Set +x on debian/rules
[deb_dpdk.git] / debian / patches / dpdk-dev-v4-i40e-implement-vector-PMD-for-altivec.patch
1 Description: i40e: implement vector PMD for altivec
2
3     From: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
4
5     This patch enables i40e driver in powerpc along with its altivec
6     intrinsic support.
7
8     Changes:
9     v4 - docs and config update.
10     v3 - minor corrections for coding style standard.
11     v2 - minor corrections for gcc strict aliasing and coding style standard.
12
13     Signed-off-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
14
15 Note: can be dropped >=DPDK 17.05
16
17 Forwarded: yes, http://dpdk.org/dev/patchwork/patch/20680/
18 Original-Author: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
19 Bug-Ubuntu: https://bugs.launchpad.net/ubuntu/+source/dpdk/+bug/1670686
20 Author: Christian Ehrhardt <christian.ehrhardt@canonical.com>
21 Last-Update: 2017-03-07
22
23 --- a/MAINTAINERS
24 +++ b/MAINTAINERS
25 @@ -166,6 +166,7 @@
26  M: Chao Zhu <chaozhu@linux.vnet.ibm.com>
27  F: lib/librte_eal/common/arch/ppc_64/
28  F: lib/librte_eal/common/include/arch/ppc_64/
29 +F: drivers/net/i40e/i40e_rxtx_vec_altivec.c
30  
31  Intel x86
32  M: Bruce Richardson <bruce.richardson@intel.com>
33 --- a/config/defconfig_ppc_64-power8-linuxapp-gcc
34 +++ b/config/defconfig_ppc_64-power8-linuxapp-gcc
35 @@ -49,7 +49,6 @@
36  # Note: Initially, all of the PMD drivers compilation are turned off on Power
37  # Will turn on them only after the successful testing on Power
38  CONFIG_RTE_LIBRTE_IXGBE_PMD=n
39 -CONFIG_RTE_LIBRTE_I40E_PMD=n
40  CONFIG_RTE_LIBRTE_VIRTIO_PMD=y
41  CONFIG_RTE_LIBRTE_VMXNET3_PMD=n
42  CONFIG_RTE_LIBRTE_ENIC_PMD=n
43 --- a/doc/guides/nics/features/i40e.ini
44 +++ b/doc/guides/nics/features/i40e.ini
45 @@ -46,3 +46,4 @@
46  x86-32               = Y
47  x86-64               = Y
48  ARMv8                = Y
49 +Power8               = Y
50 --- a/doc/guides/nics/features/i40e_vec.ini
51 +++ b/doc/guides/nics/features/i40e_vec.ini
52 @@ -38,3 +38,4 @@
53  x86-32               = Y
54  x86-64               = Y
55  ARMv8                = Y
56 +Power8               = Y
57 --- a/drivers/net/i40e/Makefile
58 +++ b/drivers/net/i40e/Makefile
59 @@ -99,6 +99,8 @@
60  SRCS-$(CONFIG_RTE_LIBRTE_I40E_PMD) += i40e_rxtx.c
61  ifeq ($(CONFIG_RTE_ARCH_ARM64),y)
62  SRCS-$(CONFIG_RTE_LIBRTE_I40E_INC_VECTOR) += i40e_rxtx_vec_neon.c
63 +else ifeq ($(CONFIG_RTE_ARCH_PPC_64),y)
64 +SRCS-$(CONFIG_RTE_LIBRTE_I40E_INC_VECTOR) += i40e_rxtx_vec_altivec.c
65  else
66  SRCS-$(CONFIG_RTE_LIBRTE_I40E_INC_VECTOR) += i40e_rxtx_vec_sse.c
67  endif
68 --- /dev/null
69 +++ b/drivers/net/i40e/i40e_rxtx_vec_altivec.c
70 @@ -0,0 +1,654 @@
71 +/*-
72 + *   BSD LICENSE
73 + *
74 + *   Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
75 + *   Copyright(c) 2017 IBM Corporation.
76 + *   All rights reserved.
77 + *
78 + *   Redistribution and use in source and binary forms, with or without
79 + *   modification, are permitted provided that the following conditions
80 + *   are met:
81 + *
82 + *     * Redistributions of source code must retain the above copyright
83 + *       notice, this list of conditions and the following disclaimer.
84 + *     * Redistributions in binary form must reproduce the above copyright
85 + *       notice, this list of conditions and the following disclaimer in
86 + *       the documentation and/or other materials provided with the
87 + *       distribution.
88 + *     * Neither the name of Intel Corporation nor the names of its
89 + *       contributors may be used to endorse or promote products derived
90 + *       from this software without specific prior written permission.
91 + *
92 + *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
93 + *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
94 + *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
95 + *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
96 + *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 + *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
98 + *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
99 + *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
100 + *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
101 + *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
102 + *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
103 + */
104 +
105 +#include <stdint.h>
106 +#include <rte_ethdev.h>
107 +#include <rte_malloc.h>
108 +
109 +#include "base/i40e_prototype.h"
110 +#include "base/i40e_type.h"
111 +#include "i40e_ethdev.h"
112 +#include "i40e_rxtx.h"
113 +#include "i40e_rxtx_vec_common.h"
114 +
115 +#include <altivec.h>
116 +
117 +#pragma GCC diagnostic ignored "-Wcast-qual"
118 +
119 +static inline void
120 +i40e_rxq_rearm(struct i40e_rx_queue *rxq)
121 +{
122 +       int i;
123 +       uint16_t rx_id;
124 +       volatile union i40e_rx_desc *rxdp;
125 +
126 +       struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
127 +       struct rte_mbuf *mb0, *mb1;
128 +
129 +       vector unsigned long hdr_room = (vector unsigned long){
130 +                                               RTE_PKTMBUF_HEADROOM,
131 +                                               RTE_PKTMBUF_HEADROOM};
132 +       vector unsigned long dma_addr0, dma_addr1;
133 +
134 +       rxdp = rxq->rx_ring + rxq->rxrearm_start;
135 +
136 +       /* Pull 'n' more MBUFs into the software ring */
137 +       if (rte_mempool_get_bulk(rxq->mp,
138 +                                (void *)rxep,
139 +                                RTE_I40E_RXQ_REARM_THRESH) < 0) {
140 +               if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
141 +                   rxq->nb_rx_desc) {
142 +                       dma_addr0 = (vector unsigned long){};
143 +                       for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
144 +                               rxep[i].mbuf = &rxq->fake_mbuf;
145 +                               vec_st(dma_addr0, 0,
146 +                                      (vector unsigned long *)&rxdp[i].read);
147 +                       }
148 +               }
149 +               rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
150 +                       RTE_I40E_RXQ_REARM_THRESH;
151 +               return;
152 +       }
153 +
154 +       /* Initialize the mbufs in vector, process 2 mbufs in one loop */
155 +       for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
156 +               vector unsigned long vaddr0, vaddr1;
157 +               uintptr_t p0, p1;
158 +
159 +               mb0 = rxep[0].mbuf;
160 +               mb1 = rxep[1].mbuf;
161 +
162 +                /* Flush mbuf with pkt template.
163 +                 * Data to be rearmed is 6 bytes long.
164 +                 * Though, RX will overwrite ol_flags that are coming next
165 +                 * anyway. So overwrite whole 8 bytes with one load:
166 +                 * 6 bytes of rearm_data plus first 2 bytes of ol_flags.
167 +                 */
168 +               p0 = (uintptr_t)&mb0->rearm_data;
169 +               *(uint64_t *)p0 = rxq->mbuf_initializer;
170 +               p1 = (uintptr_t)&mb1->rearm_data;
171 +               *(uint64_t *)p1 = rxq->mbuf_initializer;
172 +
173 +               /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
174 +               vaddr0 = vec_ld(0, (vector unsigned long *)&mb0->buf_addr);
175 +               vaddr1 = vec_ld(0, (vector unsigned long *)&mb1->buf_addr);
176 +
177 +               /* convert pa to dma_addr hdr/data */
178 +               dma_addr0 = vec_mergel(vaddr0, vaddr0);
179 +               dma_addr1 = vec_mergel(vaddr1, vaddr1);
180 +
181 +               /* add headroom to pa values */
182 +               dma_addr0 = vec_add(dma_addr0, hdr_room);
183 +               dma_addr1 = vec_add(dma_addr1, hdr_room);
184 +
185 +               /* flush desc with pa dma_addr */
186 +               vec_st(dma_addr0, 0, (vector unsigned long *)&rxdp++->read);
187 +               vec_st(dma_addr1, 0, (vector unsigned long *)&rxdp++->read);
188 +       }
189 +
190 +       rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
191 +       if (rxq->rxrearm_start >= rxq->nb_rx_desc)
192 +               rxq->rxrearm_start = 0;
193 +
194 +       rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
195 +
196 +       rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
197 +                            (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
198 +
199 +       /* Update the tail pointer on the NIC */
200 +       I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
201 +}
202 +
203 +/* Handling the offload flags (olflags) field takes computation
204 + * time when receiving packets. Therefore we provide a flag to disable
205 + * the processing of the olflags field when they are not needed. This
206 + * gives improved performance, at the cost of losing the offload info
207 + * in the received packet
208 + */
209 +#ifdef RTE_LIBRTE_I40E_RX_OLFLAGS_ENABLE
210 +
211 +static inline void
212 +desc_to_olflags_v(vector unsigned long descs[4], struct rte_mbuf **rx_pkts)
213 +{
214 +       vector unsigned int vlan0, vlan1, rss, l3_l4e;
215 +
216 +       /* mask everything except RSS, flow director and VLAN flags
217 +        * bit2 is for VLAN tag, bit11 for flow director indication
218 +        * bit13:12 for RSS indication.
219 +        */
220 +       const vector unsigned int rss_vlan_msk = (vector unsigned int){
221 +                       (int32_t)0x1c03804, (int32_t)0x1c03804,
222 +                       (int32_t)0x1c03804, (int32_t)0x1c03804};
223 +
224 +       /* map rss and vlan type to rss hash and vlan flag */
225 +       const vector unsigned char vlan_flags = (vector unsigned char){
226 +                       0, 0, 0, 0,
227 +                       PKT_RX_VLAN_PKT | PKT_RX_VLAN_STRIPPED, 0, 0, 0,
228 +                       0, 0, 0, 0,
229 +                       0, 0, 0, 0};
230 +
231 +       const vector unsigned char rss_flags = (vector unsigned char){
232 +                       0, PKT_RX_FDIR, 0, 0,
233 +                       0, 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH | PKT_RX_FDIR,
234 +                       0, 0, 0, 0,
235 +                       0, 0, 0, 0};
236 +
237 +       const vector unsigned char l3_l4e_flags = (vector unsigned char){
238 +                       0,
239 +                       PKT_RX_IP_CKSUM_BAD,
240 +                       PKT_RX_L4_CKSUM_BAD,
241 +                       PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD,
242 +                       PKT_RX_EIP_CKSUM_BAD,
243 +                       PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD,
244 +                       PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD,
245 +                       PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
246 +                                            | PKT_RX_IP_CKSUM_BAD,
247 +                       0, 0, 0, 0, 0, 0, 0, 0};
248 +
249 +       vlan0 = (vector unsigned int)vec_mergel(descs[0], descs[1]);
250 +       vlan1 = (vector unsigned int)vec_mergel(descs[2], descs[3]);
251 +       vlan0 = (vector unsigned int)vec_mergeh(vlan0, vlan1);
252 +
253 +       vlan1 = vec_and(vlan0, rss_vlan_msk);
254 +       vlan0 = (vector unsigned int)vec_perm(vlan_flags,
255 +                                       (vector unsigned char){},
256 +                                       *(vector unsigned char *)&vlan1);
257 +
258 +       rss = vec_sr(vlan1, (vector unsigned int){11, 11, 11, 11});
259 +       rss = (vector unsigned int)vec_perm(rss_flags, (vector unsigned char){},
260 +                                       *(vector unsigned char *)&rss);
261 +
262 +       l3_l4e = vec_sr(vlan1, (vector unsigned int){22, 22, 22, 22});
263 +       l3_l4e = (vector unsigned int)vec_perm(l3_l4e_flags,
264 +                                       (vector unsigned char){},
265 +                                       *(vector unsigned char *)&l3_l4e);
266 +
267 +       vlan0 = vec_or(vlan0, rss);
268 +       vlan0 = vec_or(vlan0, l3_l4e);
269 +
270 +       rx_pkts[0]->ol_flags = (uint64_t)vlan0[2];
271 +       rx_pkts[1]->ol_flags = (uint64_t)vlan0[3];
272 +       rx_pkts[2]->ol_flags = (uint64_t)vlan0[0];
273 +       rx_pkts[3]->ol_flags = (uint64_t)vlan0[1];
274 +}
275 +#else
276 +#define desc_to_olflags_v(desc, rx_pkts) do {} while (0)
277 +#endif
278 +
279 +#define PKTLEN_SHIFT     10
280 +
281 +static inline void
282 +desc_to_ptype_v(vector unsigned long descs[4], struct rte_mbuf **rx_pkts)
283 +{
284 +       vector unsigned long ptype0 = vec_mergel(descs[0], descs[1]);
285 +       vector unsigned long ptype1 = vec_mergel(descs[2], descs[3]);
286 +
287 +       ptype0 = vec_sr(ptype0, (vector unsigned long){30, 30});
288 +       ptype1 = vec_sr(ptype1, (vector unsigned long){30, 30});
289 +
290 +       rx_pkts[0]->packet_type = i40e_rxd_pkt_type_mapping(
291 +                                       (*(vector unsigned char *)&ptype0)[0]);
292 +       rx_pkts[1]->packet_type = i40e_rxd_pkt_type_mapping(
293 +                                       (*(vector unsigned char *)&ptype0)[8]);
294 +       rx_pkts[2]->packet_type = i40e_rxd_pkt_type_mapping(
295 +                                       (*(vector unsigned char *)&ptype1)[0]);
296 +       rx_pkts[3]->packet_type = i40e_rxd_pkt_type_mapping(
297 +                                       (*(vector unsigned char *)&ptype1)[8]);
298 +}
299 +
300 + /* Notice:
301 +  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
302 +  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
303 +  *   numbers of DD bits
304 +  */
305 +static inline uint16_t
306 +_recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
307 +                  uint16_t nb_pkts, uint8_t *split_packet)
308 +{
309 +       volatile union i40e_rx_desc *rxdp;
310 +       struct i40e_rx_entry *sw_ring;
311 +       uint16_t nb_pkts_recd;
312 +       int pos;
313 +       uint64_t var;
314 +       vector unsigned char shuf_msk;
315 +
316 +       vector unsigned short crc_adjust = (vector unsigned short){
317 +               0, 0,         /* ignore pkt_type field */
318 +               rxq->crc_len, /* sub crc on pkt_len */
319 +               0,            /* ignore high-16bits of pkt_len */
320 +               rxq->crc_len, /* sub crc on data_len */
321 +               0, 0, 0       /* ignore non-length fields */
322 +               };
323 +       vector unsigned long dd_check, eop_check;
324 +
325 +       /* nb_pkts shall be less equal than RTE_I40E_MAX_RX_BURST */
326 +       nb_pkts = RTE_MIN(nb_pkts, RTE_I40E_MAX_RX_BURST);
327 +
328 +       /* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
329 +       nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
330 +
331 +       /* Just the act of getting into the function from the application is
332 +        * going to cost about 7 cycles
333 +        */
334 +       rxdp = rxq->rx_ring + rxq->rx_tail;
335 +
336 +       rte_prefetch0(rxdp);
337 +
338 +       /* See if we need to rearm the RX queue - gives the prefetch a bit
339 +        * of time to act
340 +        */
341 +       if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
342 +               i40e_rxq_rearm(rxq);
343 +
344 +       /* Before we start moving massive data around, check to see if
345 +        * there is actually a packet available
346 +        */
347 +       if (!(rxdp->wb.qword1.status_error_len &
348 +                       rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
349 +               return 0;
350 +
351 +       /* 4 packets DD mask */
352 +       dd_check = (vector unsigned long){0x0000000100000001ULL,
353 +                                         0x0000000100000001ULL};
354 +
355 +       /* 4 packets EOP mask */
356 +       eop_check = (vector unsigned long){0x0000000200000002ULL,
357 +                                          0x0000000200000002ULL};
358 +
359 +       /* mask to shuffle from desc. to mbuf */
360 +       shuf_msk = (vector unsigned char){
361 +               0xFF, 0xFF,   /* pkt_type set as unknown */
362 +               0xFF, 0xFF,   /* pkt_type set as unknown */
363 +               14, 15,       /* octet 15~14, low 16 bits pkt_len */
364 +               0xFF, 0xFF,   /* skip high 16 bits pkt_len, zero out */
365 +               14, 15,       /* octet 15~14, 16 bits data_len */
366 +               2, 3,         /* octet 2~3, low 16 bits vlan_macip */
367 +               4, 5, 6, 7    /* octet 4~7, 32bits rss */
368 +               };
369 +
370 +       /* Cache is empty -> need to scan the buffer rings, but first move
371 +        * the next 'n' mbufs into the cache
372 +        */
373 +       sw_ring = &rxq->sw_ring[rxq->rx_tail];
374 +
375 +       /* A. load 4 packet in one loop
376 +        * [A*. mask out 4 unused dirty field in desc]
377 +        * B. copy 4 mbuf point from swring to rx_pkts
378 +        * C. calc the number of DD bits among the 4 packets
379 +        * [C*. extract the end-of-packet bit, if requested]
380 +        * D. fill info. from desc to mbuf
381 +        */
382 +
383 +       for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
384 +                       pos += RTE_I40E_DESCS_PER_LOOP,
385 +                       rxdp += RTE_I40E_DESCS_PER_LOOP) {
386 +               vector unsigned long descs[RTE_I40E_DESCS_PER_LOOP];
387 +               vector unsigned char pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
388 +               vector unsigned short staterr, sterr_tmp1, sterr_tmp2;
389 +               vector unsigned long mbp1, mbp2; /* two mbuf pointer
390 +                                                 * in one XMM reg.
391 +                                                 */
392 +
393 +               /* B.1 load 1 mbuf point */
394 +               mbp1 = *(vector unsigned long *)&sw_ring[pos];
395 +               /* Read desc statuses backwards to avoid race condition */
396 +               /* A.1 load 4 pkts desc */
397 +               descs[3] = *(vector unsigned long *)(rxdp + 3);
398 +               rte_compiler_barrier();
399 +
400 +               /* B.2 copy 2 mbuf point into rx_pkts  */
401 +               *(vector unsigned long *)&rx_pkts[pos] = mbp1;
402 +
403 +               /* B.1 load 1 mbuf point */
404 +               mbp2 = *(vector unsigned long *)&sw_ring[pos + 2];
405 +
406 +               descs[2] = *(vector unsigned long *)(rxdp + 2);
407 +               rte_compiler_barrier();
408 +               /* B.1 load 2 mbuf point */
409 +               descs[1] = *(vector unsigned long *)(rxdp + 1);
410 +               rte_compiler_barrier();
411 +               descs[0] = *(vector unsigned long *)(rxdp);
412 +
413 +               /* B.2 copy 2 mbuf point into rx_pkts  */
414 +               *(vector unsigned long *)&rx_pkts[pos + 2] =  mbp2;
415 +
416 +               if (split_packet) {
417 +                       rte_mbuf_prefetch_part2(rx_pkts[pos]);
418 +                       rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
419 +                       rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
420 +                       rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
421 +               }
422 +
423 +               /* avoid compiler reorder optimization */
424 +               rte_compiler_barrier();
425 +
426 +               /* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
427 +               const vector unsigned int len3 = vec_sl(
428 +                       vec_ld(0, (vector unsigned int *)&descs[3]),
429 +                       (vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
430 +
431 +               const vector unsigned int len2 = vec_sl(
432 +                       vec_ld(0, (vector unsigned int *)&descs[2]),
433 +                       (vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
434 +
435 +               /* merge the now-aligned packet length fields back in */
436 +               descs[3] = (vector unsigned long)len3;
437 +               descs[2] = (vector unsigned long)len2;
438 +
439 +               /* D.1 pkt 3,4 convert format from desc to pktmbuf */
440 +               pkt_mb4 = vec_perm((vector unsigned char)descs[3],
441 +                                 (vector unsigned char){}, shuf_msk);
442 +               pkt_mb3 = vec_perm((vector unsigned char)descs[2],
443 +                                 (vector unsigned char){}, shuf_msk);
444 +
445 +               /* C.1 4=>2 filter staterr info only */
446 +               sterr_tmp2 = vec_mergel((vector unsigned short)descs[3],
447 +                                       (vector unsigned short)descs[2]);
448 +               /* C.1 4=>2 filter staterr info only */
449 +               sterr_tmp1 = vec_mergel((vector unsigned short)descs[1],
450 +                                       (vector unsigned short)descs[0]);
451 +               /* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
452 +               pkt_mb4 = (vector unsigned char)vec_sub(
453 +                               (vector unsigned short)pkt_mb4, crc_adjust);
454 +               pkt_mb3 = (vector unsigned char)vec_sub(
455 +                               (vector unsigned short)pkt_mb3, crc_adjust);
456 +
457 +               /* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
458 +               const vector unsigned int len1 = vec_sl(
459 +                       vec_ld(0, (vector unsigned int *)&descs[1]),
460 +                       (vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
461 +               const vector unsigned int len0 = vec_sl(
462 +                       vec_ld(0, (vector unsigned int *)&descs[0]),
463 +                       (vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
464 +
465 +               /* merge the now-aligned packet length fields back in */
466 +               descs[1] = (vector unsigned long)len1;
467 +               descs[0] = (vector unsigned long)len0;
468 +
469 +               /* D.1 pkt 1,2 convert format from desc to pktmbuf */
470 +               pkt_mb2 = vec_perm((vector unsigned char)descs[1],
471 +                                  (vector unsigned char){}, shuf_msk);
472 +               pkt_mb1 = vec_perm((vector unsigned char)descs[0],
473 +                                  (vector unsigned char){}, shuf_msk);
474 +
475 +               /* C.2 get 4 pkts staterr value  */
476 +               staterr = (vector unsigned short)vec_mergeh(
477 +                               sterr_tmp1, sterr_tmp2);
478 +
479 +               /* D.3 copy final 3,4 data to rx_pkts */
480 +               vec_st(pkt_mb4, 0,
481 +                (vector unsigned char *)&rx_pkts[pos + 3]
482 +                       ->rx_descriptor_fields1
483 +               );
484 +               vec_st(pkt_mb3, 0,
485 +                (vector unsigned char *)&rx_pkts[pos + 2]
486 +                       ->rx_descriptor_fields1
487 +               );
488 +
489 +               /* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
490 +               pkt_mb2 = (vector unsigned char)vec_sub(
491 +                               (vector unsigned short)pkt_mb2, crc_adjust);
492 +               pkt_mb1 = (vector unsigned char)vec_sub(
493 +                               (vector unsigned short)pkt_mb1, crc_adjust);
494 +
495 +               /* C* extract and record EOP bit */
496 +               if (split_packet) {
497 +                       vector unsigned char eop_shuf_mask =
498 +                               (vector unsigned char){
499 +                                       0xFF, 0xFF, 0xFF, 0xFF,
500 +                                       0xFF, 0xFF, 0xFF, 0xFF,
501 +                                       0xFF, 0xFF, 0xFF, 0xFF,
502 +                                       0x04, 0x0C, 0x00, 0x08
503 +                               };
504 +
505 +                       /* and with mask to extract bits, flipping 1-0 */
506 +                       vector unsigned char eop_bits = vec_and(
507 +                               (vector unsigned char)vec_nor(staterr, staterr),
508 +                               (vector unsigned char)eop_check);
509 +                       /* the staterr values are not in order, as the count
510 +                        * count of dd bits doesn't care. However, for end of
511 +                        * packet tracking, we do care, so shuffle. This also
512 +                        * compresses the 32-bit values to 8-bit
513 +                        */
514 +                       eop_bits = vec_perm(eop_bits, (vector unsigned char){},
515 +                                           eop_shuf_mask);
516 +                       /* store the resulting 32-bit value */
517 +                       *split_packet = (vec_ld(0,
518 +                                        (vector unsigned int *)&eop_bits))[0];
519 +                       split_packet += RTE_I40E_DESCS_PER_LOOP;
520 +
521 +                       /* zero-out next pointers */
522 +                       rx_pkts[pos]->next = NULL;
523 +                       rx_pkts[pos + 1]->next = NULL;
524 +                       rx_pkts[pos + 2]->next = NULL;
525 +                       rx_pkts[pos + 3]->next = NULL;
526 +               }
527 +
528 +               /* C.3 calc available number of desc */
529 +               staterr = vec_and(staterr, (vector unsigned short)dd_check);
530 +
531 +               /* D.3 copy final 1,2 data to rx_pkts */
532 +               vec_st(pkt_mb2, 0,
533 +                (vector unsigned char *)&rx_pkts[pos + 1]
534 +                       ->rx_descriptor_fields1
535 +               );
536 +               vec_st(pkt_mb1, 0,
537 +                (vector unsigned char *)&rx_pkts[pos]->rx_descriptor_fields1
538 +               );
539 +               desc_to_ptype_v(descs, &rx_pkts[pos]);
540 +               desc_to_olflags_v(descs, &rx_pkts[pos]);
541 +
542 +               /* C.4 calc avaialbe number of desc */
543 +               var = __builtin_popcountll((vec_ld(0,
544 +                       (vector unsigned long *)&staterr)[0]));
545 +               nb_pkts_recd += var;
546 +               if (likely(var != RTE_I40E_DESCS_PER_LOOP))
547 +                       break;
548 +       }
549 +
550 +       /* Update our internal tail pointer */
551 +       rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
552 +       rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
553 +       rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
554 +
555 +       return nb_pkts_recd;
556 +}
557 +
558 + /* Notice:
559 +  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
560 +  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
561 +  *   numbers of DD bits
562 +  */
563 +uint16_t
564 +i40e_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
565 +                  uint16_t nb_pkts)
566 +{
567 +       return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
568 +}
569 +
570 + /* vPMD receive routine that reassembles scattered packets
571 +  * Notice:
572 +  * - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
573 +  * - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
574 +  *   numbers of DD bits
575 +  */
576 +uint16_t
577 +i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
578 +                            uint16_t nb_pkts)
579 +{
580 +       struct i40e_rx_queue *rxq = rx_queue;
581 +       uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
582 +
583 +       /* get some new buffers */
584 +       uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
585 +                       split_flags);
586 +       if (nb_bufs == 0)
587 +               return 0;
588 +
589 +       /* happy day case, full burst + no packets to be joined */
590 +       const uint64_t *split_fl64 = (uint64_t *)split_flags;
591 +
592 +       if (rxq->pkt_first_seg == NULL &&
593 +           split_fl64[0] == 0 && split_fl64[1] == 0 &&
594 +           split_fl64[2] == 0 && split_fl64[3] == 0)
595 +               return nb_bufs;
596 +
597 +       /* reassemble any packets that need reassembly*/
598 +       unsigned int i = 0;
599 +
600 +       if (!rxq->pkt_first_seg) {
601 +               /* find the first split flag, and only reassemble then*/
602 +               while (i < nb_bufs && !split_flags[i])
603 +                       i++;
604 +               if (i == nb_bufs)
605 +                       return nb_bufs;
606 +       }
607 +       return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
608 +               &split_flags[i]);
609 +}
610 +
611 +static inline void
612 +vtx1(volatile struct i40e_tx_desc *txdp,
613 +       struct rte_mbuf *pkt, uint64_t flags)
614 +{
615 +       uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
616 +               ((uint64_t)flags  << I40E_TXD_QW1_CMD_SHIFT) |
617 +               ((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
618 +
619 +       vector unsigned long descriptor = (vector unsigned long){
620 +               pkt->buf_physaddr + pkt->data_off, high_qw};
621 +       *(vector unsigned long *)txdp = descriptor;
622 +}
623 +
624 +static inline void
625 +vtx(volatile struct i40e_tx_desc *txdp,
626 +       struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
627 +{
628 +       int i;
629 +
630 +       for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
631 +               vtx1(txdp, *pkt, flags);
632 +}
633 +
634 +uint16_t
635 +i40e_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
636 +                  uint16_t nb_pkts)
637 +{
638 +       struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
639 +       volatile struct i40e_tx_desc *txdp;
640 +       struct i40e_tx_entry *txep;
641 +       uint16_t n, nb_commit, tx_id;
642 +       uint64_t flags = I40E_TD_CMD;
643 +       uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
644 +       int i;
645 +
646 +       /* cross rx_thresh boundary is not allowed */
647 +       nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
648 +
649 +       if (txq->nb_tx_free < txq->tx_free_thresh)
650 +               i40e_tx_free_bufs(txq);
651 +
652 +       nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
653 +       nb_commit = nb_pkts;
654 +       if (unlikely(nb_pkts == 0))
655 +               return 0;
656 +
657 +       tx_id = txq->tx_tail;
658 +       txdp = &txq->tx_ring[tx_id];
659 +       txep = &txq->sw_ring[tx_id];
660 +
661 +       txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
662 +
663 +       n = (uint16_t)(txq->nb_tx_desc - tx_id);
664 +       if (nb_commit >= n) {
665 +               tx_backlog_entry(txep, tx_pkts, n);
666 +
667 +               for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
668 +                       vtx1(txdp, *tx_pkts, flags);
669 +
670 +               vtx1(txdp, *tx_pkts++, rs);
671 +
672 +               nb_commit = (uint16_t)(nb_commit - n);
673 +
674 +               tx_id = 0;
675 +               txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
676 +
677 +               /* avoid reach the end of ring */
678 +               txdp = &txq->tx_ring[tx_id];
679 +               txep = &txq->sw_ring[tx_id];
680 +       }
681 +
682 +       tx_backlog_entry(txep, tx_pkts, nb_commit);
683 +
684 +       vtx(txdp, tx_pkts, nb_commit, flags);
685 +
686 +       tx_id = (uint16_t)(tx_id + nb_commit);
687 +       if (tx_id > txq->tx_next_rs) {
688 +               txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
689 +                       rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
690 +                                               I40E_TXD_QW1_CMD_SHIFT);
691 +               txq->tx_next_rs =
692 +                       (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
693 +       }
694 +
695 +       txq->tx_tail = tx_id;
696 +
697 +       I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
698 +
699 +       return nb_pkts;
700 +}
701 +
702 +void __attribute__((cold))
703 +i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
704 +{
705 +       _i40e_rx_queue_release_mbufs_vec(rxq);
706 +}
707 +
708 +int __attribute__((cold))
709 +i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
710 +{
711 +       return i40e_rxq_vec_setup_default(rxq);
712 +}
713 +
714 +int __attribute__((cold))
715 +i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused * txq)
716 +{
717 +       return 0;
718 +}
719 +
720 +int __attribute__((cold))
721 +i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
722 +{
723 +       return i40e_rx_vec_dev_conf_condition_check_default(dev);
724 +}