL)
122                 goto error;
123
124         mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
125         if (mbuf_data == NULL)
126                 goto error;
127
128         memcpy(mbuf_data, test_data, segment_sz);
129         test_data += segment_sz;
130         segments_nb--;
131
132         while (segments_nb) {
133                 struct rte_mbuf *m;
134
135                 m = rte_pktmbuf_alloc(mempool);
136                 if (m == NULL)
137                         goto error;
138
139                 rte_pktmbuf_chain(mbuf, m);
140
141                 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
142                 if (mbuf_data == NULL)
143                         goto error;
144
145                 memcpy(mbuf_data, test_data, segment_sz);
146                 test_data += segment_sz;
147                 segments_nb--;
148         }
149
150         if (last_sz) {
151                 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz);
152                 if (mbuf_data == NULL)
153                         goto error;
154
155                 memcpy(mbuf_data, test_data, last_sz);
156         }
157
158         if (options->op_type != CPERF_CIPHER_ONLY) {
159                 mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf,
160                                 options->digest_sz);
161                 if (mbuf_data == NULL)
162                         goto error;
163         }
164
165         if (options->op_type == CPERF_AEAD) {
166                 uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf,
167                         RTE_ALIGN_CEIL(options->aead_aad_sz, 16));
168
169                 if (aead == NULL)
170                         goto error;
171
172                 memcpy(aead, test_vector->aad.data, test_vector->aad.length);
173         }
174
175         return mbuf;
176 error:
177         if (mbuf != NULL)
178                 rte_pktmbuf_free(mbuf);
179
180         return NULL;
181 }
182
183 void *
184 cperf_verify_test_constructor(struct rte_mempool *sess_mp,
185                 uint8_t dev_id, uint16_t qp_id,
186                 const struct cperf_options *options,
187                 const struct cperf_test_vector *test_vector,
188                 const struct cperf_op_fns *op_fns)
189 {
190         struct cperf_verify_ctx *ctx = NULL;
191         unsigned int mbuf_idx = 0;
192         char pool_name[32] = "";
193
194         ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0);
195         if (ctx == NULL)
196                 goto err;
197
198         ctx->dev_id = dev_id;
199         ctx->qp_id = qp_id;
200
201         ctx->populate_ops = op_fns->populate_ops;
202         ctx->options = options;
203         ctx->test_vector = test_vector;
204
205         /* IV goes at the end of the cryptop operation */
206         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
207                 sizeof(struct rte_crypto_sym_op);
208
209         ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector,
210                         iv_offset);
211         if (ctx->sess == NULL)
212                 goto err;
213
214         snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d",
215                         dev_id);
216
217         ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name,
218                         options->pool_sz * options->segments_nb, 0, 0,
219                         RTE_PKTMBUF_HEADROOM +
220                         RTE_CACHE_LINE_ROUNDUP(
221                                 (options->max_buffer_size / options->segments_nb) +
222                                 (options->max_buffer_size % options->segments_nb) +
223                                         options->digest_sz),
224                         rte_socket_id());
225
226         if (ctx->pkt_mbuf_pool_in == NULL)
227                 goto err;
228
229         /* Generate mbufs_in with plaintext populated for test */
230         ctx->mbufs_in = rte_malloc(NULL,
231                         (sizeof(struct rte_mbuf *) * ctx->options->pool_sz), 0);
232
233         for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
234                 ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create(
235                                 ctx->pkt_mbuf_pool_in, options->segments_nb,
236                                 options, test_vector);
237                 if (ctx->mbufs_in[mbuf_idx] == NULL)
238                         goto err;
239         }
240
241         if (options->out_of_place == 1) {
242
243                 snprintf(pool_name, sizeof(pool_name), "cperf_pool_out_cdev_%d",
244                                 dev_id);
245
246                 ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create(
247                                 pool_name, options->pool_sz, 0, 0,
248                                 RTE_PKTMBUF_HEADROOM +
249                                 RTE_CACHE_LINE_ROUNDUP(
250                                         options->max_buffer_size +
251                                         options->digest_sz),
252                                 rte_socket_id());
253
254                 if (ctx->pkt_mbuf_pool_out == NULL)
255                         goto err;
256         }
257
258         ctx->mbufs_out = rte_malloc(NULL,
259                         (sizeof(struct rte_mbuf *) *
260                         ctx->options->pool_sz), 0);
261
262         for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
263                 if (options->out_of_place == 1) {
264                         ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create(
265                                         ctx->pkt_mbuf_pool_out, 1,
266                                         options, test_vector);
267                         if (ctx->mbufs_out[mbuf_idx] == NULL)
268                                 goto err;
269                 } else {
270                         ctx->mbufs_out[mbuf_idx] = NULL;
271                 }
272         }
273
274         snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d",
275                         dev_id);
276
277         uint16_t priv_size = test_vector->cipher_iv.length +
278                 test_vector->auth_iv.length + test_vector->aead_iv.length;
279         ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name,
280                         RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz,
281                         512, priv_size, rte_socket_id());
282         if (ctx->crypto_op_pool == NULL)
283                 goto err;
284
285         return ctx;
286 err:
287         cperf_verify_test_free(ctx, mbuf_idx);
288
289         return NULL;
290 }
291
292 static int
293 cperf_verify_op(struct rte_crypto_op *op,
294                 const struct cperf_options *options,
295                 const struct cperf_test_vector *vector)
296 {
297         const struct rte_mbuf *m;
298         uint32_t len;
299         uint16_t nb_segs;
300         uint8_t *data;
301         uint32_t cipher_offset, auth_offset;
302         uint8_t cipher, auth;
303         int res = 0;
304
305         if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
306                 return 1;
307
308         if (op->sym->m_dst)
309                 m = op->sym->m_dst;
310         else
311                 m = op->sym->m_src;
312         nb_segs = m->nb_segs;
313         len = 0;
314         while (m && nb_segs != 0) {
315                 len += m->data_len;
316                 m = m->next;
317                 nb_segs--;
318         }
319
320         data = rte_malloc(NULL, len, 0);
321         if (data == NULL)
322                 return 1;
323
324         if (op->sym->m_dst)
325                 m = op->sym->m_dst;
326         else
327                 m = op->sym->m_src;
328         nb_segs = m->nb_segs;
329         len = 0;
330         while (m && nb_segs != 0) {
331                 memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *),
332                                 m->data_len);
333                 len += m->data_len;
334                 m = m->next;
335                 nb_segs--;
336         }
337
338         switch (options->op_type) {
339         case CPERF_CIPHER_ONLY:
340                 cipher = 1;
341                 cipher_offset = 0;
342                 auth = 0;
343                 auth_offset = 0;
344                 break;
345         case CPERF_CIPHER_THEN_AUTH:
346                 cipher = 1;
347                 cipher_offset = 0;
348                 auth = 1;
349                 auth_offset = options->test_buffer_size;
350                 break;
351         case CPERF_AUTH_ONLY:
352                 cipher = 0;
353                 cipher_offset = 0;
354                 auth = 1;
355                 auth_offset = options->test_buffer_size;
356                 break;
357         case CPERF_AUTH_THEN_CIPHER:
358                 cipher = 1;
359                 cipher_offset = 0;
360                 auth = 1;
361                 auth_offset = options->test_buffer_size;
362                 break;
363         case CPERF_AEAD:
364                 cipher = 1;
365                 cipher_offset = vector->aad.length;
366                 auth = 1;
367                 auth_offset = vector->aad.length + options->test_buffer_size;
368                 break;
369         }
370
371         if (cipher == 1) {
372                 if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
373                         res += memcmp(data + cipher_offset,
374                                         vector->ciphertext.data,
375                                         options->test_buffer_size);
376                 else
377                         res += memcmp(data + cipher_offset,
378                                         vector->plaintext.data,
379                                         options->test_buffer_size);
380         }
381
382         if (auth == 1) {
383                 if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE)
384                         res += memcmp(data + auth_offset,
385                                         vector->digest.data,
386                                         options->digest_sz);
387         }
388
389         return !!res;
390 }
391
392 int
393 cperf_verify_test_runner(void *test_ctx)
394 {
395         struct cperf_verify_ctx *ctx = test_ctx;
396
397         uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
398         uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
399         uint64_t ops_failed = 0;
400
401         static int only_once;
402
403         uint64_t i, m_idx = 0;
404         uint16_t ops_unused = 0;
405
406         struct rte_crypto_op *ops[ctx->options->max_burst_size];
407         struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
408
409         uint32_t lcore = rte_lcore_id();
410
411 #ifdef CPERF_LINEARIZATION_ENABLE
412         struct rte_cryptodev_info dev_info;
413         int linearize = 0;
414
415         /* Check if source mbufs require coalescing */
416         if (ctx->options->segments_nb > 1) {
417                 rte_cryptodev_info_get(ctx->dev_id, &dev_info);
418                 if ((dev_info.feature_flags &
419                                 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
420                         linearize = 1;
421         }
422 #endif /* CPERF_LINEARIZATION_ENABLE */
423
424         ctx->lcore_id = lcore;
425
426         if (!ctx->options->csv)
427                 printf("\n# Running verify test on device: %u, lcore: %u\n",
428                         ctx->dev_id, lcore);
429
430         uint16_t iv_offset = sizeof(struct rte_crypto_op) +
431                 sizeof(struct rte_crypto_sym_op);
432
433         while (ops_enqd_total < ctx->options->total_ops) {
434
435                 uint16_t burst_size = ((ops_enqd_total + ctx->options->max_burst_size)
436                                 <= ctx->options->total_ops) ?
437                                                 ctx->options->max_burst_size :
438                                                 ctx->options->total_ops -
439                                                 ops_enqd_total;
440
441                 uint16_t ops_needed = burst_size - ops_unused;
442
443                 /* Allocate crypto ops from pool */
444                 if (ops_needed != rte_crypto_op_bulk_alloc(
445                                 ctx->crypto_op_pool,
446                                 RTE_CRYPTO_OP_TYPE_SYMMETRIC,
447                                 ops, ops_needed)) {
448                         RTE_LOG(ERR, USER1,
449                                 "Failed to allocate more crypto operations "
450                                 "from the the crypto operation pool.\n"
451                                 "Consider increasing the pool size "
452                                 "with --pool-sz\n");
453                         return -1;
454                 }
455
456                 /* Setup crypto op, attach mbuf etc */
457                 (ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx],
458                                 &ctx->mbufs_out[m_idx],
459                                 ops_needed, ctx->sess, ctx->options,
460                                 ctx->test_vector, iv_offset);
461
462 #ifdef CPERF_LINEARIZATION_ENABLE
463                 if (linearize) {
464                         /* PMD doesn't support scatter-gather and source buffer
465                          * is segmented.
466                          * We need to linearize it before enqueuing.
467                          */
468                         for (i = 0; i < burst_size; i++)
469                                 rte_pktmbuf_linearize(ops[i]->sym->m_src);
470                 }
471 #endif /* CPERF_LINEARIZATION_ENABLE */
472
473                 /* Enqueue burst of ops on crypto device */
474                 ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
475                                 ops, burst_size);
476                 if (ops_enqd < burst_size)
477                         ops_enqd_failed++;
478
479                 /**
480                  * Calculate number of ops not enqueued (mainly for hw
481                  * accelerators whose ingress queue can fill up).
482                  */
483                 ops_unused = burst_size - ops_enqd;
484                 ops_enqd_total += ops_enqd;
485
486
487                 /* Dequeue processed burst of ops from crypto device */
488                 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
489                                 ops_processed, ctx->options->max_burst_size);
490
491                 m_idx += ops_needed;
492                 if (m_idx + ctx->options->max_burst_size > ctx->options->pool_sz)
493                         m_idx = 0;
494
495                 if (ops_deqd == 0) {
496                         /**
497                          * Count dequeue polls which didn't return any
498                          * processed operations. This statistic is mainly
499                          * relevant to hw accelerators.
500                          */
501                         ops_deqd_failed++;
502                         continue;
503                 }
504
505                 for (i = 0; i < ops_deqd; i++) {
506                         if (cperf_verify_op(ops_processed[i], ctx->options,
507                                                 ctx->test_vector))
508                                 ops_failed++;
509                         /* free crypto ops so they can be reused. We don't free
510                          * the mbufs here as we don't want to reuse them as
511                          * the crypto operation will change the data and cause
512                          * failures.
513                          */
514                         rte_crypto_op_free(ops_processed[i]);
515                 }
516                 ops_deqd_total += ops_deqd;
517         }
518
519         /* Dequeue any operations still in the crypto device */
520
521         while (ops_deqd_total < ctx->options->total_ops) {
522                 /* Sending 0 length burst to flush sw crypto device */
523                 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
524
525                 /* dequeue burst */
526                 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
527                                 ops_processed, ctx->options->max_burst_size);
528                 if (ops_deqd == 0) {
529                         ops_deqd_failed++;
530                         continue;
531                 }
532
533                 for (i = 0; i < ops_deqd; i++) {
534                         if (cperf_verify_op(ops_processed[i], ctx->options,
535                                                 ctx->test_vector))
536                                 ops_failed++;
537                         /* free crypto ops so they can be reused. We don't free
538                          * the mbufs here as we don't want to reuse them as
539                          * the crypto operation will change the data and cause
540                          * failures.
541                          */
542                         rte_crypto_op_free(ops_processed[i]);
543                 }
544                 ops_deqd_total += ops_deqd;
545         }
546
547         if (!ctx->options->csv) {
548                 if (!only_once)
549                         printf("%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
550                                 "lcore id", "Buf Size", "Burst size",
551                                 "Enqueued", "Dequeued", "Failed Enq",
552                                 "Failed Deq", "Failed Ops");
553                 only_once = 1;
554
555                 printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
556                                 "%12"PRIu64"%12"PRIu64"\n",
557                                 ctx->lcore_id,
558                                 ctx->options->max_buffer_size,
559                                 ctx->options->max_burst_size,
560                                 ops_enqd_total,
561                                 ops_deqd_total,
562                                 ops_enqd_failed,
563                                 ops_deqd_failed,
564                                 ops_failed);
565         } else {
566                 if (!only_once)
567                         printf("\n# lcore id, Buffer Size(B), "
568                                 "Burst Size,Enqueued,Dequeued,Failed Enq,"
569                                 "Failed Deq,Failed Ops\n");
570                 only_once = 1;
571
572                 printf("%10u;%10u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
573                                 "%"PRIu64"\n",
574                                 ctx->lcore_id,
575                                 ctx->options->max_buffer_size,
576                                 ctx->options->max_burst_size,
577                                 ops_enqd_total,
578                                 ops_deqd_total,
579                                 ops_enqd_failed,
580                                 ops_deqd_failed,
581                                 ops_failed);
582         }
583
584         return 0;
585 }
586
587
588
589 void
590 cperf_verify_test_destructor(void *arg)
591 {
592         struct cperf_verify_ctx *ctx = arg;
593
594         if (ctx == NULL)
595                 return;
596
597         rte_cryptodev_stop(ctx->dev_id);
598
599         cperf_verify_test_free(ctx, ctx->options->pool_sz);
600 }