Imported Upstream version 16.11
[deb_dpdk.git] / app / test-pmd / icmpecho.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2013 6WIND
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of 6WIND S.A. nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  */
34
35 #include <stdarg.h>
36 #include <string.h>
37 #include <stdio.h>
38 #include <errno.h>
39 #include <stdint.h>
40 #include <unistd.h>
41 #include <inttypes.h>
42
43 #include <sys/queue.h>
44 #include <sys/stat.h>
45
46 #include <rte_common.h>
47 #include <rte_byteorder.h>
48 #include <rte_log.h>
49 #include <rte_debug.h>
50 #include <rte_cycles.h>
51 #include <rte_per_lcore.h>
52 #include <rte_lcore.h>
53 #include <rte_atomic.h>
54 #include <rte_branch_prediction.h>
55 #include <rte_memory.h>
56 #include <rte_mempool.h>
57 #include <rte_mbuf.h>
58 #include <rte_ether.h>
59 #include <rte_ethdev.h>
60 #include <rte_arp.h>
61 #include <rte_ip.h>
62 #include <rte_icmp.h>
63 #include <rte_string_fns.h>
64
65 #include "testpmd.h"
66
67 static const char *
68 arp_op_name(uint16_t arp_op)
69 {
70         switch (arp_op ) {
71         case ARP_OP_REQUEST:
72                 return "ARP Request";
73         case ARP_OP_REPLY:
74                 return "ARP Reply";
75         case ARP_OP_REVREQUEST:
76                 return "Reverse ARP Request";
77         case ARP_OP_REVREPLY:
78                 return "Reverse ARP Reply";
79         case ARP_OP_INVREQUEST:
80                 return "Peer Identify Request";
81         case ARP_OP_INVREPLY:
82                 return "Peer Identify Reply";
83         default:
84                 break;
85         }
86         return "Unkwown ARP op";
87 }
88
89 static const char *
90 ip_proto_name(uint16_t ip_proto)
91 {
92         static const char * ip_proto_names[] = {
93                 "IP6HOPOPTS", /**< IP6 hop-by-hop options */
94                 "ICMP",       /**< control message protocol */
95                 "IGMP",       /**< group mgmt protocol */
96                 "GGP",        /**< gateway^2 (deprecated) */
97                 "IPv4",       /**< IPv4 encapsulation */
98
99                 "UNASSIGNED",
100                 "TCP",        /**< transport control protocol */
101                 "ST",         /**< Stream protocol II */
102                 "EGP",        /**< exterior gateway protocol */
103                 "PIGP",       /**< private interior gateway */
104
105                 "RCC_MON",    /**< BBN RCC Monitoring */
106                 "NVPII",      /**< network voice protocol*/
107                 "PUP",        /**< pup */
108                 "ARGUS",      /**< Argus */
109                 "EMCON",      /**< EMCON */
110
111                 "XNET",       /**< Cross Net Debugger */
112                 "CHAOS",      /**< Chaos*/
113                 "UDP",        /**< user datagram protocol */
114                 "MUX",        /**< Multiplexing */
115                 "DCN_MEAS",   /**< DCN Measurement Subsystems */
116
117                 "HMP",        /**< Host Monitoring */
118                 "PRM",        /**< Packet Radio Measurement */
119                 "XNS_IDP",    /**< xns idp */
120                 "TRUNK1",     /**< Trunk-1 */
121                 "TRUNK2",     /**< Trunk-2 */
122
123                 "LEAF1",      /**< Leaf-1 */
124                 "LEAF2",      /**< Leaf-2 */
125                 "RDP",        /**< Reliable Data */
126                 "IRTP",       /**< Reliable Transaction */
127                 "TP4",        /**< tp-4 w/ class negotiation */
128
129                 "BLT",        /**< Bulk Data Transfer */
130                 "NSP",        /**< Network Services */
131                 "INP",        /**< Merit Internodal */
132                 "SEP",        /**< Sequential Exchange */
133                 "3PC",        /**< Third Party Connect */
134
135                 "IDPR",       /**< InterDomain Policy Routing */
136                 "XTP",        /**< XTP */
137                 "DDP",        /**< Datagram Delivery */
138                 "CMTP",       /**< Control Message Transport */
139                 "TPXX",       /**< TP++ Transport */
140
141                 "ILTP",       /**< IL transport protocol */
142                 "IPv6_HDR",   /**< IP6 header */
143                 "SDRP",       /**< Source Demand Routing */
144                 "IPv6_RTG",   /**< IP6 routing header */
145                 "IPv6_FRAG",  /**< IP6 fragmentation header */
146
147                 "IDRP",       /**< InterDomain Routing*/
148                 "RSVP",       /**< resource reservation */
149                 "GRE",        /**< General Routing Encap. */
150                 "MHRP",       /**< Mobile Host Routing */
151                 "BHA",        /**< BHA */
152
153                 "ESP",        /**< IP6 Encap Sec. Payload */
154                 "AH",         /**< IP6 Auth Header */
155                 "INLSP",      /**< Integ. Net Layer Security */
156                 "SWIPE",      /**< IP with encryption */
157                 "NHRP",       /**< Next Hop Resolution */
158
159                 "UNASSIGNED",
160                 "UNASSIGNED",
161                 "UNASSIGNED",
162                 "ICMPv6",     /**< ICMP6 */
163                 "IPv6NONEXT", /**< IP6 no next header */
164
165                 "Ipv6DSTOPTS",/**< IP6 destination option */
166                 "AHIP",       /**< any host internal protocol */
167                 "CFTP",       /**< CFTP */
168                 "HELLO",      /**< "hello" routing protocol */
169                 "SATEXPAK",   /**< SATNET/Backroom EXPAK */
170
171                 "KRYPTOLAN",  /**< Kryptolan */
172                 "RVD",        /**< Remote Virtual Disk */
173                 "IPPC",       /**< Pluribus Packet Core */
174                 "ADFS",       /**< Any distributed FS */
175                 "SATMON",     /**< Satnet Monitoring */
176
177                 "VISA",       /**< VISA Protocol */
178                 "IPCV",       /**< Packet Core Utility */
179                 "CPNX",       /**< Comp. Prot. Net. Executive */
180                 "CPHB",       /**< Comp. Prot. HeartBeat */
181                 "WSN",        /**< Wang Span Network */
182
183                 "PVP",        /**< Packet Video Protocol */
184                 "BRSATMON",   /**< BackRoom SATNET Monitoring */
185                 "ND",         /**< Sun net disk proto (temp.) */
186                 "WBMON",      /**< WIDEBAND Monitoring */
187                 "WBEXPAK",    /**< WIDEBAND EXPAK */
188
189                 "EON",        /**< ISO cnlp */
190                 "VMTP",       /**< VMTP */
191                 "SVMTP",      /**< Secure VMTP */
192                 "VINES",      /**< Banyon VINES */
193                 "TTP",        /**< TTP */
194
195                 "IGP",        /**< NSFNET-IGP */
196                 "DGP",        /**< dissimilar gateway prot. */
197                 "TCF",        /**< TCF */
198                 "IGRP",       /**< Cisco/GXS IGRP */
199                 "OSPFIGP",    /**< OSPFIGP */
200
201                 "SRPC",       /**< Strite RPC protocol */
202                 "LARP",       /**< Locus Address Resoloution */
203                 "MTP",        /**< Multicast Transport */
204                 "AX25",       /**< AX.25 Frames */
205                 "4IN4",       /**< IP encapsulated in IP */
206
207                 "MICP",       /**< Mobile Int.ing control */
208                 "SCCSP",      /**< Semaphore Comm. security */
209                 "ETHERIP",    /**< Ethernet IP encapsulation */
210                 "ENCAP",      /**< encapsulation header */
211                 "AES",        /**< any private encr. scheme */
212
213                 "GMTP",       /**< GMTP */
214                 "IPCOMP",     /**< payload compression (IPComp) */
215                 "UNASSIGNED",
216                 "UNASSIGNED",
217                 "PIM",        /**< Protocol Independent Mcast */
218         };
219
220         if (ip_proto < sizeof(ip_proto_names) / sizeof(ip_proto_names[0]))
221                 return ip_proto_names[ip_proto];
222         switch (ip_proto) {
223 #ifdef IPPROTO_PGM
224         case IPPROTO_PGM:  /**< PGM */
225                 return "PGM";
226 #endif
227         case IPPROTO_SCTP:  /**< Stream Control Transport Protocol */
228                 return "SCTP";
229 #ifdef IPPROTO_DIVERT
230         case IPPROTO_DIVERT: /**< divert pseudo-protocol */
231                 return "DIVERT";
232 #endif
233         case IPPROTO_RAW: /**< raw IP packet */
234                 return "RAW";
235         default:
236                 break;
237         }
238         return "UNASSIGNED";
239 }
240
241 static void
242 ipv4_addr_to_dot(uint32_t be_ipv4_addr, char *buf)
243 {
244         uint32_t ipv4_addr;
245
246         ipv4_addr = rte_be_to_cpu_32(be_ipv4_addr);
247         sprintf(buf, "%d.%d.%d.%d", (ipv4_addr >> 24) & 0xFF,
248                 (ipv4_addr >> 16) & 0xFF, (ipv4_addr >> 8) & 0xFF,
249                 ipv4_addr & 0xFF);
250 }
251
252 static void
253 ether_addr_dump(const char *what, const struct ether_addr *ea)
254 {
255         char buf[ETHER_ADDR_FMT_SIZE];
256
257         ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, ea);
258         if (what)
259                 printf("%s", what);
260         printf("%s", buf);
261 }
262
263 static void
264 ipv4_addr_dump(const char *what, uint32_t be_ipv4_addr)
265 {
266         char buf[16];
267
268         ipv4_addr_to_dot(be_ipv4_addr, buf);
269         if (what)
270                 printf("%s", what);
271         printf("%s", buf);
272 }
273
274 static uint16_t
275 ipv4_hdr_cksum(struct ipv4_hdr *ip_h)
276 {
277         uint16_t *v16_h;
278         uint32_t ip_cksum;
279
280         /*
281          * Compute the sum of successive 16-bit words of the IPv4 header,
282          * skipping the checksum field of the header.
283          */
284         v16_h = (unaligned_uint16_t *) ip_h;
285         ip_cksum = v16_h[0] + v16_h[1] + v16_h[2] + v16_h[3] +
286                 v16_h[4] + v16_h[6] + v16_h[7] + v16_h[8] + v16_h[9];
287
288         /* reduce 32 bit checksum to 16 bits and complement it */
289         ip_cksum = (ip_cksum & 0xffff) + (ip_cksum >> 16);
290         ip_cksum = (ip_cksum & 0xffff) + (ip_cksum >> 16);
291         ip_cksum = (~ip_cksum) & 0x0000FFFF;
292         return (ip_cksum == 0) ? 0xFFFF : (uint16_t) ip_cksum;
293 }
294
295 #define is_multicast_ipv4_addr(ipv4_addr) \
296         (((rte_be_to_cpu_32((ipv4_addr)) >> 24) & 0x000000FF) == 0xE0)
297
298 /*
299  * Receive a burst of packets, lookup for ICMP echo requets, and, if any,
300  * send back ICMP echo replies.
301  */
302 static void
303 reply_to_icmp_echo_rqsts(struct fwd_stream *fs)
304 {
305         struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
306         struct rte_mbuf *pkt;
307         struct ether_hdr *eth_h;
308         struct vlan_hdr *vlan_h;
309         struct arp_hdr  *arp_h;
310         struct ipv4_hdr *ip_h;
311         struct icmp_hdr *icmp_h;
312         struct ether_addr eth_addr;
313         uint32_t retry;
314         uint32_t ip_addr;
315         uint16_t nb_rx;
316         uint16_t nb_tx;
317         uint16_t nb_replies;
318         uint16_t eth_type;
319         uint16_t vlan_id;
320         uint16_t arp_op;
321         uint16_t arp_pro;
322         uint32_t cksum;
323         uint8_t  i;
324         int l2_len;
325 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
326         uint64_t start_tsc;
327         uint64_t end_tsc;
328         uint64_t core_cycles;
329 #endif
330
331 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
332         start_tsc = rte_rdtsc();
333 #endif
334
335         /*
336          * First, receive a burst of packets.
337          */
338         nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
339                                  nb_pkt_per_burst);
340         if (unlikely(nb_rx == 0))
341                 return;
342
343 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
344         fs->rx_burst_stats.pkt_burst_spread[nb_rx]++;
345 #endif
346         fs->rx_packets += nb_rx;
347         nb_replies = 0;
348         for (i = 0; i < nb_rx; i++) {
349                 if (likely(i < nb_rx - 1))
350                         rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
351                                                        void *));
352                 pkt = pkts_burst[i];
353                 eth_h = rte_pktmbuf_mtod(pkt, struct ether_hdr *);
354                 eth_type = RTE_BE_TO_CPU_16(eth_h->ether_type);
355                 l2_len = sizeof(struct ether_hdr);
356                 if (verbose_level > 0) {
357                         printf("\nPort %d pkt-len=%u nb-segs=%u\n",
358                                fs->rx_port, pkt->pkt_len, pkt->nb_segs);
359                         ether_addr_dump("  ETH:  src=", &eth_h->s_addr);
360                         ether_addr_dump(" dst=", &eth_h->d_addr);
361                 }
362                 if (eth_type == ETHER_TYPE_VLAN) {
363                         vlan_h = (struct vlan_hdr *)
364                                 ((char *)eth_h + sizeof(struct ether_hdr));
365                         l2_len  += sizeof(struct vlan_hdr);
366                         eth_type = rte_be_to_cpu_16(vlan_h->eth_proto);
367                         if (verbose_level > 0) {
368                                 vlan_id = rte_be_to_cpu_16(vlan_h->vlan_tci)
369                                         & 0xFFF;
370                                 printf(" [vlan id=%u]", vlan_id);
371                         }
372                 }
373                 if (verbose_level > 0) {
374                         printf(" type=0x%04x\n", eth_type);
375                 }
376
377                 /* Reply to ARP requests */
378                 if (eth_type == ETHER_TYPE_ARP) {
379                         arp_h = (struct arp_hdr *) ((char *)eth_h + l2_len);
380                         arp_op = RTE_BE_TO_CPU_16(arp_h->arp_op);
381                         arp_pro = RTE_BE_TO_CPU_16(arp_h->arp_pro);
382                         if (verbose_level > 0) {
383                                 printf("  ARP:  hrd=%d proto=0x%04x hln=%d "
384                                        "pln=%d op=%u (%s)\n",
385                                        RTE_BE_TO_CPU_16(arp_h->arp_hrd),
386                                        arp_pro, arp_h->arp_hln,
387                                        arp_h->arp_pln, arp_op,
388                                        arp_op_name(arp_op));
389                         }
390                         if ((RTE_BE_TO_CPU_16(arp_h->arp_hrd) !=
391                              ARP_HRD_ETHER) ||
392                             (arp_pro != ETHER_TYPE_IPv4) ||
393                             (arp_h->arp_hln != 6) ||
394                             (arp_h->arp_pln != 4)
395                             ) {
396                                 rte_pktmbuf_free(pkt);
397                                 if (verbose_level > 0)
398                                         printf("\n");
399                                 continue;
400                         }
401                         if (verbose_level > 0) {
402                                 ether_addr_copy(&arp_h->arp_data.arp_sha, &eth_addr);
403                                 ether_addr_dump("        sha=", &eth_addr);
404                                 ip_addr = arp_h->arp_data.arp_sip;
405                                 ipv4_addr_dump(" sip=", ip_addr);
406                                 printf("\n");
407                                 ether_addr_copy(&arp_h->arp_data.arp_tha, &eth_addr);
408                                 ether_addr_dump("        tha=", &eth_addr);
409                                 ip_addr = arp_h->arp_data.arp_tip;
410                                 ipv4_addr_dump(" tip=", ip_addr);
411                                 printf("\n");
412                         }
413                         if (arp_op != ARP_OP_REQUEST) {
414                                 rte_pktmbuf_free(pkt);
415                                 continue;
416                         }
417
418                         /*
419                          * Build ARP reply.
420                          */
421
422                         /* Use source MAC address as destination MAC address. */
423                         ether_addr_copy(&eth_h->s_addr, &eth_h->d_addr);
424                         /* Set source MAC address with MAC address of TX port */
425                         ether_addr_copy(&ports[fs->tx_port].eth_addr,
426                                         &eth_h->s_addr);
427
428                         arp_h->arp_op = rte_cpu_to_be_16(ARP_OP_REPLY);
429                         ether_addr_copy(&arp_h->arp_data.arp_tha, &eth_addr);
430                         ether_addr_copy(&arp_h->arp_data.arp_sha, &arp_h->arp_data.arp_tha);
431                         ether_addr_copy(&eth_h->s_addr, &arp_h->arp_data.arp_sha);
432
433                         /* Swap IP addresses in ARP payload */
434                         ip_addr = arp_h->arp_data.arp_sip;
435                         arp_h->arp_data.arp_sip = arp_h->arp_data.arp_tip;
436                         arp_h->arp_data.arp_tip = ip_addr;
437                         pkts_burst[nb_replies++] = pkt;
438                         continue;
439                 }
440
441                 if (eth_type != ETHER_TYPE_IPv4) {
442                         rte_pktmbuf_free(pkt);
443                         continue;
444                 }
445                 ip_h = (struct ipv4_hdr *) ((char *)eth_h + l2_len);
446                 if (verbose_level > 0) {
447                         ipv4_addr_dump("  IPV4: src=", ip_h->src_addr);
448                         ipv4_addr_dump(" dst=", ip_h->dst_addr);
449                         printf(" proto=%d (%s)\n",
450                                ip_h->next_proto_id,
451                                ip_proto_name(ip_h->next_proto_id));
452                 }
453
454                 /*
455                  * Check if packet is a ICMP echo request.
456                  */
457                 icmp_h = (struct icmp_hdr *) ((char *)ip_h +
458                                               sizeof(struct ipv4_hdr));
459                 if (! ((ip_h->next_proto_id == IPPROTO_ICMP) &&
460                        (icmp_h->icmp_type == IP_ICMP_ECHO_REQUEST) &&
461                        (icmp_h->icmp_code == 0))) {
462                         rte_pktmbuf_free(pkt);
463                         continue;
464                 }
465
466                 if (verbose_level > 0)
467                         printf("  ICMP: echo request seq id=%d\n",
468                                rte_be_to_cpu_16(icmp_h->icmp_seq_nb));
469
470                 /*
471                  * Prepare ICMP echo reply to be sent back.
472                  * - switch ethernet source and destinations addresses,
473                  * - use the request IP source address as the reply IP
474                  *    destination address,
475                  * - if the request IP destination address is a multicast
476                  *   address:
477                  *     - choose a reply IP source address different from the
478                  *       request IP source address,
479                  *     - re-compute the IP header checksum.
480                  *   Otherwise:
481                  *     - switch the request IP source and destination
482                  *       addresses in the reply IP header,
483                  *     - keep the IP header checksum unchanged.
484                  * - set IP_ICMP_ECHO_REPLY in ICMP header.
485                  * ICMP checksum is computed by assuming it is valid in the
486                  * echo request and not verified.
487                  */
488                 ether_addr_copy(&eth_h->s_addr, &eth_addr);
489                 ether_addr_copy(&eth_h->d_addr, &eth_h->s_addr);
490                 ether_addr_copy(&eth_addr, &eth_h->d_addr);
491                 ip_addr = ip_h->src_addr;
492                 if (is_multicast_ipv4_addr(ip_h->dst_addr)) {
493                         uint32_t ip_src;
494
495                         ip_src = rte_be_to_cpu_32(ip_addr);
496                         if ((ip_src & 0x00000003) == 1)
497                                 ip_src = (ip_src & 0xFFFFFFFC) | 0x00000002;
498                         else
499                                 ip_src = (ip_src & 0xFFFFFFFC) | 0x00000001;
500                         ip_h->src_addr = rte_cpu_to_be_32(ip_src);
501                         ip_h->dst_addr = ip_addr;
502                         ip_h->hdr_checksum = ipv4_hdr_cksum(ip_h);
503                 } else {
504                         ip_h->src_addr = ip_h->dst_addr;
505                         ip_h->dst_addr = ip_addr;
506                 }
507                 icmp_h->icmp_type = IP_ICMP_ECHO_REPLY;
508                 cksum = ~icmp_h->icmp_cksum & 0xffff;
509                 cksum += ~htons(IP_ICMP_ECHO_REQUEST << 8) & 0xffff;
510                 cksum += htons(IP_ICMP_ECHO_REPLY << 8);
511                 cksum = (cksum & 0xffff) + (cksum >> 16);
512                 cksum = (cksum & 0xffff) + (cksum >> 16);
513                 icmp_h->icmp_cksum = ~cksum;
514                 pkts_burst[nb_replies++] = pkt;
515         }
516
517         /* Send back ICMP echo replies, if any. */
518         if (nb_replies > 0) {
519                 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst,
520                                          nb_replies);
521                 /*
522                  * Retry if necessary
523                  */
524                 if (unlikely(nb_tx < nb_replies) && fs->retry_enabled) {
525                         retry = 0;
526                         while (nb_tx < nb_replies &&
527                                         retry++ < burst_tx_retry_num) {
528                                 rte_delay_us(burst_tx_delay_time);
529                                 nb_tx += rte_eth_tx_burst(fs->tx_port,
530                                                 fs->tx_queue,
531                                                 &pkts_burst[nb_tx],
532                                                 nb_replies - nb_tx);
533                         }
534                 }
535                 fs->tx_packets += nb_tx;
536 #ifdef RTE_TEST_PMD_RECORD_BURST_STATS
537                 fs->tx_burst_stats.pkt_burst_spread[nb_tx]++;
538 #endif
539                 if (unlikely(nb_tx < nb_replies)) {
540                         fs->fwd_dropped += (nb_replies - nb_tx);
541                         do {
542                                 rte_pktmbuf_free(pkts_burst[nb_tx]);
543                         } while (++nb_tx < nb_replies);
544                 }
545         }
546
547 #ifdef RTE_TEST_PMD_RECORD_CORE_CYCLES
548         end_tsc = rte_rdtsc();
549         core_cycles = (end_tsc - start_tsc);
550         fs->core_cycles = (uint64_t) (fs->core_cycles + core_cycles);
551 #endif
552 }
553
554 struct fwd_engine icmp_echo_engine = {
555         .fwd_mode_name  = "icmpecho",
556         .port_fwd_begin = NULL,
557         .port_fwd_end   = NULL,
558         .packet_fwd     = reply_to_icmp_echo_rqsts,
559 };