New upstream version 17.11-rc3
[deb_dpdk.git] / app / test-pmd / cmdline_flow.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright 2016 6WIND S.A.
5  *   Copyright 2016 Mellanox.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <stddef.h>
35 #include <stdint.h>
36 #include <stdio.h>
37 #include <inttypes.h>
38 #include <errno.h>
39 #include <ctype.h>
40 #include <string.h>
41 #include <arpa/inet.h>
42 #include <sys/socket.h>
43
44 #include <rte_common.h>
45 #include <rte_ethdev.h>
46 #include <rte_byteorder.h>
47 #include <cmdline_parse.h>
48 #include <cmdline_parse_etheraddr.h>
49 #include <rte_flow.h>
50
51 #include "testpmd.h"
52
53 /** Parser token indices. */
54 enum index {
55         /* Special tokens. */
56         ZERO = 0,
57         END,
58
59         /* Common tokens. */
60         INTEGER,
61         UNSIGNED,
62         PREFIX,
63         BOOLEAN,
64         STRING,
65         MAC_ADDR,
66         IPV4_ADDR,
67         IPV6_ADDR,
68         RULE_ID,
69         PORT_ID,
70         GROUP_ID,
71         PRIORITY_LEVEL,
72
73         /* Top-level command. */
74         FLOW,
75
76         /* Sub-level commands. */
77         VALIDATE,
78         CREATE,
79         DESTROY,
80         FLUSH,
81         QUERY,
82         LIST,
83         ISOLATE,
84
85         /* Destroy arguments. */
86         DESTROY_RULE,
87
88         /* Query arguments. */
89         QUERY_ACTION,
90
91         /* List arguments. */
92         LIST_GROUP,
93
94         /* Validate/create arguments. */
95         GROUP,
96         PRIORITY,
97         INGRESS,
98         EGRESS,
99
100         /* Validate/create pattern. */
101         PATTERN,
102         ITEM_PARAM_IS,
103         ITEM_PARAM_SPEC,
104         ITEM_PARAM_LAST,
105         ITEM_PARAM_MASK,
106         ITEM_PARAM_PREFIX,
107         ITEM_NEXT,
108         ITEM_END,
109         ITEM_VOID,
110         ITEM_INVERT,
111         ITEM_ANY,
112         ITEM_ANY_NUM,
113         ITEM_PF,
114         ITEM_VF,
115         ITEM_VF_ID,
116         ITEM_PORT,
117         ITEM_PORT_INDEX,
118         ITEM_RAW,
119         ITEM_RAW_RELATIVE,
120         ITEM_RAW_SEARCH,
121         ITEM_RAW_OFFSET,
122         ITEM_RAW_LIMIT,
123         ITEM_RAW_PATTERN,
124         ITEM_ETH,
125         ITEM_ETH_DST,
126         ITEM_ETH_SRC,
127         ITEM_ETH_TYPE,
128         ITEM_VLAN,
129         ITEM_VLAN_TPID,
130         ITEM_VLAN_TCI,
131         ITEM_VLAN_PCP,
132         ITEM_VLAN_DEI,
133         ITEM_VLAN_VID,
134         ITEM_IPV4,
135         ITEM_IPV4_TOS,
136         ITEM_IPV4_TTL,
137         ITEM_IPV4_PROTO,
138         ITEM_IPV4_SRC,
139         ITEM_IPV4_DST,
140         ITEM_IPV6,
141         ITEM_IPV6_TC,
142         ITEM_IPV6_FLOW,
143         ITEM_IPV6_PROTO,
144         ITEM_IPV6_HOP,
145         ITEM_IPV6_SRC,
146         ITEM_IPV6_DST,
147         ITEM_ICMP,
148         ITEM_ICMP_TYPE,
149         ITEM_ICMP_CODE,
150         ITEM_UDP,
151         ITEM_UDP_SRC,
152         ITEM_UDP_DST,
153         ITEM_TCP,
154         ITEM_TCP_SRC,
155         ITEM_TCP_DST,
156         ITEM_TCP_FLAGS,
157         ITEM_SCTP,
158         ITEM_SCTP_SRC,
159         ITEM_SCTP_DST,
160         ITEM_SCTP_TAG,
161         ITEM_SCTP_CKSUM,
162         ITEM_VXLAN,
163         ITEM_VXLAN_VNI,
164         ITEM_E_TAG,
165         ITEM_E_TAG_GRP_ECID_B,
166         ITEM_NVGRE,
167         ITEM_NVGRE_TNI,
168         ITEM_MPLS,
169         ITEM_MPLS_LABEL,
170         ITEM_GRE,
171         ITEM_GRE_PROTO,
172         ITEM_FUZZY,
173         ITEM_FUZZY_THRESH,
174         ITEM_GTP,
175         ITEM_GTP_TEID,
176         ITEM_GTPC,
177         ITEM_GTPU,
178
179         /* Validate/create actions. */
180         ACTIONS,
181         ACTION_NEXT,
182         ACTION_END,
183         ACTION_VOID,
184         ACTION_PASSTHRU,
185         ACTION_MARK,
186         ACTION_MARK_ID,
187         ACTION_FLAG,
188         ACTION_QUEUE,
189         ACTION_QUEUE_INDEX,
190         ACTION_DROP,
191         ACTION_COUNT,
192         ACTION_DUP,
193         ACTION_DUP_INDEX,
194         ACTION_RSS,
195         ACTION_RSS_QUEUES,
196         ACTION_RSS_QUEUE,
197         ACTION_PF,
198         ACTION_VF,
199         ACTION_VF_ORIGINAL,
200         ACTION_VF_ID,
201         ACTION_METER,
202         ACTION_METER_ID,
203 };
204
205 /** Size of pattern[] field in struct rte_flow_item_raw. */
206 #define ITEM_RAW_PATTERN_SIZE 36
207
208 /** Storage size for struct rte_flow_item_raw including pattern. */
209 #define ITEM_RAW_SIZE \
210         (offsetof(struct rte_flow_item_raw, pattern) + ITEM_RAW_PATTERN_SIZE)
211
212 /** Number of queue[] entries in struct rte_flow_action_rss. */
213 #define ACTION_RSS_NUM 32
214
215 /** Storage size for struct rte_flow_action_rss including queues. */
216 #define ACTION_RSS_SIZE \
217         (offsetof(struct rte_flow_action_rss, queue) + \
218          sizeof(*((struct rte_flow_action_rss *)0)->queue) * ACTION_RSS_NUM)
219
220 /** Maximum number of subsequent tokens and arguments on the stack. */
221 #define CTX_STACK_SIZE 16
222
223 /** Parser context. */
224 struct context {
225         /** Stack of subsequent token lists to process. */
226         const enum index *next[CTX_STACK_SIZE];
227         /** Arguments for stacked tokens. */
228         const void *args[CTX_STACK_SIZE];
229         enum index curr; /**< Current token index. */
230         enum index prev; /**< Index of the last token seen. */
231         int next_num; /**< Number of entries in next[]. */
232         int args_num; /**< Number of entries in args[]. */
233         uint32_t eol:1; /**< EOL has been detected. */
234         uint32_t last:1; /**< No more arguments. */
235         portid_t port; /**< Current port ID (for completions). */
236         uint32_t objdata; /**< Object-specific data. */
237         void *object; /**< Address of current object for relative offsets. */
238         void *objmask; /**< Object a full mask must be written to. */
239 };
240
241 /** Token argument. */
242 struct arg {
243         uint32_t hton:1; /**< Use network byte ordering. */
244         uint32_t sign:1; /**< Value is signed. */
245         uint32_t offset; /**< Relative offset from ctx->object. */
246         uint32_t size; /**< Field size. */
247         const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
248 };
249
250 /** Parser token definition. */
251 struct token {
252         /** Type displayed during completion (defaults to "TOKEN"). */
253         const char *type;
254         /** Help displayed during completion (defaults to token name). */
255         const char *help;
256         /** Private data used by parser functions. */
257         const void *priv;
258         /**
259          * Lists of subsequent tokens to push on the stack. Each call to the
260          * parser consumes the last entry of that stack.
261          */
262         const enum index *const *next;
263         /** Arguments stack for subsequent tokens that need them. */
264         const struct arg *const *args;
265         /**
266          * Token-processing callback, returns -1 in case of error, the
267          * length of the matched string otherwise. If NULL, attempts to
268          * match the token name.
269          *
270          * If buf is not NULL, the result should be stored in it according
271          * to context. An error is returned if not large enough.
272          */
273         int (*call)(struct context *ctx, const struct token *token,
274                     const char *str, unsigned int len,
275                     void *buf, unsigned int size);
276         /**
277          * Callback that provides possible values for this token, used for
278          * completion. Returns -1 in case of error, the number of possible
279          * values otherwise. If NULL, the token name is used.
280          *
281          * If buf is not NULL, entry index ent is written to buf and the
282          * full length of the entry is returned (same behavior as
283          * snprintf()).
284          */
285         int (*comp)(struct context *ctx, const struct token *token,
286                     unsigned int ent, char *buf, unsigned int size);
287         /** Mandatory token name, no default value. */
288         const char *name;
289 };
290
291 /** Static initializer for the next field. */
292 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
293
294 /** Static initializer for a NEXT() entry. */
295 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
296
297 /** Static initializer for the args field. */
298 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
299
300 /** Static initializer for ARGS() to target a field. */
301 #define ARGS_ENTRY(s, f) \
302         (&(const struct arg){ \
303                 .offset = offsetof(s, f), \
304                 .size = sizeof(((s *)0)->f), \
305         })
306
307 /** Static initializer for ARGS() to target a bit-field. */
308 #define ARGS_ENTRY_BF(s, f, b) \
309         (&(const struct arg){ \
310                 .size = sizeof(s), \
311                 .mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
312         })
313
314 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
315 #define ARGS_ENTRY_MASK(s, f, m) \
316         (&(const struct arg){ \
317                 .offset = offsetof(s, f), \
318                 .size = sizeof(((s *)0)->f), \
319                 .mask = (const void *)(m), \
320         })
321
322 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
323 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
324         (&(const struct arg){ \
325                 .hton = 1, \
326                 .offset = offsetof(s, f), \
327                 .size = sizeof(((s *)0)->f), \
328                 .mask = (const void *)(m), \
329         })
330
331 /** Static initializer for ARGS() to target a pointer. */
332 #define ARGS_ENTRY_PTR(s, f) \
333         (&(const struct arg){ \
334                 .size = sizeof(*((s *)0)->f), \
335         })
336
337 /** Static initializer for ARGS() with arbitrary size. */
338 #define ARGS_ENTRY_USZ(s, f, sz) \
339         (&(const struct arg){ \
340                 .offset = offsetof(s, f), \
341                 .size = (sz), \
342         })
343
344 /** Same as ARGS_ENTRY() using network byte ordering. */
345 #define ARGS_ENTRY_HTON(s, f) \
346         (&(const struct arg){ \
347                 .hton = 1, \
348                 .offset = offsetof(s, f), \
349                 .size = sizeof(((s *)0)->f), \
350         })
351
352 /** Parser output buffer layout expected by cmd_flow_parsed(). */
353 struct buffer {
354         enum index command; /**< Flow command. */
355         portid_t port; /**< Affected port ID. */
356         union {
357                 struct {
358                         struct rte_flow_attr attr;
359                         struct rte_flow_item *pattern;
360                         struct rte_flow_action *actions;
361                         uint32_t pattern_n;
362                         uint32_t actions_n;
363                         uint8_t *data;
364                 } vc; /**< Validate/create arguments. */
365                 struct {
366                         uint32_t *rule;
367                         uint32_t rule_n;
368                 } destroy; /**< Destroy arguments. */
369                 struct {
370                         uint32_t rule;
371                         enum rte_flow_action_type action;
372                 } query; /**< Query arguments. */
373                 struct {
374                         uint32_t *group;
375                         uint32_t group_n;
376                 } list; /**< List arguments. */
377                 struct {
378                         int set;
379                 } isolate; /**< Isolated mode arguments. */
380         } args; /**< Command arguments. */
381 };
382
383 /** Private data for pattern items. */
384 struct parse_item_priv {
385         enum rte_flow_item_type type; /**< Item type. */
386         uint32_t size; /**< Size of item specification structure. */
387 };
388
389 #define PRIV_ITEM(t, s) \
390         (&(const struct parse_item_priv){ \
391                 .type = RTE_FLOW_ITEM_TYPE_ ## t, \
392                 .size = s, \
393         })
394
395 /** Private data for actions. */
396 struct parse_action_priv {
397         enum rte_flow_action_type type; /**< Action type. */
398         uint32_t size; /**< Size of action configuration structure. */
399 };
400
401 #define PRIV_ACTION(t, s) \
402         (&(const struct parse_action_priv){ \
403                 .type = RTE_FLOW_ACTION_TYPE_ ## t, \
404                 .size = s, \
405         })
406
407 static const enum index next_vc_attr[] = {
408         GROUP,
409         PRIORITY,
410         INGRESS,
411         EGRESS,
412         PATTERN,
413         ZERO,
414 };
415
416 static const enum index next_destroy_attr[] = {
417         DESTROY_RULE,
418         END,
419         ZERO,
420 };
421
422 static const enum index next_list_attr[] = {
423         LIST_GROUP,
424         END,
425         ZERO,
426 };
427
428 static const enum index item_param[] = {
429         ITEM_PARAM_IS,
430         ITEM_PARAM_SPEC,
431         ITEM_PARAM_LAST,
432         ITEM_PARAM_MASK,
433         ITEM_PARAM_PREFIX,
434         ZERO,
435 };
436
437 static const enum index next_item[] = {
438         ITEM_END,
439         ITEM_VOID,
440         ITEM_INVERT,
441         ITEM_ANY,
442         ITEM_PF,
443         ITEM_VF,
444         ITEM_PORT,
445         ITEM_RAW,
446         ITEM_ETH,
447         ITEM_VLAN,
448         ITEM_IPV4,
449         ITEM_IPV6,
450         ITEM_ICMP,
451         ITEM_UDP,
452         ITEM_TCP,
453         ITEM_SCTP,
454         ITEM_VXLAN,
455         ITEM_E_TAG,
456         ITEM_NVGRE,
457         ITEM_MPLS,
458         ITEM_GRE,
459         ITEM_FUZZY,
460         ITEM_GTP,
461         ITEM_GTPC,
462         ITEM_GTPU,
463         ZERO,
464 };
465
466 static const enum index item_fuzzy[] = {
467         ITEM_FUZZY_THRESH,
468         ITEM_NEXT,
469         ZERO,
470 };
471
472 static const enum index item_any[] = {
473         ITEM_ANY_NUM,
474         ITEM_NEXT,
475         ZERO,
476 };
477
478 static const enum index item_vf[] = {
479         ITEM_VF_ID,
480         ITEM_NEXT,
481         ZERO,
482 };
483
484 static const enum index item_port[] = {
485         ITEM_PORT_INDEX,
486         ITEM_NEXT,
487         ZERO,
488 };
489
490 static const enum index item_raw[] = {
491         ITEM_RAW_RELATIVE,
492         ITEM_RAW_SEARCH,
493         ITEM_RAW_OFFSET,
494         ITEM_RAW_LIMIT,
495         ITEM_RAW_PATTERN,
496         ITEM_NEXT,
497         ZERO,
498 };
499
500 static const enum index item_eth[] = {
501         ITEM_ETH_DST,
502         ITEM_ETH_SRC,
503         ITEM_ETH_TYPE,
504         ITEM_NEXT,
505         ZERO,
506 };
507
508 static const enum index item_vlan[] = {
509         ITEM_VLAN_TPID,
510         ITEM_VLAN_TCI,
511         ITEM_VLAN_PCP,
512         ITEM_VLAN_DEI,
513         ITEM_VLAN_VID,
514         ITEM_NEXT,
515         ZERO,
516 };
517
518 static const enum index item_ipv4[] = {
519         ITEM_IPV4_TOS,
520         ITEM_IPV4_TTL,
521         ITEM_IPV4_PROTO,
522         ITEM_IPV4_SRC,
523         ITEM_IPV4_DST,
524         ITEM_NEXT,
525         ZERO,
526 };
527
528 static const enum index item_ipv6[] = {
529         ITEM_IPV6_TC,
530         ITEM_IPV6_FLOW,
531         ITEM_IPV6_PROTO,
532         ITEM_IPV6_HOP,
533         ITEM_IPV6_SRC,
534         ITEM_IPV6_DST,
535         ITEM_NEXT,
536         ZERO,
537 };
538
539 static const enum index item_icmp[] = {
540         ITEM_ICMP_TYPE,
541         ITEM_ICMP_CODE,
542         ITEM_NEXT,
543         ZERO,
544 };
545
546 static const enum index item_udp[] = {
547         ITEM_UDP_SRC,
548         ITEM_UDP_DST,
549         ITEM_NEXT,
550         ZERO,
551 };
552
553 static const enum index item_tcp[] = {
554         ITEM_TCP_SRC,
555         ITEM_TCP_DST,
556         ITEM_TCP_FLAGS,
557         ITEM_NEXT,
558         ZERO,
559 };
560
561 static const enum index item_sctp[] = {
562         ITEM_SCTP_SRC,
563         ITEM_SCTP_DST,
564         ITEM_SCTP_TAG,
565         ITEM_SCTP_CKSUM,
566         ITEM_NEXT,
567         ZERO,
568 };
569
570 static const enum index item_vxlan[] = {
571         ITEM_VXLAN_VNI,
572         ITEM_NEXT,
573         ZERO,
574 };
575
576 static const enum index item_e_tag[] = {
577         ITEM_E_TAG_GRP_ECID_B,
578         ITEM_NEXT,
579         ZERO,
580 };
581
582 static const enum index item_nvgre[] = {
583         ITEM_NVGRE_TNI,
584         ITEM_NEXT,
585         ZERO,
586 };
587
588 static const enum index item_mpls[] = {
589         ITEM_MPLS_LABEL,
590         ITEM_NEXT,
591         ZERO,
592 };
593
594 static const enum index item_gre[] = {
595         ITEM_GRE_PROTO,
596         ITEM_NEXT,
597         ZERO,
598 };
599
600 static const enum index item_gtp[] = {
601         ITEM_GTP_TEID,
602         ITEM_NEXT,
603         ZERO,
604 };
605
606 static const enum index next_action[] = {
607         ACTION_END,
608         ACTION_VOID,
609         ACTION_PASSTHRU,
610         ACTION_MARK,
611         ACTION_FLAG,
612         ACTION_QUEUE,
613         ACTION_DROP,
614         ACTION_COUNT,
615         ACTION_DUP,
616         ACTION_RSS,
617         ACTION_PF,
618         ACTION_VF,
619         ACTION_METER,
620         ZERO,
621 };
622
623 static const enum index action_mark[] = {
624         ACTION_MARK_ID,
625         ACTION_NEXT,
626         ZERO,
627 };
628
629 static const enum index action_queue[] = {
630         ACTION_QUEUE_INDEX,
631         ACTION_NEXT,
632         ZERO,
633 };
634
635 static const enum index action_dup[] = {
636         ACTION_DUP_INDEX,
637         ACTION_NEXT,
638         ZERO,
639 };
640
641 static const enum index action_rss[] = {
642         ACTION_RSS_QUEUES,
643         ACTION_NEXT,
644         ZERO,
645 };
646
647 static const enum index action_vf[] = {
648         ACTION_VF_ORIGINAL,
649         ACTION_VF_ID,
650         ACTION_NEXT,
651         ZERO,
652 };
653
654 static const enum index action_meter[] = {
655         ACTION_METER_ID,
656         ACTION_NEXT,
657         ZERO,
658 };
659
660 static int parse_init(struct context *, const struct token *,
661                       const char *, unsigned int,
662                       void *, unsigned int);
663 static int parse_vc(struct context *, const struct token *,
664                     const char *, unsigned int,
665                     void *, unsigned int);
666 static int parse_vc_spec(struct context *, const struct token *,
667                          const char *, unsigned int, void *, unsigned int);
668 static int parse_vc_conf(struct context *, const struct token *,
669                          const char *, unsigned int, void *, unsigned int);
670 static int parse_vc_action_rss_queue(struct context *, const struct token *,
671                                      const char *, unsigned int, void *,
672                                      unsigned int);
673 static int parse_destroy(struct context *, const struct token *,
674                          const char *, unsigned int,
675                          void *, unsigned int);
676 static int parse_flush(struct context *, const struct token *,
677                        const char *, unsigned int,
678                        void *, unsigned int);
679 static int parse_query(struct context *, const struct token *,
680                        const char *, unsigned int,
681                        void *, unsigned int);
682 static int parse_action(struct context *, const struct token *,
683                         const char *, unsigned int,
684                         void *, unsigned int);
685 static int parse_list(struct context *, const struct token *,
686                       const char *, unsigned int,
687                       void *, unsigned int);
688 static int parse_isolate(struct context *, const struct token *,
689                          const char *, unsigned int,
690                          void *, unsigned int);
691 static int parse_int(struct context *, const struct token *,
692                      const char *, unsigned int,
693                      void *, unsigned int);
694 static int parse_prefix(struct context *, const struct token *,
695                         const char *, unsigned int,
696                         void *, unsigned int);
697 static int parse_boolean(struct context *, const struct token *,
698                          const char *, unsigned int,
699                          void *, unsigned int);
700 static int parse_string(struct context *, const struct token *,
701                         const char *, unsigned int,
702                         void *, unsigned int);
703 static int parse_mac_addr(struct context *, const struct token *,
704                           const char *, unsigned int,
705                           void *, unsigned int);
706 static int parse_ipv4_addr(struct context *, const struct token *,
707                            const char *, unsigned int,
708                            void *, unsigned int);
709 static int parse_ipv6_addr(struct context *, const struct token *,
710                            const char *, unsigned int,
711                            void *, unsigned int);
712 static int parse_port(struct context *, const struct token *,
713                       const char *, unsigned int,
714                       void *, unsigned int);
715 static int comp_none(struct context *, const struct token *,
716                      unsigned int, char *, unsigned int);
717 static int comp_boolean(struct context *, const struct token *,
718                         unsigned int, char *, unsigned int);
719 static int comp_action(struct context *, const struct token *,
720                        unsigned int, char *, unsigned int);
721 static int comp_port(struct context *, const struct token *,
722                      unsigned int, char *, unsigned int);
723 static int comp_rule_id(struct context *, const struct token *,
724                         unsigned int, char *, unsigned int);
725 static int comp_vc_action_rss_queue(struct context *, const struct token *,
726                                     unsigned int, char *, unsigned int);
727
728 /** Token definitions. */
729 static const struct token token_list[] = {
730         /* Special tokens. */
731         [ZERO] = {
732                 .name = "ZERO",
733                 .help = "null entry, abused as the entry point",
734                 .next = NEXT(NEXT_ENTRY(FLOW)),
735         },
736         [END] = {
737                 .name = "",
738                 .type = "RETURN",
739                 .help = "command may end here",
740         },
741         /* Common tokens. */
742         [INTEGER] = {
743                 .name = "{int}",
744                 .type = "INTEGER",
745                 .help = "integer value",
746                 .call = parse_int,
747                 .comp = comp_none,
748         },
749         [UNSIGNED] = {
750                 .name = "{unsigned}",
751                 .type = "UNSIGNED",
752                 .help = "unsigned integer value",
753                 .call = parse_int,
754                 .comp = comp_none,
755         },
756         [PREFIX] = {
757                 .name = "{prefix}",
758                 .type = "PREFIX",
759                 .help = "prefix length for bit-mask",
760                 .call = parse_prefix,
761                 .comp = comp_none,
762         },
763         [BOOLEAN] = {
764                 .name = "{boolean}",
765                 .type = "BOOLEAN",
766                 .help = "any boolean value",
767                 .call = parse_boolean,
768                 .comp = comp_boolean,
769         },
770         [STRING] = {
771                 .name = "{string}",
772                 .type = "STRING",
773                 .help = "fixed string",
774                 .call = parse_string,
775                 .comp = comp_none,
776         },
777         [MAC_ADDR] = {
778                 .name = "{MAC address}",
779                 .type = "MAC-48",
780                 .help = "standard MAC address notation",
781                 .call = parse_mac_addr,
782                 .comp = comp_none,
783         },
784         [IPV4_ADDR] = {
785                 .name = "{IPv4 address}",
786                 .type = "IPV4 ADDRESS",
787                 .help = "standard IPv4 address notation",
788                 .call = parse_ipv4_addr,
789                 .comp = comp_none,
790         },
791         [IPV6_ADDR] = {
792                 .name = "{IPv6 address}",
793                 .type = "IPV6 ADDRESS",
794                 .help = "standard IPv6 address notation",
795                 .call = parse_ipv6_addr,
796                 .comp = comp_none,
797         },
798         [RULE_ID] = {
799                 .name = "{rule id}",
800                 .type = "RULE ID",
801                 .help = "rule identifier",
802                 .call = parse_int,
803                 .comp = comp_rule_id,
804         },
805         [PORT_ID] = {
806                 .name = "{port_id}",
807                 .type = "PORT ID",
808                 .help = "port identifier",
809                 .call = parse_port,
810                 .comp = comp_port,
811         },
812         [GROUP_ID] = {
813                 .name = "{group_id}",
814                 .type = "GROUP ID",
815                 .help = "group identifier",
816                 .call = parse_int,
817                 .comp = comp_none,
818         },
819         [PRIORITY_LEVEL] = {
820                 .name = "{level}",
821                 .type = "PRIORITY",
822                 .help = "priority level",
823                 .call = parse_int,
824                 .comp = comp_none,
825         },
826         /* Top-level command. */
827         [FLOW] = {
828                 .name = "flow",
829                 .type = "{command} {port_id} [{arg} [...]]",
830                 .help = "manage ingress/egress flow rules",
831                 .next = NEXT(NEXT_ENTRY
832                              (VALIDATE,
833                               CREATE,
834                               DESTROY,
835                               FLUSH,
836                               LIST,
837                               QUERY,
838                               ISOLATE)),
839                 .call = parse_init,
840         },
841         /* Sub-level commands. */
842         [VALIDATE] = {
843                 .name = "validate",
844                 .help = "check whether a flow rule can be created",
845                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
846                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
847                 .call = parse_vc,
848         },
849         [CREATE] = {
850                 .name = "create",
851                 .help = "create a flow rule",
852                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
853                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
854                 .call = parse_vc,
855         },
856         [DESTROY] = {
857                 .name = "destroy",
858                 .help = "destroy specific flow rules",
859                 .next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
860                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
861                 .call = parse_destroy,
862         },
863         [FLUSH] = {
864                 .name = "flush",
865                 .help = "destroy all flow rules",
866                 .next = NEXT(NEXT_ENTRY(PORT_ID)),
867                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
868                 .call = parse_flush,
869         },
870         [QUERY] = {
871                 .name = "query",
872                 .help = "query an existing flow rule",
873                 .next = NEXT(NEXT_ENTRY(QUERY_ACTION),
874                              NEXT_ENTRY(RULE_ID),
875                              NEXT_ENTRY(PORT_ID)),
876                 .args = ARGS(ARGS_ENTRY(struct buffer, args.query.action),
877                              ARGS_ENTRY(struct buffer, args.query.rule),
878                              ARGS_ENTRY(struct buffer, port)),
879                 .call = parse_query,
880         },
881         [LIST] = {
882                 .name = "list",
883                 .help = "list existing flow rules",
884                 .next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
885                 .args = ARGS(ARGS_ENTRY(struct buffer, port)),
886                 .call = parse_list,
887         },
888         [ISOLATE] = {
889                 .name = "isolate",
890                 .help = "restrict ingress traffic to the defined flow rules",
891                 .next = NEXT(NEXT_ENTRY(BOOLEAN),
892                              NEXT_ENTRY(PORT_ID)),
893                 .args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
894                              ARGS_ENTRY(struct buffer, port)),
895                 .call = parse_isolate,
896         },
897         /* Destroy arguments. */
898         [DESTROY_RULE] = {
899                 .name = "rule",
900                 .help = "specify a rule identifier",
901                 .next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
902                 .args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
903                 .call = parse_destroy,
904         },
905         /* Query arguments. */
906         [QUERY_ACTION] = {
907                 .name = "{action}",
908                 .type = "ACTION",
909                 .help = "action to query, must be part of the rule",
910                 .call = parse_action,
911                 .comp = comp_action,
912         },
913         /* List arguments. */
914         [LIST_GROUP] = {
915                 .name = "group",
916                 .help = "specify a group",
917                 .next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
918                 .args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
919                 .call = parse_list,
920         },
921         /* Validate/create attributes. */
922         [GROUP] = {
923                 .name = "group",
924                 .help = "specify a group",
925                 .next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
926                 .args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
927                 .call = parse_vc,
928         },
929         [PRIORITY] = {
930                 .name = "priority",
931                 .help = "specify a priority level",
932                 .next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
933                 .args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
934                 .call = parse_vc,
935         },
936         [INGRESS] = {
937                 .name = "ingress",
938                 .help = "affect rule to ingress",
939                 .next = NEXT(next_vc_attr),
940                 .call = parse_vc,
941         },
942         [EGRESS] = {
943                 .name = "egress",
944                 .help = "affect rule to egress",
945                 .next = NEXT(next_vc_attr),
946                 .call = parse_vc,
947         },
948         /* Validate/create pattern. */
949         [PATTERN] = {
950                 .name = "pattern",
951                 .help = "submit a list of pattern items",
952                 .next = NEXT(next_item),
953                 .call = parse_vc,
954         },
955         [ITEM_PARAM_IS] = {
956                 .name = "is",
957                 .help = "match value perfectly (with full bit-mask)",
958                 .call = parse_vc_spec,
959         },
960         [ITEM_PARAM_SPEC] = {
961                 .name = "spec",
962                 .help = "match value according to configured bit-mask",
963                 .call = parse_vc_spec,
964         },
965         [ITEM_PARAM_LAST] = {
966                 .name = "last",
967                 .help = "specify upper bound to establish a range",
968                 .call = parse_vc_spec,
969         },
970         [ITEM_PARAM_MASK] = {
971                 .name = "mask",
972                 .help = "specify bit-mask with relevant bits set to one",
973                 .call = parse_vc_spec,
974         },
975         [ITEM_PARAM_PREFIX] = {
976                 .name = "prefix",
977                 .help = "generate bit-mask from a prefix length",
978                 .call = parse_vc_spec,
979         },
980         [ITEM_NEXT] = {
981                 .name = "/",
982                 .help = "specify next pattern item",
983                 .next = NEXT(next_item),
984         },
985         [ITEM_END] = {
986                 .name = "end",
987                 .help = "end list of pattern items",
988                 .priv = PRIV_ITEM(END, 0),
989                 .next = NEXT(NEXT_ENTRY(ACTIONS)),
990                 .call = parse_vc,
991         },
992         [ITEM_VOID] = {
993                 .name = "void",
994                 .help = "no-op pattern item",
995                 .priv = PRIV_ITEM(VOID, 0),
996                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
997                 .call = parse_vc,
998         },
999         [ITEM_INVERT] = {
1000                 .name = "invert",
1001                 .help = "perform actions when pattern does not match",
1002                 .priv = PRIV_ITEM(INVERT, 0),
1003                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1004                 .call = parse_vc,
1005         },
1006         [ITEM_ANY] = {
1007                 .name = "any",
1008                 .help = "match any protocol for the current layer",
1009                 .priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1010                 .next = NEXT(item_any),
1011                 .call = parse_vc,
1012         },
1013         [ITEM_ANY_NUM] = {
1014                 .name = "num",
1015                 .help = "number of layers covered",
1016                 .next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1017                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1018         },
1019         [ITEM_PF] = {
1020                 .name = "pf",
1021                 .help = "match packets addressed to the physical function",
1022                 .priv = PRIV_ITEM(PF, 0),
1023                 .next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1024                 .call = parse_vc,
1025         },
1026         [ITEM_VF] = {
1027                 .name = "vf",
1028                 .help = "match packets addressed to a virtual function ID",
1029                 .priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1030                 .next = NEXT(item_vf),
1031                 .call = parse_vc,
1032         },
1033         [ITEM_VF_ID] = {
1034                 .name = "id",
1035                 .help = "destination VF ID",
1036                 .next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1037                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1038         },
1039         [ITEM_PORT] = {
1040                 .name = "port",
1041                 .help = "device-specific physical port index to use",
1042                 .priv = PRIV_ITEM(PORT, sizeof(struct rte_flow_item_port)),
1043                 .next = NEXT(item_port),
1044                 .call = parse_vc,
1045         },
1046         [ITEM_PORT_INDEX] = {
1047                 .name = "index",
1048                 .help = "physical port index",
1049                 .next = NEXT(item_port, NEXT_ENTRY(UNSIGNED), item_param),
1050                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_port, index)),
1051         },
1052         [ITEM_RAW] = {
1053                 .name = "raw",
1054                 .help = "match an arbitrary byte string",
1055                 .priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1056                 .next = NEXT(item_raw),
1057                 .call = parse_vc,
1058         },
1059         [ITEM_RAW_RELATIVE] = {
1060                 .name = "relative",
1061                 .help = "look for pattern after the previous item",
1062                 .next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1063                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1064                                            relative, 1)),
1065         },
1066         [ITEM_RAW_SEARCH] = {
1067                 .name = "search",
1068                 .help = "search pattern from offset (see also limit)",
1069                 .next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1070                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1071                                            search, 1)),
1072         },
1073         [ITEM_RAW_OFFSET] = {
1074                 .name = "offset",
1075                 .help = "absolute or relative offset for pattern",
1076                 .next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1077                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1078         },
1079         [ITEM_RAW_LIMIT] = {
1080                 .name = "limit",
1081                 .help = "search area limit for start of pattern",
1082                 .next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1083                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1084         },
1085         [ITEM_RAW_PATTERN] = {
1086                 .name = "pattern",
1087                 .help = "byte string to look for",
1088                 .next = NEXT(item_raw,
1089                              NEXT_ENTRY(STRING),
1090                              NEXT_ENTRY(ITEM_PARAM_IS,
1091                                         ITEM_PARAM_SPEC,
1092                                         ITEM_PARAM_MASK)),
1093                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, length),
1094                              ARGS_ENTRY_USZ(struct rte_flow_item_raw,
1095                                             pattern,
1096                                             ITEM_RAW_PATTERN_SIZE)),
1097         },
1098         [ITEM_ETH] = {
1099                 .name = "eth",
1100                 .help = "match Ethernet header",
1101                 .priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1102                 .next = NEXT(item_eth),
1103                 .call = parse_vc,
1104         },
1105         [ITEM_ETH_DST] = {
1106                 .name = "dst",
1107                 .help = "destination MAC",
1108                 .next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1109                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1110         },
1111         [ITEM_ETH_SRC] = {
1112                 .name = "src",
1113                 .help = "source MAC",
1114                 .next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1115                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1116         },
1117         [ITEM_ETH_TYPE] = {
1118                 .name = "type",
1119                 .help = "EtherType",
1120                 .next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1121                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1122         },
1123         [ITEM_VLAN] = {
1124                 .name = "vlan",
1125                 .help = "match 802.1Q/ad VLAN tag",
1126                 .priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1127                 .next = NEXT(item_vlan),
1128                 .call = parse_vc,
1129         },
1130         [ITEM_VLAN_TPID] = {
1131                 .name = "tpid",
1132                 .help = "tag protocol identifier",
1133                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1134                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tpid)),
1135         },
1136         [ITEM_VLAN_TCI] = {
1137                 .name = "tci",
1138                 .help = "tag control information",
1139                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1140                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1141         },
1142         [ITEM_VLAN_PCP] = {
1143                 .name = "pcp",
1144                 .help = "priority code point",
1145                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1146                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1147                                                   tci, "\xe0\x00")),
1148         },
1149         [ITEM_VLAN_DEI] = {
1150                 .name = "dei",
1151                 .help = "drop eligible indicator",
1152                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1153                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1154                                                   tci, "\x10\x00")),
1155         },
1156         [ITEM_VLAN_VID] = {
1157                 .name = "vid",
1158                 .help = "VLAN identifier",
1159                 .next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1160                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1161                                                   tci, "\x0f\xff")),
1162         },
1163         [ITEM_IPV4] = {
1164                 .name = "ipv4",
1165                 .help = "match IPv4 header",
1166                 .priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1167                 .next = NEXT(item_ipv4),
1168                 .call = parse_vc,
1169         },
1170         [ITEM_IPV4_TOS] = {
1171                 .name = "tos",
1172                 .help = "type of service",
1173                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1174                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1175                                              hdr.type_of_service)),
1176         },
1177         [ITEM_IPV4_TTL] = {
1178                 .name = "ttl",
1179                 .help = "time to live",
1180                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1181                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1182                                              hdr.time_to_live)),
1183         },
1184         [ITEM_IPV4_PROTO] = {
1185                 .name = "proto",
1186                 .help = "next protocol ID",
1187                 .next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1188                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1189                                              hdr.next_proto_id)),
1190         },
1191         [ITEM_IPV4_SRC] = {
1192                 .name = "src",
1193                 .help = "source address",
1194                 .next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1195                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1196                                              hdr.src_addr)),
1197         },
1198         [ITEM_IPV4_DST] = {
1199                 .name = "dst",
1200                 .help = "destination address",
1201                 .next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1202                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1203                                              hdr.dst_addr)),
1204         },
1205         [ITEM_IPV6] = {
1206                 .name = "ipv6",
1207                 .help = "match IPv6 header",
1208                 .priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1209                 .next = NEXT(item_ipv6),
1210                 .call = parse_vc,
1211         },
1212         [ITEM_IPV6_TC] = {
1213                 .name = "tc",
1214                 .help = "traffic class",
1215                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1216                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1217                                                   hdr.vtc_flow,
1218                                                   "\x0f\xf0\x00\x00")),
1219         },
1220         [ITEM_IPV6_FLOW] = {
1221                 .name = "flow",
1222                 .help = "flow label",
1223                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1224                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1225                                                   hdr.vtc_flow,
1226                                                   "\x00\x0f\xff\xff")),
1227         },
1228         [ITEM_IPV6_PROTO] = {
1229                 .name = "proto",
1230                 .help = "protocol (next header)",
1231                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1232                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1233                                              hdr.proto)),
1234         },
1235         [ITEM_IPV6_HOP] = {
1236                 .name = "hop",
1237                 .help = "hop limit",
1238                 .next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1239                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1240                                              hdr.hop_limits)),
1241         },
1242         [ITEM_IPV6_SRC] = {
1243                 .name = "src",
1244                 .help = "source address",
1245                 .next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1246                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1247                                              hdr.src_addr)),
1248         },
1249         [ITEM_IPV6_DST] = {
1250                 .name = "dst",
1251                 .help = "destination address",
1252                 .next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1253                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1254                                              hdr.dst_addr)),
1255         },
1256         [ITEM_ICMP] = {
1257                 .name = "icmp",
1258                 .help = "match ICMP header",
1259                 .priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1260                 .next = NEXT(item_icmp),
1261                 .call = parse_vc,
1262         },
1263         [ITEM_ICMP_TYPE] = {
1264                 .name = "type",
1265                 .help = "ICMP packet type",
1266                 .next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1267                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1268                                              hdr.icmp_type)),
1269         },
1270         [ITEM_ICMP_CODE] = {
1271                 .name = "code",
1272                 .help = "ICMP packet code",
1273                 .next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1274                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1275                                              hdr.icmp_code)),
1276         },
1277         [ITEM_UDP] = {
1278                 .name = "udp",
1279                 .help = "match UDP header",
1280                 .priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1281                 .next = NEXT(item_udp),
1282                 .call = parse_vc,
1283         },
1284         [ITEM_UDP_SRC] = {
1285                 .name = "src",
1286                 .help = "UDP source port",
1287                 .next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1288                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1289                                              hdr.src_port)),
1290         },
1291         [ITEM_UDP_DST] = {
1292                 .name = "dst",
1293                 .help = "UDP destination port",
1294                 .next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1295                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1296                                              hdr.dst_port)),
1297         },
1298         [ITEM_TCP] = {
1299                 .name = "tcp",
1300                 .help = "match TCP header",
1301                 .priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1302                 .next = NEXT(item_tcp),
1303                 .call = parse_vc,
1304         },
1305         [ITEM_TCP_SRC] = {
1306                 .name = "src",
1307                 .help = "TCP source port",
1308                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1309                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1310                                              hdr.src_port)),
1311         },
1312         [ITEM_TCP_DST] = {
1313                 .name = "dst",
1314                 .help = "TCP destination port",
1315                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1316                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1317                                              hdr.dst_port)),
1318         },
1319         [ITEM_TCP_FLAGS] = {
1320                 .name = "flags",
1321                 .help = "TCP flags",
1322                 .next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1323                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1324                                              hdr.tcp_flags)),
1325         },
1326         [ITEM_SCTP] = {
1327                 .name = "sctp",
1328                 .help = "match SCTP header",
1329                 .priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1330                 .next = NEXT(item_sctp),
1331                 .call = parse_vc,
1332         },
1333         [ITEM_SCTP_SRC] = {
1334                 .name = "src",
1335                 .help = "SCTP source port",
1336                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1337                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1338                                              hdr.src_port)),
1339         },
1340         [ITEM_SCTP_DST] = {
1341                 .name = "dst",
1342                 .help = "SCTP destination port",
1343                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1344                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1345                                              hdr.dst_port)),
1346         },
1347         [ITEM_SCTP_TAG] = {
1348                 .name = "tag",
1349                 .help = "validation tag",
1350                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1351                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1352                                              hdr.tag)),
1353         },
1354         [ITEM_SCTP_CKSUM] = {
1355                 .name = "cksum",
1356                 .help = "checksum",
1357                 .next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1358                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1359                                              hdr.cksum)),
1360         },
1361         [ITEM_VXLAN] = {
1362                 .name = "vxlan",
1363                 .help = "match VXLAN header",
1364                 .priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1365                 .next = NEXT(item_vxlan),
1366                 .call = parse_vc,
1367         },
1368         [ITEM_VXLAN_VNI] = {
1369                 .name = "vni",
1370                 .help = "VXLAN identifier",
1371                 .next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1372                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1373         },
1374         [ITEM_E_TAG] = {
1375                 .name = "e_tag",
1376                 .help = "match E-Tag header",
1377                 .priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1378                 .next = NEXT(item_e_tag),
1379                 .call = parse_vc,
1380         },
1381         [ITEM_E_TAG_GRP_ECID_B] = {
1382                 .name = "grp_ecid_b",
1383                 .help = "GRP and E-CID base",
1384                 .next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1385                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1386                                                   rsvd_grp_ecid_b,
1387                                                   "\x3f\xff")),
1388         },
1389         [ITEM_NVGRE] = {
1390                 .name = "nvgre",
1391                 .help = "match NVGRE header",
1392                 .priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1393                 .next = NEXT(item_nvgre),
1394                 .call = parse_vc,
1395         },
1396         [ITEM_NVGRE_TNI] = {
1397                 .name = "tni",
1398                 .help = "virtual subnet ID",
1399                 .next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1400                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1401         },
1402         [ITEM_MPLS] = {
1403                 .name = "mpls",
1404                 .help = "match MPLS header",
1405                 .priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1406                 .next = NEXT(item_mpls),
1407                 .call = parse_vc,
1408         },
1409         [ITEM_MPLS_LABEL] = {
1410                 .name = "label",
1411                 .help = "MPLS label",
1412                 .next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
1413                 .args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
1414                                                   label_tc_s,
1415                                                   "\xff\xff\xf0")),
1416         },
1417         [ITEM_GRE] = {
1418                 .name = "gre",
1419                 .help = "match GRE header",
1420                 .priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1421                 .next = NEXT(item_gre),
1422                 .call = parse_vc,
1423         },
1424         [ITEM_GRE_PROTO] = {
1425                 .name = "protocol",
1426                 .help = "GRE protocol type",
1427                 .next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1428                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1429                                              protocol)),
1430         },
1431         [ITEM_FUZZY] = {
1432                 .name = "fuzzy",
1433                 .help = "fuzzy pattern match, expect faster than default",
1434                 .priv = PRIV_ITEM(FUZZY,
1435                                 sizeof(struct rte_flow_item_fuzzy)),
1436                 .next = NEXT(item_fuzzy),
1437                 .call = parse_vc,
1438         },
1439         [ITEM_FUZZY_THRESH] = {
1440                 .name = "thresh",
1441                 .help = "match accuracy threshold",
1442                 .next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
1443                 .args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
1444                                         thresh)),
1445         },
1446         [ITEM_GTP] = {
1447                 .name = "gtp",
1448                 .help = "match GTP header",
1449                 .priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1450                 .next = NEXT(item_gtp),
1451                 .call = parse_vc,
1452         },
1453         [ITEM_GTP_TEID] = {
1454                 .name = "teid",
1455                 .help = "tunnel endpoint identifier",
1456                 .next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
1457                 .args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
1458         },
1459         [ITEM_GTPC] = {
1460                 .name = "gtpc",
1461                 .help = "match GTP header",
1462                 .priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1463                 .next = NEXT(item_gtp),
1464                 .call = parse_vc,
1465         },
1466         [ITEM_GTPU] = {
1467                 .name = "gtpu",
1468                 .help = "match GTP header",
1469                 .priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1470                 .next = NEXT(item_gtp),
1471                 .call = parse_vc,
1472         },
1473
1474         /* Validate/create actions. */
1475         [ACTIONS] = {
1476                 .name = "actions",
1477                 .help = "submit a list of associated actions",
1478                 .next = NEXT(next_action),
1479                 .call = parse_vc,
1480         },
1481         [ACTION_NEXT] = {
1482                 .name = "/",
1483                 .help = "specify next action",
1484                 .next = NEXT(next_action),
1485         },
1486         [ACTION_END] = {
1487                 .name = "end",
1488                 .help = "end list of actions",
1489                 .priv = PRIV_ACTION(END, 0),
1490                 .call = parse_vc,
1491         },
1492         [ACTION_VOID] = {
1493                 .name = "void",
1494                 .help = "no-op action",
1495                 .priv = PRIV_ACTION(VOID, 0),
1496                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1497                 .call = parse_vc,
1498         },
1499         [ACTION_PASSTHRU] = {
1500                 .name = "passthru",
1501                 .help = "let subsequent rule process matched packets",
1502                 .priv = PRIV_ACTION(PASSTHRU, 0),
1503                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1504                 .call = parse_vc,
1505         },
1506         [ACTION_MARK] = {
1507                 .name = "mark",
1508                 .help = "attach 32 bit value to packets",
1509                 .priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1510                 .next = NEXT(action_mark),
1511                 .call = parse_vc,
1512         },
1513         [ACTION_MARK_ID] = {
1514                 .name = "id",
1515                 .help = "32 bit value to return with packets",
1516                 .next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
1517                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
1518                 .call = parse_vc_conf,
1519         },
1520         [ACTION_FLAG] = {
1521                 .name = "flag",
1522                 .help = "flag packets",
1523                 .priv = PRIV_ACTION(FLAG, 0),
1524                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1525                 .call = parse_vc,
1526         },
1527         [ACTION_QUEUE] = {
1528                 .name = "queue",
1529                 .help = "assign packets to a given queue index",
1530                 .priv = PRIV_ACTION(QUEUE,
1531                                     sizeof(struct rte_flow_action_queue)),
1532                 .next = NEXT(action_queue),
1533                 .call = parse_vc,
1534         },
1535         [ACTION_QUEUE_INDEX] = {
1536                 .name = "index",
1537                 .help = "queue index to use",
1538                 .next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
1539                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
1540                 .call = parse_vc_conf,
1541         },
1542         [ACTION_DROP] = {
1543                 .name = "drop",
1544                 .help = "drop packets (note: passthru has priority)",
1545                 .priv = PRIV_ACTION(DROP, 0),
1546                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1547                 .call = parse_vc,
1548         },
1549         [ACTION_COUNT] = {
1550                 .name = "count",
1551                 .help = "enable counters for this rule",
1552                 .priv = PRIV_ACTION(COUNT, 0),
1553                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1554                 .call = parse_vc,
1555         },
1556         [ACTION_DUP] = {
1557                 .name = "dup",
1558                 .help = "duplicate packets to a given queue index",
1559                 .priv = PRIV_ACTION(DUP, sizeof(struct rte_flow_action_dup)),
1560                 .next = NEXT(action_dup),
1561                 .call = parse_vc,
1562         },
1563         [ACTION_DUP_INDEX] = {
1564                 .name = "index",
1565                 .help = "queue index to duplicate packets to",
1566                 .next = NEXT(action_dup, NEXT_ENTRY(UNSIGNED)),
1567                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_dup, index)),
1568                 .call = parse_vc_conf,
1569         },
1570         [ACTION_RSS] = {
1571                 .name = "rss",
1572                 .help = "spread packets among several queues",
1573                 .priv = PRIV_ACTION(RSS, ACTION_RSS_SIZE),
1574                 .next = NEXT(action_rss),
1575                 .call = parse_vc,
1576         },
1577         [ACTION_RSS_QUEUES] = {
1578                 .name = "queues",
1579                 .help = "queue indices to use",
1580                 .next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
1581                 .call = parse_vc_conf,
1582         },
1583         [ACTION_RSS_QUEUE] = {
1584                 .name = "{queue}",
1585                 .help = "queue index",
1586                 .call = parse_vc_action_rss_queue,
1587                 .comp = comp_vc_action_rss_queue,
1588         },
1589         [ACTION_PF] = {
1590                 .name = "pf",
1591                 .help = "redirect packets to physical device function",
1592                 .priv = PRIV_ACTION(PF, 0),
1593                 .next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1594                 .call = parse_vc,
1595         },
1596         [ACTION_VF] = {
1597                 .name = "vf",
1598                 .help = "redirect packets to virtual device function",
1599                 .priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1600                 .next = NEXT(action_vf),
1601                 .call = parse_vc,
1602         },
1603         [ACTION_VF_ORIGINAL] = {
1604                 .name = "original",
1605                 .help = "use original VF ID if possible",
1606                 .next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
1607                 .args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
1608                                            original, 1)),
1609                 .call = parse_vc_conf,
1610         },
1611         [ACTION_VF_ID] = {
1612                 .name = "id",
1613                 .help = "VF ID to redirect packets to",
1614                 .next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
1615                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
1616                 .call = parse_vc_conf,
1617         },
1618         [ACTION_METER] = {
1619                 .name = "meter",
1620                 .help = "meter the directed packets at given id",
1621                 .priv = PRIV_ACTION(METER,
1622                                     sizeof(struct rte_flow_action_meter)),
1623                 .next = NEXT(action_meter),
1624                 .call = parse_vc,
1625         },
1626         [ACTION_METER_ID] = {
1627                 .name = "mtr_id",
1628                 .help = "meter id to use",
1629                 .next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
1630                 .args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
1631                 .call = parse_vc_conf,
1632         },
1633 };
1634
1635 /** Remove and return last entry from argument stack. */
1636 static const struct arg *
1637 pop_args(struct context *ctx)
1638 {
1639         return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
1640 }
1641
1642 /** Add entry on top of the argument stack. */
1643 static int
1644 push_args(struct context *ctx, const struct arg *arg)
1645 {
1646         if (ctx->args_num == CTX_STACK_SIZE)
1647                 return -1;
1648         ctx->args[ctx->args_num++] = arg;
1649         return 0;
1650 }
1651
1652 /** Spread value into buffer according to bit-mask. */
1653 static size_t
1654 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
1655 {
1656         uint32_t i = arg->size;
1657         uint32_t end = 0;
1658         int sub = 1;
1659         int add = 0;
1660         size_t len = 0;
1661
1662         if (!arg->mask)
1663                 return 0;
1664 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
1665         if (!arg->hton) {
1666                 i = 0;
1667                 end = arg->size;
1668                 sub = 0;
1669                 add = 1;
1670         }
1671 #endif
1672         while (i != end) {
1673                 unsigned int shift = 0;
1674                 uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
1675
1676                 for (shift = 0; arg->mask[i] >> shift; ++shift) {
1677                         if (!(arg->mask[i] & (1 << shift)))
1678                                 continue;
1679                         ++len;
1680                         if (!dst)
1681                                 continue;
1682                         *buf &= ~(1 << shift);
1683                         *buf |= (val & 1) << shift;
1684                         val >>= 1;
1685                 }
1686                 i += add;
1687         }
1688         return len;
1689 }
1690
1691 /** Compare a string with a partial one of a given length. */
1692 static int
1693 strcmp_partial(const char *full, const char *partial, size_t partial_len)
1694 {
1695         int r = strncmp(full, partial, partial_len);
1696
1697         if (r)
1698                 return r;
1699         if (strlen(full) <= partial_len)
1700                 return 0;
1701         return full[partial_len];
1702 }
1703
1704 /**
1705  * Parse a prefix length and generate a bit-mask.
1706  *
1707  * Last argument (ctx->args) is retrieved to determine mask size, storage
1708  * location and whether the result must use network byte ordering.
1709  */
1710 static int
1711 parse_prefix(struct context *ctx, const struct token *token,
1712              const char *str, unsigned int len,
1713              void *buf, unsigned int size)
1714 {
1715         const struct arg *arg = pop_args(ctx);
1716         static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
1717         char *end;
1718         uintmax_t u;
1719         unsigned int bytes;
1720         unsigned int extra;
1721
1722         (void)token;
1723         /* Argument is expected. */
1724         if (!arg)
1725                 return -1;
1726         errno = 0;
1727         u = strtoumax(str, &end, 0);
1728         if (errno || (size_t)(end - str) != len)
1729                 goto error;
1730         if (arg->mask) {
1731                 uintmax_t v = 0;
1732
1733                 extra = arg_entry_bf_fill(NULL, 0, arg);
1734                 if (u > extra)
1735                         goto error;
1736                 if (!ctx->object)
1737                         return len;
1738                 extra -= u;
1739                 while (u--)
1740                         (v <<= 1, v |= 1);
1741                 v <<= extra;
1742                 if (!arg_entry_bf_fill(ctx->object, v, arg) ||
1743                     !arg_entry_bf_fill(ctx->objmask, -1, arg))
1744                         goto error;
1745                 return len;
1746         }
1747         bytes = u / 8;
1748         extra = u % 8;
1749         size = arg->size;
1750         if (bytes > size || bytes + !!extra > size)
1751                 goto error;
1752         if (!ctx->object)
1753                 return len;
1754         buf = (uint8_t *)ctx->object + arg->offset;
1755 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
1756         if (!arg->hton) {
1757                 memset((uint8_t *)buf + size - bytes, 0xff, bytes);
1758                 memset(buf, 0x00, size - bytes);
1759                 if (extra)
1760                         ((uint8_t *)buf)[size - bytes - 1] = conv[extra];
1761         } else
1762 #endif
1763         {
1764                 memset(buf, 0xff, bytes);
1765                 memset((uint8_t *)buf + bytes, 0x00, size - bytes);
1766                 if (extra)
1767                         ((uint8_t *)buf)[bytes] = conv[extra];
1768         }
1769         if (ctx->objmask)
1770                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
1771         return len;
1772 error:
1773         push_args(ctx, arg);
1774         return -1;
1775 }
1776
1777 /** Default parsing function for token name matching. */
1778 static int
1779 parse_default(struct context *ctx, const struct token *token,
1780               const char *str, unsigned int len,
1781               void *buf, unsigned int size)
1782 {
1783         (void)ctx;
1784         (void)buf;
1785         (void)size;
1786         if (strcmp_partial(token->name, str, len))
1787                 return -1;
1788         return len;
1789 }
1790
1791 /** Parse flow command, initialize output buffer for subsequent tokens. */
1792 static int
1793 parse_init(struct context *ctx, const struct token *token,
1794            const char *str, unsigned int len,
1795            void *buf, unsigned int size)
1796 {
1797         struct buffer *out = buf;
1798
1799         /* Token name must match. */
1800         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1801                 return -1;
1802         /* Nothing else to do if there is no buffer. */
1803         if (!out)
1804                 return len;
1805         /* Make sure buffer is large enough. */
1806         if (size < sizeof(*out))
1807                 return -1;
1808         /* Initialize buffer. */
1809         memset(out, 0x00, sizeof(*out));
1810         memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
1811         ctx->objdata = 0;
1812         ctx->object = out;
1813         ctx->objmask = NULL;
1814         return len;
1815 }
1816
1817 /** Parse tokens for validate/create commands. */
1818 static int
1819 parse_vc(struct context *ctx, const struct token *token,
1820          const char *str, unsigned int len,
1821          void *buf, unsigned int size)
1822 {
1823         struct buffer *out = buf;
1824         uint8_t *data;
1825         uint32_t data_size;
1826
1827         /* Token name must match. */
1828         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1829                 return -1;
1830         /* Nothing else to do if there is no buffer. */
1831         if (!out)
1832                 return len;
1833         if (!out->command) {
1834                 if (ctx->curr != VALIDATE && ctx->curr != CREATE)
1835                         return -1;
1836                 if (sizeof(*out) > size)
1837                         return -1;
1838                 out->command = ctx->curr;
1839                 ctx->objdata = 0;
1840                 ctx->object = out;
1841                 ctx->objmask = NULL;
1842                 out->args.vc.data = (uint8_t *)out + size;
1843                 return len;
1844         }
1845         ctx->objdata = 0;
1846         ctx->object = &out->args.vc.attr;
1847         ctx->objmask = NULL;
1848         switch (ctx->curr) {
1849         case GROUP:
1850         case PRIORITY:
1851                 return len;
1852         case INGRESS:
1853                 out->args.vc.attr.ingress = 1;
1854                 return len;
1855         case EGRESS:
1856                 out->args.vc.attr.egress = 1;
1857                 return len;
1858         case PATTERN:
1859                 out->args.vc.pattern =
1860                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
1861                                                sizeof(double));
1862                 ctx->object = out->args.vc.pattern;
1863                 ctx->objmask = NULL;
1864                 return len;
1865         case ACTIONS:
1866                 out->args.vc.actions =
1867                         (void *)RTE_ALIGN_CEIL((uintptr_t)
1868                                                (out->args.vc.pattern +
1869                                                 out->args.vc.pattern_n),
1870                                                sizeof(double));
1871                 ctx->object = out->args.vc.actions;
1872                 ctx->objmask = NULL;
1873                 return len;
1874         default:
1875                 if (!token->priv)
1876                         return -1;
1877                 break;
1878         }
1879         if (!out->args.vc.actions) {
1880                 const struct parse_item_priv *priv = token->priv;
1881                 struct rte_flow_item *item =
1882                         out->args.vc.pattern + out->args.vc.pattern_n;
1883
1884                 data_size = priv->size * 3; /* spec, last, mask */
1885                 data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
1886                                                (out->args.vc.data - data_size),
1887                                                sizeof(double));
1888                 if ((uint8_t *)item + sizeof(*item) > data)
1889                         return -1;
1890                 *item = (struct rte_flow_item){
1891                         .type = priv->type,
1892                 };
1893                 ++out->args.vc.pattern_n;
1894                 ctx->object = item;
1895                 ctx->objmask = NULL;
1896         } else {
1897                 const struct parse_action_priv *priv = token->priv;
1898                 struct rte_flow_action *action =
1899                         out->args.vc.actions + out->args.vc.actions_n;
1900
1901                 data_size = priv->size; /* configuration */
1902                 data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
1903                                                (out->args.vc.data - data_size),
1904                                                sizeof(double));
1905                 if ((uint8_t *)action + sizeof(*action) > data)
1906                         return -1;
1907                 *action = (struct rte_flow_action){
1908                         .type = priv->type,
1909                 };
1910                 ++out->args.vc.actions_n;
1911                 ctx->object = action;
1912                 ctx->objmask = NULL;
1913         }
1914         memset(data, 0, data_size);
1915         out->args.vc.data = data;
1916         ctx->objdata = data_size;
1917         return len;
1918 }
1919
1920 /** Parse pattern item parameter type. */
1921 static int
1922 parse_vc_spec(struct context *ctx, const struct token *token,
1923               const char *str, unsigned int len,
1924               void *buf, unsigned int size)
1925 {
1926         struct buffer *out = buf;
1927         struct rte_flow_item *item;
1928         uint32_t data_size;
1929         int index;
1930         int objmask = 0;
1931
1932         (void)size;
1933         /* Token name must match. */
1934         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1935                 return -1;
1936         /* Parse parameter types. */
1937         switch (ctx->curr) {
1938                 static const enum index prefix[] = NEXT_ENTRY(PREFIX);
1939
1940         case ITEM_PARAM_IS:
1941                 index = 0;
1942                 objmask = 1;
1943                 break;
1944         case ITEM_PARAM_SPEC:
1945                 index = 0;
1946                 break;
1947         case ITEM_PARAM_LAST:
1948                 index = 1;
1949                 break;
1950         case ITEM_PARAM_PREFIX:
1951                 /* Modify next token to expect a prefix. */
1952                 if (ctx->next_num < 2)
1953                         return -1;
1954                 ctx->next[ctx->next_num - 2] = prefix;
1955                 /* Fall through. */
1956         case ITEM_PARAM_MASK:
1957                 index = 2;
1958                 break;
1959         default:
1960                 return -1;
1961         }
1962         /* Nothing else to do if there is no buffer. */
1963         if (!out)
1964                 return len;
1965         if (!out->args.vc.pattern_n)
1966                 return -1;
1967         item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
1968         data_size = ctx->objdata / 3; /* spec, last, mask */
1969         /* Point to selected object. */
1970         ctx->object = out->args.vc.data + (data_size * index);
1971         if (objmask) {
1972                 ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
1973                 item->mask = ctx->objmask;
1974         } else
1975                 ctx->objmask = NULL;
1976         /* Update relevant item pointer. */
1977         *((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
1978                 ctx->object;
1979         return len;
1980 }
1981
1982 /** Parse action configuration field. */
1983 static int
1984 parse_vc_conf(struct context *ctx, const struct token *token,
1985               const char *str, unsigned int len,
1986               void *buf, unsigned int size)
1987 {
1988         struct buffer *out = buf;
1989         struct rte_flow_action *action;
1990
1991         (void)size;
1992         /* Token name must match. */
1993         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1994                 return -1;
1995         /* Nothing else to do if there is no buffer. */
1996         if (!out)
1997                 return len;
1998         if (!out->args.vc.actions_n)
1999                 return -1;
2000         action = &out->args.vc.actions[out->args.vc.actions_n - 1];
2001         /* Point to selected object. */
2002         ctx->object = out->args.vc.data;
2003         ctx->objmask = NULL;
2004         /* Update configuration pointer. */
2005         action->conf = ctx->object;
2006         return len;
2007 }
2008
2009 /**
2010  * Parse queue field for RSS action.
2011  *
2012  * Valid tokens are queue indices and the "end" token.
2013  */
2014 static int
2015 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
2016                           const char *str, unsigned int len,
2017                           void *buf, unsigned int size)
2018 {
2019         static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
2020         int ret;
2021         int i;
2022
2023         (void)token;
2024         (void)buf;
2025         (void)size;
2026         if (ctx->curr != ACTION_RSS_QUEUE)
2027                 return -1;
2028         i = ctx->objdata >> 16;
2029         if (!strcmp_partial("end", str, len)) {
2030                 ctx->objdata &= 0xffff;
2031                 return len;
2032         }
2033         if (i >= ACTION_RSS_NUM)
2034                 return -1;
2035         if (push_args(ctx, ARGS_ENTRY(struct rte_flow_action_rss, queue[i])))
2036                 return -1;
2037         ret = parse_int(ctx, token, str, len, NULL, 0);
2038         if (ret < 0) {
2039                 pop_args(ctx);
2040                 return -1;
2041         }
2042         ++i;
2043         ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
2044         /* Repeat token. */
2045         if (ctx->next_num == RTE_DIM(ctx->next))
2046                 return -1;
2047         ctx->next[ctx->next_num++] = next;
2048         if (!ctx->object)
2049                 return len;
2050         ((struct rte_flow_action_rss *)ctx->object)->num = i;
2051         return len;
2052 }
2053
2054 /** Parse tokens for destroy command. */
2055 static int
2056 parse_destroy(struct context *ctx, const struct token *token,
2057               const char *str, unsigned int len,
2058               void *buf, unsigned int size)
2059 {
2060         struct buffer *out = buf;
2061
2062         /* Token name must match. */
2063         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2064                 return -1;
2065         /* Nothing else to do if there is no buffer. */
2066         if (!out)
2067                 return len;
2068         if (!out->command) {
2069                 if (ctx->curr != DESTROY)
2070                         return -1;
2071                 if (sizeof(*out) > size)
2072                         return -1;
2073                 out->command = ctx->curr;
2074                 ctx->objdata = 0;
2075                 ctx->object = out;
2076                 ctx->objmask = NULL;
2077                 out->args.destroy.rule =
2078                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
2079                                                sizeof(double));
2080                 return len;
2081         }
2082         if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
2083              sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
2084                 return -1;
2085         ctx->objdata = 0;
2086         ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
2087         ctx->objmask = NULL;
2088         return len;
2089 }
2090
2091 /** Parse tokens for flush command. */
2092 static int
2093 parse_flush(struct context *ctx, const struct token *token,
2094             const char *str, unsigned int len,
2095             void *buf, unsigned int size)
2096 {
2097         struct buffer *out = buf;
2098
2099         /* Token name must match. */
2100         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2101                 return -1;
2102         /* Nothing else to do if there is no buffer. */
2103         if (!out)
2104                 return len;
2105         if (!out->command) {
2106                 if (ctx->curr != FLUSH)
2107                         return -1;
2108                 if (sizeof(*out) > size)
2109                         return -1;
2110                 out->command = ctx->curr;
2111                 ctx->objdata = 0;
2112                 ctx->object = out;
2113                 ctx->objmask = NULL;
2114         }
2115         return len;
2116 }
2117
2118 /** Parse tokens for query command. */
2119 static int
2120 parse_query(struct context *ctx, const struct token *token,
2121             const char *str, unsigned int len,
2122             void *buf, unsigned int size)
2123 {
2124         struct buffer *out = buf;
2125
2126         /* Token name must match. */
2127         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2128                 return -1;
2129         /* Nothing else to do if there is no buffer. */
2130         if (!out)
2131                 return len;
2132         if (!out->command) {
2133                 if (ctx->curr != QUERY)
2134                         return -1;
2135                 if (sizeof(*out) > size)
2136                         return -1;
2137                 out->command = ctx->curr;
2138                 ctx->objdata = 0;
2139                 ctx->object = out;
2140                 ctx->objmask = NULL;
2141         }
2142         return len;
2143 }
2144
2145 /** Parse action names. */
2146 static int
2147 parse_action(struct context *ctx, const struct token *token,
2148              const char *str, unsigned int len,
2149              void *buf, unsigned int size)
2150 {
2151         struct buffer *out = buf;
2152         const struct arg *arg = pop_args(ctx);
2153         unsigned int i;
2154
2155         (void)size;
2156         /* Argument is expected. */
2157         if (!arg)
2158                 return -1;
2159         /* Parse action name. */
2160         for (i = 0; next_action[i]; ++i) {
2161                 const struct parse_action_priv *priv;
2162
2163                 token = &token_list[next_action[i]];
2164                 if (strcmp_partial(token->name, str, len))
2165                         continue;
2166                 priv = token->priv;
2167                 if (!priv)
2168                         goto error;
2169                 if (out)
2170                         memcpy((uint8_t *)ctx->object + arg->offset,
2171                                &priv->type,
2172                                arg->size);
2173                 return len;
2174         }
2175 error:
2176         push_args(ctx, arg);
2177         return -1;
2178 }
2179
2180 /** Parse tokens for list command. */
2181 static int
2182 parse_list(struct context *ctx, const struct token *token,
2183            const char *str, unsigned int len,
2184            void *buf, unsigned int size)
2185 {
2186         struct buffer *out = buf;
2187
2188         /* Token name must match. */
2189         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2190                 return -1;
2191         /* Nothing else to do if there is no buffer. */
2192         if (!out)
2193                 return len;
2194         if (!out->command) {
2195                 if (ctx->curr != LIST)
2196                         return -1;
2197                 if (sizeof(*out) > size)
2198                         return -1;
2199                 out->command = ctx->curr;
2200                 ctx->objdata = 0;
2201                 ctx->object = out;
2202                 ctx->objmask = NULL;
2203                 out->args.list.group =
2204                         (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
2205                                                sizeof(double));
2206                 return len;
2207         }
2208         if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
2209              sizeof(*out->args.list.group)) > (uint8_t *)out + size)
2210                 return -1;
2211         ctx->objdata = 0;
2212         ctx->object = out->args.list.group + out->args.list.group_n++;
2213         ctx->objmask = NULL;
2214         return len;
2215 }
2216
2217 /** Parse tokens for isolate command. */
2218 static int
2219 parse_isolate(struct context *ctx, const struct token *token,
2220               const char *str, unsigned int len,
2221               void *buf, unsigned int size)
2222 {
2223         struct buffer *out = buf;
2224
2225         /* Token name must match. */
2226         if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2227                 return -1;
2228         /* Nothing else to do if there is no buffer. */
2229         if (!out)
2230                 return len;
2231         if (!out->command) {
2232                 if (ctx->curr != ISOLATE)
2233                         return -1;
2234                 if (sizeof(*out) > size)
2235                         return -1;
2236                 out->command = ctx->curr;
2237                 ctx->objdata = 0;
2238                 ctx->object = out;
2239                 ctx->objmask = NULL;
2240         }
2241         return len;
2242 }
2243
2244 /**
2245  * Parse signed/unsigned integers 8 to 64-bit long.
2246  *
2247  * Last argument (ctx->args) is retrieved to determine integer type and
2248  * storage location.
2249  */
2250 static int
2251 parse_int(struct context *ctx, const struct token *token,
2252           const char *str, unsigned int len,
2253           void *buf, unsigned int size)
2254 {
2255         const struct arg *arg = pop_args(ctx);
2256         uintmax_t u;
2257         char *end;
2258
2259         (void)token;
2260         /* Argument is expected. */
2261         if (!arg)
2262                 return -1;
2263         errno = 0;
2264         u = arg->sign ?
2265                 (uintmax_t)strtoimax(str, &end, 0) :
2266                 strtoumax(str, &end, 0);
2267         if (errno || (size_t)(end - str) != len)
2268                 goto error;
2269         if (!ctx->object)
2270                 return len;
2271         if (arg->mask) {
2272                 if (!arg_entry_bf_fill(ctx->object, u, arg) ||
2273                     !arg_entry_bf_fill(ctx->objmask, -1, arg))
2274                         goto error;
2275                 return len;
2276         }
2277         buf = (uint8_t *)ctx->object + arg->offset;
2278         size = arg->size;
2279 objmask:
2280         switch (size) {
2281         case sizeof(uint8_t):
2282                 *(uint8_t *)buf = u;
2283                 break;
2284         case sizeof(uint16_t):
2285                 *(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
2286                 break;
2287         case sizeof(uint8_t [3]):
2288 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2289                 if (!arg->hton) {
2290                         ((uint8_t *)buf)[0] = u;
2291                         ((uint8_t *)buf)[1] = u >> 8;
2292                         ((uint8_t *)buf)[2] = u >> 16;
2293                         break;
2294                 }
2295 #endif
2296                 ((uint8_t *)buf)[0] = u >> 16;
2297                 ((uint8_t *)buf)[1] = u >> 8;
2298                 ((uint8_t *)buf)[2] = u;
2299                 break;
2300         case sizeof(uint32_t):
2301                 *(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
2302                 break;
2303         case sizeof(uint64_t):
2304                 *(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
2305                 break;
2306         default:
2307                 goto error;
2308         }
2309         if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
2310                 u = -1;
2311                 buf = (uint8_t *)ctx->objmask + arg->offset;
2312                 goto objmask;
2313         }
2314         return len;
2315 error:
2316         push_args(ctx, arg);
2317         return -1;
2318 }
2319
2320 /**
2321  * Parse a string.
2322  *
2323  * Two arguments (ctx->args) are retrieved from the stack to store data and
2324  * its length (in that order).
2325  */
2326 static int
2327 parse_string(struct context *ctx, const struct token *token,
2328              const char *str, unsigned int len,
2329              void *buf, unsigned int size)
2330 {
2331         const struct arg *arg_data = pop_args(ctx);
2332         const struct arg *arg_len = pop_args(ctx);
2333         char tmp[16]; /* Ought to be enough. */
2334         int ret;
2335
2336         /* Arguments are expected. */
2337         if (!arg_data)
2338                 return -1;
2339         if (!arg_len) {
2340                 push_args(ctx, arg_data);
2341                 return -1;
2342         }
2343         size = arg_data->size;
2344         /* Bit-mask fill is not supported. */
2345         if (arg_data->mask || size < len)
2346                 goto error;
2347         if (!ctx->object)
2348                 return len;
2349         /* Let parse_int() fill length information first. */
2350         ret = snprintf(tmp, sizeof(tmp), "%u", len);
2351         if (ret < 0)
2352                 goto error;
2353         push_args(ctx, arg_len);
2354         ret = parse_int(ctx, token, tmp, ret, NULL, 0);
2355         if (ret < 0) {
2356                 pop_args(ctx);
2357                 goto error;
2358         }
2359         buf = (uint8_t *)ctx->object + arg_data->offset;
2360         /* Output buffer is not necessarily NUL-terminated. */
2361         memcpy(buf, str, len);
2362         memset((uint8_t *)buf + len, 0x55, size - len);
2363         if (ctx->objmask)
2364                 memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
2365         return len;
2366 error:
2367         push_args(ctx, arg_len);
2368         push_args(ctx, arg_data);
2369         return -1;
2370 }
2371
2372 /**
2373  * Parse a MAC address.
2374  *
2375  * Last argument (ctx->args) is retrieved to determine storage size and
2376  * location.
2377  */
2378 static int
2379 parse_mac_addr(struct context *ctx, const struct token *token,
2380                const char *str, unsigned int len,
2381                void *buf, unsigned int size)
2382 {
2383         const struct arg *arg = pop_args(ctx);
2384         struct ether_addr tmp;
2385         int ret;
2386
2387         (void)token;
2388         /* Argument is expected. */
2389         if (!arg)
2390                 return -1;
2391         size = arg->size;
2392         /* Bit-mask fill is not supported. */
2393         if (arg->mask || size != sizeof(tmp))
2394                 goto error;
2395         /* Only network endian is supported. */
2396         if (!arg->hton)
2397                 goto error;
2398         ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
2399         if (ret < 0 || (unsigned int)ret != len)
2400                 goto error;
2401         if (!ctx->object)
2402                 return len;
2403         buf = (uint8_t *)ctx->object + arg->offset;
2404         memcpy(buf, &tmp, size);
2405         if (ctx->objmask)
2406                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2407         return len;
2408 error:
2409         push_args(ctx, arg);
2410         return -1;
2411 }
2412
2413 /**
2414  * Parse an IPv4 address.
2415  *
2416  * Last argument (ctx->args) is retrieved to determine storage size and
2417  * location.
2418  */
2419 static int
2420 parse_ipv4_addr(struct context *ctx, const struct token *token,
2421                 const char *str, unsigned int len,
2422                 void *buf, unsigned int size)
2423 {
2424         const struct arg *arg = pop_args(ctx);
2425         char str2[len + 1];
2426         struct in_addr tmp;
2427         int ret;
2428
2429         /* Argument is expected. */
2430         if (!arg)
2431                 return -1;
2432         size = arg->size;
2433         /* Bit-mask fill is not supported. */
2434         if (arg->mask || size != sizeof(tmp))
2435                 goto error;
2436         /* Only network endian is supported. */
2437         if (!arg->hton)
2438                 goto error;
2439         memcpy(str2, str, len);
2440         str2[len] = '\0';
2441         ret = inet_pton(AF_INET, str2, &tmp);
2442         if (ret != 1) {
2443                 /* Attempt integer parsing. */
2444                 push_args(ctx, arg);
2445                 return parse_int(ctx, token, str, len, buf, size);
2446         }
2447         if (!ctx->object)
2448                 return len;
2449         buf = (uint8_t *)ctx->object + arg->offset;
2450         memcpy(buf, &tmp, size);
2451         if (ctx->objmask)
2452                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2453         return len;
2454 error:
2455         push_args(ctx, arg);
2456         return -1;
2457 }
2458
2459 /**
2460  * Parse an IPv6 address.
2461  *
2462  * Last argument (ctx->args) is retrieved to determine storage size and
2463  * location.
2464  */
2465 static int
2466 parse_ipv6_addr(struct context *ctx, const struct token *token,
2467                 const char *str, unsigned int len,
2468                 void *buf, unsigned int size)
2469 {
2470         const struct arg *arg = pop_args(ctx);
2471         char str2[len + 1];
2472         struct in6_addr tmp;
2473         int ret;
2474
2475         (void)token;
2476         /* Argument is expected. */
2477         if (!arg)
2478                 return -1;
2479         size = arg->size;
2480         /* Bit-mask fill is not supported. */
2481         if (arg->mask || size != sizeof(tmp))
2482                 goto error;
2483         /* Only network endian is supported. */
2484         if (!arg->hton)
2485                 goto error;
2486         memcpy(str2, str, len);
2487         str2[len] = '\0';
2488         ret = inet_pton(AF_INET6, str2, &tmp);
2489         if (ret != 1)
2490                 goto error;
2491         if (!ctx->object)
2492                 return len;
2493         buf = (uint8_t *)ctx->object + arg->offset;
2494         memcpy(buf, &tmp, size);
2495         if (ctx->objmask)
2496                 memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2497         return len;
2498 error:
2499         push_args(ctx, arg);
2500         return -1;
2501 }
2502
2503 /** Boolean values (even indices stand for false). */
2504 static const char *const boolean_name[] = {
2505         "0", "1",
2506         "false", "true",
2507         "no", "yes",
2508         "N", "Y",
2509         NULL,
2510 };
2511
2512 /**
2513  * Parse a boolean value.
2514  *
2515  * Last argument (ctx->args) is retrieved to determine storage size and
2516  * location.
2517  */
2518 static int
2519 parse_boolean(struct context *ctx, const struct token *token,
2520               const char *str, unsigned int len,
2521               void *buf, unsigned int size)
2522 {
2523         const struct arg *arg = pop_args(ctx);
2524         unsigned int i;
2525         int ret;
2526
2527         /* Argument is expected. */
2528         if (!arg)
2529                 return -1;
2530         for (i = 0; boolean_name[i]; ++i)
2531                 if (!strcmp_partial(boolean_name[i], str, len))
2532                         break;
2533         /* Process token as integer. */
2534         if (boolean_name[i])
2535                 str = i & 1 ? "1" : "0";
2536         push_args(ctx, arg);
2537         ret = parse_int(ctx, token, str, strlen(str), buf, size);
2538         return ret > 0 ? (int)len : ret;
2539 }
2540
2541 /** Parse port and update context. */
2542 static int
2543 parse_port(struct context *ctx, const struct token *token,
2544            const char *str, unsigned int len,
2545            void *buf, unsigned int size)
2546 {
2547         struct buffer *out = &(struct buffer){ .port = 0 };
2548         int ret;
2549
2550         if (buf)
2551                 out = buf;
2552         else {
2553                 ctx->objdata = 0;
2554                 ctx->object = out;
2555                 ctx->objmask = NULL;
2556                 size = sizeof(*out);
2557         }
2558         ret = parse_int(ctx, token, str, len, out, size);
2559         if (ret >= 0)
2560                 ctx->port = out->port;
2561         if (!buf)
2562                 ctx->object = NULL;
2563         return ret;
2564 }
2565
2566 /** No completion. */
2567 static int
2568 comp_none(struct context *ctx, const struct token *token,
2569           unsigned int ent, char *buf, unsigned int size)
2570 {
2571         (void)ctx;
2572         (void)token;
2573         (void)ent;
2574         (void)buf;
2575         (void)size;
2576         return 0;
2577 }
2578
2579 /** Complete boolean values. */
2580 static int
2581 comp_boolean(struct context *ctx, const struct token *token,
2582              unsigned int ent, char *buf, unsigned int size)
2583 {
2584         unsigned int i;
2585
2586         (void)ctx;
2587         (void)token;
2588         for (i = 0; boolean_name[i]; ++i)
2589                 if (buf && i == ent)
2590                         return snprintf(buf, size, "%s", boolean_name[i]);
2591         if (buf)
2592                 return -1;
2593         return i;
2594 }
2595
2596 /** Complete action names. */
2597 static int
2598 comp_action(struct context *ctx, const struct token *token,
2599             unsigned int ent, char *buf, unsigned int size)
2600 {
2601         unsigned int i;
2602
2603         (void)ctx;
2604         (void)token;
2605         for (i = 0; next_action[i]; ++i)
2606                 if (buf && i == ent)
2607                         return snprintf(buf, size, "%s",
2608                                         token_list[next_action[i]].name);
2609         if (buf)
2610                 return -1;
2611         return i;
2612 }
2613
2614 /** Complete available ports. */
2615 static int
2616 comp_port(struct context *ctx, const struct token *token,
2617           unsigned int ent, char *buf, unsigned int size)
2618 {
2619         unsigned int i = 0;
2620         portid_t p;
2621
2622         (void)ctx;
2623         (void)token;
2624         RTE_ETH_FOREACH_DEV(p) {
2625                 if (buf && i == ent)
2626                         return snprintf(buf, size, "%u", p);
2627                 ++i;
2628         }
2629         if (buf)
2630                 return -1;
2631         return i;
2632 }
2633
2634 /** Complete available rule IDs. */
2635 static int
2636 comp_rule_id(struct context *ctx, const struct token *token,
2637              unsigned int ent, char *buf, unsigned int size)
2638 {
2639         unsigned int i = 0;
2640         struct rte_port *port;
2641         struct port_flow *pf;
2642
2643         (void)token;
2644         if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
2645             ctx->port == (portid_t)RTE_PORT_ALL)
2646                 return -1;
2647         port = &ports[ctx->port];
2648         for (pf = port->flow_list; pf != NULL; pf = pf->next) {
2649                 if (buf && i == ent)
2650                         return snprintf(buf, size, "%u", pf->id);
2651                 ++i;
2652         }
2653         if (buf)
2654                 return -1;
2655         return i;
2656 }
2657
2658 /** Complete queue field for RSS action. */
2659 static int
2660 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
2661                          unsigned int ent, char *buf, unsigned int size)
2662 {
2663         static const char *const str[] = { "", "end", NULL };
2664         unsigned int i;
2665
2666         (void)ctx;
2667         (void)token;
2668         for (i = 0; str[i] != NULL; ++i)
2669                 if (buf && i == ent)
2670                         return snprintf(buf, size, "%s", str[i]);
2671         if (buf)
2672                 return -1;
2673         return i;
2674 }
2675
2676 /** Internal context. */
2677 static struct context cmd_flow_context;
2678
2679 /** Global parser instance (cmdline API). */
2680 cmdline_parse_inst_t cmd_flow;
2681
2682 /** Initialize context. */
2683 static void
2684 cmd_flow_context_init(struct context *ctx)
2685 {
2686         /* A full memset() is not necessary. */
2687         ctx->curr = ZERO;
2688         ctx->prev = ZERO;
2689         ctx->next_num = 0;
2690         ctx->args_num = 0;
2691         ctx->eol = 0;
2692         ctx->last = 0;
2693         ctx->port = 0;
2694         ctx->objdata = 0;
2695         ctx->object = NULL;
2696         ctx->objmask = NULL;
2697 }
2698
2699 /** Parse a token (cmdline API). */
2700 static int
2701 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
2702                unsigned int size)
2703 {
2704         struct context *ctx = &cmd_flow_context;
2705         const struct token *token;
2706         const enum index *list;
2707         int len;
2708         int i;
2709
2710         (void)hdr;
2711         token = &token_list[ctx->curr];
2712         /* Check argument length. */
2713         ctx->eol = 0;
2714         ctx->last = 1;
2715         for (len = 0; src[len]; ++len)
2716                 if (src[len] == '#' || isspace(src[len]))
2717                         break;
2718         if (!len)
2719                 return -1;
2720         /* Last argument and EOL detection. */
2721         for (i = len; src[i]; ++i)
2722                 if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
2723                         break;
2724                 else if (!isspace(src[i])) {
2725                         ctx->last = 0;
2726                         break;
2727                 }
2728         for (; src[i]; ++i)
2729                 if (src[i] == '\r' || src[i] == '\n') {
2730                         ctx->eol = 1;
2731                         break;
2732                 }
2733         /* Initialize context if necessary. */
2734         if (!ctx->next_num) {
2735                 if (!token->next)
2736                         return 0;
2737                 ctx->next[ctx->next_num++] = token->next[0];
2738         }
2739         /* Process argument through candidates. */
2740         ctx->prev = ctx->curr;
2741         list = ctx->next[ctx->next_num - 1];
2742         for (i = 0; list[i]; ++i) {
2743                 const struct token *next = &token_list[list[i]];
2744                 int tmp;
2745
2746                 ctx->curr = list[i];
2747                 if (next->call)
2748                         tmp = next->call(ctx, next, src, len, result, size);
2749                 else
2750                         tmp = parse_default(ctx, next, src, len, result, size);
2751                 if (tmp == -1 || tmp != len)
2752                         continue;
2753                 token = next;
2754                 break;
2755         }
2756         if (!list[i])
2757                 return -1;
2758         --ctx->next_num;
2759         /* Push subsequent tokens if any. */
2760         if (token->next)
2761                 for (i = 0; token->next[i]; ++i) {
2762                         if (ctx->next_num == RTE_DIM(ctx->next))
2763                                 return -1;
2764                         ctx->next[ctx->next_num++] = token->next[i];
2765                 }
2766         /* Push arguments if any. */
2767         if (token->args)
2768                 for (i = 0; token->args[i]; ++i) {
2769                         if (ctx->args_num == RTE_DIM(ctx->args))
2770                                 return -1;
2771                         ctx->args[ctx->args_num++] = token->args[i];
2772                 }
2773         return len;
2774 }
2775
2776 /** Return number of completion entries (cmdline API). */
2777 static int
2778 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
2779 {
2780         struct context *ctx = &cmd_flow_context;
2781         const struct token *token = &token_list[ctx->curr];
2782         const enum index *list;
2783         int i;
2784
2785         (void)hdr;
2786         /* Count number of tokens in current list. */
2787         if (ctx->next_num)
2788                 list = ctx->next[ctx->next_num - 1];
2789         else
2790                 list = token->next[0];
2791         for (i = 0; list[i]; ++i)
2792                 ;
2793         if (!i)
2794                 return 0;
2795         /*
2796          * If there is a single token, use its completion callback, otherwise
2797          * return the number of entries.
2798          */
2799         token = &token_list[list[0]];
2800         if (i == 1 && token->comp) {
2801                 /* Save index for cmd_flow_get_help(). */
2802                 ctx->prev = list[0];
2803                 return token->comp(ctx, token, 0, NULL, 0);
2804         }
2805         return i;
2806 }
2807
2808 /** Return a completion entry (cmdline API). */
2809 static int
2810 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
2811                           char *dst, unsigned int size)
2812 {
2813         struct context *ctx = &cmd_flow_context;
2814         const struct token *token = &token_list[ctx->curr];
2815         const enum index *list;
2816         int i;
2817
2818         (void)hdr;
2819         /* Count number of tokens in current list. */
2820         if (ctx->next_num)
2821                 list = ctx->next[ctx->next_num - 1];
2822         else
2823                 list = token->next[0];
2824         for (i = 0; list[i]; ++i)
2825                 ;
2826         if (!i)
2827                 return -1;
2828         /* If there is a single token, use its completion callback. */
2829         token = &token_list[list[0]];
2830         if (i == 1 && token->comp) {
2831                 /* Save index for cmd_flow_get_help(). */
2832                 ctx->prev = list[0];
2833                 return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
2834         }
2835         /* Otherwise make sure the index is valid and use defaults. */
2836         if (index >= i)
2837                 return -1;
2838         token = &token_list[list[index]];
2839         snprintf(dst, size, "%s", token->name);
2840         /* Save index for cmd_flow_get_help(). */
2841         ctx->prev = list[index];
2842         return 0;
2843 }
2844
2845 /** Populate help strings for current token (cmdline API). */
2846 static int
2847 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
2848 {
2849         struct context *ctx = &cmd_flow_context;
2850         const struct token *token = &token_list[ctx->prev];
2851
2852         (void)hdr;
2853         if (!size)
2854                 return -1;
2855         /* Set token type and update global help with details. */
2856         snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
2857         if (token->help)
2858                 cmd_flow.help_str = token->help;
2859         else
2860                 cmd_flow.help_str = token->name;
2861         return 0;
2862 }
2863
2864 /** Token definition template (cmdline API). */
2865 static struct cmdline_token_hdr cmd_flow_token_hdr = {
2866         .ops = &(struct cmdline_token_ops){
2867                 .parse = cmd_flow_parse,
2868                 .complete_get_nb = cmd_flow_complete_get_nb,
2869                 .complete_get_elt = cmd_flow_complete_get_elt,
2870                 .get_help = cmd_flow_get_help,
2871         },
2872         .offset = 0,
2873 };
2874
2875 /** Populate the next dynamic token. */
2876 static void
2877 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
2878              cmdline_parse_token_hdr_t **hdr_inst)
2879 {
2880         struct context *ctx = &cmd_flow_context;
2881
2882         /* Always reinitialize context before requesting the first token. */
2883         if (!(hdr_inst - cmd_flow.tokens))
2884                 cmd_flow_context_init(ctx);
2885         /* Return NULL when no more tokens are expected. */
2886         if (!ctx->next_num && ctx->curr) {
2887                 *hdr = NULL;
2888                 return;
2889         }
2890         /* Determine if command should end here. */
2891         if (ctx->eol && ctx->last && ctx->next_num) {
2892                 const enum index *list = ctx->next[ctx->next_num - 1];
2893                 int i;
2894
2895                 for (i = 0; list[i]; ++i) {
2896                         if (list[i] != END)
2897                                 continue;
2898                         *hdr = NULL;
2899                         return;
2900                 }
2901         }
2902         *hdr = &cmd_flow_token_hdr;
2903 }
2904
2905 /** Dispatch parsed buffer to function calls. */
2906 static void
2907 cmd_flow_parsed(const struct buffer *in)
2908 {
2909         switch (in->command) {
2910         case VALIDATE:
2911                 port_flow_validate(in->port, &in->args.vc.attr,
2912                                    in->args.vc.pattern, in->args.vc.actions);
2913                 break;
2914         case CREATE:
2915                 port_flow_create(in->port, &in->args.vc.attr,
2916                                  in->args.vc.pattern, in->args.vc.actions);
2917                 break;
2918         case DESTROY:
2919                 port_flow_destroy(in->port, in->args.destroy.rule_n,
2920                                   in->args.destroy.rule);
2921                 break;
2922         case FLUSH:
2923                 port_flow_flush(in->port);
2924                 break;
2925         case QUERY:
2926                 port_flow_query(in->port, in->args.query.rule,
2927                                 in->args.query.action);
2928                 break;
2929         case LIST:
2930                 port_flow_list(in->port, in->args.list.group_n,
2931                                in->args.list.group);
2932                 break;
2933         case ISOLATE:
2934                 port_flow_isolate(in->port, in->args.isolate.set);
2935                 break;
2936         default:
2937                 break;
2938         }
2939 }
2940
2941 /** Token generator and output processing callback (cmdline API). */
2942 static void
2943 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
2944 {
2945         if (cl == NULL)
2946                 cmd_flow_tok(arg0, arg2);
2947         else
2948                 cmd_flow_parsed(arg0);
2949 }
2950
2951 /** Global parser instance (cmdline API). */
2952 cmdline_parse_inst_t cmd_flow = {
2953         .f = cmd_flow_cb,
2954         .data = NULL, /**< Unused. */
2955         .help_str = NULL, /**< Updated by cmd_flow_get_help(). */
2956         .tokens = {
2957                 NULL,
2958         }, /**< Tokens are returned by cmd_flow_tok(). */
2959 };