New upstream version 18.05
[deb_dpdk.git] / doc / guides / prog_guide / cryptodev_lib.rst
1 ..  SPDX-License-Identifier: BSD-3-Clause
2     Copyright(c) 2016-2017 Intel Corporation.
3
4 Cryptography Device Library
5 ===========================
6
7 The cryptodev library provides a Crypto device framework for management and
8 provisioning of hardware and software Crypto poll mode drivers, defining generic
9 APIs which support a number of different Crypto operations. The framework
10 currently only supports cipher, authentication, chained cipher/authentication
11 and AEAD symmetric Crypto operations.
12
13
14 Design Principles
15 -----------------
16
17 The cryptodev library follows the same basic principles as those used in DPDKs
18 Ethernet Device framework. The Crypto framework provides a generic Crypto device
19 framework which supports both physical (hardware) and virtual (software) Crypto
20 devices as well as a generic Crypto API which allows Crypto devices to be
21 managed and configured and supports Crypto operations to be provisioned on
22 Crypto poll mode driver.
23
24
25 Device Management
26 -----------------
27
28 Device Creation
29 ~~~~~~~~~~~~~~~
30
31 Physical Crypto devices are discovered during the PCI probe/enumeration of the
32 EAL function which is executed at DPDK initialization, based on
33 their PCI device identifier, each unique PCI BDF (bus/bridge, device,
34 function). Specific physical Crypto devices, like other physical devices in DPDK
35 can be white-listed or black-listed using the EAL command line options.
36
37 Virtual devices can be created by two mechanisms, either using the EAL command
38 line options or from within the application using an EAL API directly.
39
40 From the command line using the --vdev EAL option
41
42 .. code-block:: console
43
44    --vdev  'crypto_aesni_mb0,max_nb_queue_pairs=2,max_nb_sessions=1024,socket_id=0'
45
46 .. Note::
47
48    * If DPDK application requires multiple software crypto PMD devices then required
49      number of ``--vdev`` with appropriate libraries are to be added.
50
51    * An Application with crypto PMD instaces sharing the same library requires unique ID.
52
53    Example: ``--vdev  'crypto_aesni_mb0' --vdev  'crypto_aesni_mb1'``
54
55 Our using the rte_vdev_init API within the application code.
56
57 .. code-block:: c
58
59    rte_vdev_init("crypto_aesni_mb",
60                      "max_nb_queue_pairs=2,max_nb_sessions=1024,socket_id=0")
61
62 All virtual Crypto devices support the following initialization parameters:
63
64 * ``max_nb_queue_pairs`` - maximum number of queue pairs supported by the device.
65 * ``max_nb_sessions`` - maximum number of sessions supported by the device
66 * ``socket_id`` - socket on which to allocate the device resources on.
67
68
69 Device Identification
70 ~~~~~~~~~~~~~~~~~~~~~
71
72 Each device, whether virtual or physical is uniquely designated by two
73 identifiers:
74
75 - A unique device index used to designate the Crypto device in all functions
76   exported by the cryptodev API.
77
78 - A device name used to designate the Crypto device in console messages, for
79   administration or debugging purposes. For ease of use, the port name includes
80   the port index.
81
82
83 Device Configuration
84 ~~~~~~~~~~~~~~~~~~~~
85
86 The configuration of each Crypto device includes the following operations:
87
88 - Allocation of resources, including hardware resources if a physical device.
89 - Resetting the device into a well-known default state.
90 - Initialization of statistics counters.
91
92 The rte_cryptodev_configure API is used to configure a Crypto device.
93
94 .. code-block:: c
95
96    int rte_cryptodev_configure(uint8_t dev_id,
97                                struct rte_cryptodev_config *config)
98
99 The ``rte_cryptodev_config`` structure is used to pass the configuration
100 parameters for socket selection and number of queue pairs.
101
102 .. code-block:: c
103
104     struct rte_cryptodev_config {
105         int socket_id;
106         /**< Socket to allocate resources on */
107         uint16_t nb_queue_pairs;
108         /**< Number of queue pairs to configure on device */
109     };
110
111
112 Configuration of Queue Pairs
113 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
114
115 Each Crypto devices queue pair is individually configured through the
116 ``rte_cryptodev_queue_pair_setup`` API.
117 Each queue pairs resources may be allocated on a specified socket.
118
119 .. code-block:: c
120
121     int rte_cryptodev_queue_pair_setup(uint8_t dev_id, uint16_t queue_pair_id,
122                 const struct rte_cryptodev_qp_conf *qp_conf,
123                 int socket_id)
124
125     struct rte_cryptodev_qp_conf {
126         uint32_t nb_descriptors; /**< Number of descriptors per queue pair */
127     };
128
129
130 Logical Cores, Memory and Queues Pair Relationships
131 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
132
133 The Crypto device Library as the Poll Mode Driver library support NUMA for when
134 a processor’s logical cores and interfaces utilize its local memory. Therefore
135 Crypto operations, and in the case of symmetric Crypto operations, the session
136 and the mbuf being operated on, should be allocated from memory pools created
137 in the local memory. The buffers should, if possible, remain on the local
138 processor to obtain the best performance results and buffer descriptors should
139 be populated with mbufs allocated from a mempool allocated from local memory.
140
141 The run-to-completion model also performs better, especially in the case of
142 virtual Crypto devices, if the Crypto operation and session and data buffer is
143 in local memory instead of a remote processor's memory. This is also true for
144 the pipe-line model provided all logical cores used are located on the same
145 processor.
146
147 Multiple logical cores should never share the same queue pair for enqueuing
148 operations or dequeuing operations on the same Crypto device since this would
149 require global locks and hinder performance. It is however possible to use a
150 different logical core to dequeue an operation on a queue pair from the logical
151 core which it was enqueued on. This means that a crypto burst enqueue/dequeue
152 APIs are a logical place to transition from one logical core to another in a
153 packet processing pipeline.
154
155
156 Device Features and Capabilities
157 ---------------------------------
158
159 Crypto devices define their functionality through two mechanisms, global device
160 features and algorithm capabilities. Global devices features identify device
161 wide level features which are applicable to the whole device such as
162 the device having hardware acceleration or supporting symmetric Crypto
163 operations,
164
165 The capabilities mechanism defines the individual algorithms/functions which
166 the device supports, such as a specific symmetric Crypto cipher,
167 authentication operation or Authenticated Encryption with Associated Data
168 (AEAD) operation.
169
170
171 Device Features
172 ~~~~~~~~~~~~~~~
173
174 Currently the following Crypto device features are defined:
175
176 * Symmetric Crypto operations
177 * Asymmetric Crypto operations
178 * Chaining of symmetric Crypto operations
179 * SSE accelerated SIMD vector operations
180 * AVX accelerated SIMD vector operations
181 * AVX2 accelerated SIMD vector operations
182 * AESNI accelerated instructions
183 * Hardware off-load processing
184
185
186 Device Operation Capabilities
187 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
188
189 Crypto capabilities which identify particular algorithm which the Crypto PMD
190 supports are  defined by the operation type, the operation transform, the
191 transform identifier and then the particulars of the transform. For the full
192 scope of the Crypto capability see the definition of the structure in the
193 *DPDK API Reference*.
194
195 .. code-block:: c
196
197    struct rte_cryptodev_capabilities;
198
199 Each Crypto poll mode driver defines its own private array of capabilities
200 for the operations it supports. Below is an example of the capabilities for a
201 PMD which supports the authentication algorithm SHA1_HMAC and the cipher
202 algorithm AES_CBC.
203
204 .. code-block:: c
205
206     static const struct rte_cryptodev_capabilities pmd_capabilities[] = {
207         {    /* SHA1 HMAC */
208             .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
209             .sym = {
210                 .xform_type = RTE_CRYPTO_SYM_XFORM_AUTH,
211                 .auth = {
212                     .algo = RTE_CRYPTO_AUTH_SHA1_HMAC,
213                     .block_size = 64,
214                     .key_size = {
215                         .min = 64,
216                         .max = 64,
217                         .increment = 0
218                     },
219                     .digest_size = {
220                         .min = 12,
221                         .max = 12,
222                         .increment = 0
223                     },
224                     .aad_size = { 0 },
225                     .iv_size = { 0 }
226                 }
227             }
228         },
229         {    /* AES CBC */
230             .op = RTE_CRYPTO_OP_TYPE_SYMMETRIC,
231             .sym = {
232                 .xform_type = RTE_CRYPTO_SYM_XFORM_CIPHER,
233                 .cipher = {
234                     .algo = RTE_CRYPTO_CIPHER_AES_CBC,
235                     .block_size = 16,
236                     .key_size = {
237                         .min = 16,
238                         .max = 32,
239                         .increment = 8
240                     },
241                     .iv_size = {
242                         .min = 16,
243                         .max = 16,
244                         .increment = 0
245                     }
246                 }
247             }
248         }
249     }
250
251
252 Capabilities Discovery
253 ~~~~~~~~~~~~~~~~~~~~~~
254
255 Discovering the features and capabilities of a Crypto device poll mode driver
256 is achieved through the ``rte_cryptodev_info_get`` function.
257
258 .. code-block:: c
259
260    void rte_cryptodev_info_get(uint8_t dev_id,
261                                struct rte_cryptodev_info *dev_info);
262
263 This allows the user to query a specific Crypto PMD and get all the device
264 features and capabilities. The ``rte_cryptodev_info`` structure contains all the
265 relevant information for the device.
266
267 .. code-block:: c
268
269     struct rte_cryptodev_info {
270         const char *driver_name;
271         uint8_t driver_id;
272         struct rte_pci_device *pci_dev;
273
274         uint64_t feature_flags;
275
276         const struct rte_cryptodev_capabilities *capabilities;
277
278         unsigned max_nb_queue_pairs;
279
280         struct {
281             unsigned max_nb_sessions;
282         } sym;
283     };
284
285
286 Operation Processing
287 --------------------
288
289 Scheduling of Crypto operations on DPDK's application data path is
290 performed using a burst oriented asynchronous API set. A queue pair on a Crypto
291 device accepts a burst of Crypto operations using enqueue burst API. On physical
292 Crypto devices the enqueue burst API will place the operations to be processed
293 on the devices hardware input queue, for virtual devices the processing of the
294 Crypto operations is usually completed during the enqueue call to the Crypto
295 device. The dequeue burst API will retrieve any processed operations available
296 from the queue pair on the Crypto device, from physical devices this is usually
297 directly from the devices processed queue, and for virtual device's from a
298 ``rte_ring`` where processed operations are place after being processed on the
299 enqueue call.
300
301
302 Private data
303 ~~~~~~~~~~~~
304 For session-based operations, the set and get API provides a mechanism for an
305 application to store and retrieve the private data information stored along with
306 the crypto session.
307
308 For example, suppose an application is submitting a crypto operation with a session
309 associated and wants to indicate private data information which is required to be
310 used after completion of the crypto operation. In this case, the application can use
311 the set API to set the private data and retrieve it using get API.
312
313 .. code-block:: c
314
315         int rte_cryptodev_sym_session_set_private_data(
316                 struct rte_cryptodev_sym_session *sess, void *data, uint16_t size);
317
318         void * rte_cryptodev_sym_session_get_private_data(
319                 struct rte_cryptodev_sym_session *sess);
320
321
322 For session-less mode, the private data information can be placed along with the
323 ``struct rte_crypto_op``. The ``rte_crypto_op::private_data_offset`` indicates the
324 start of private data information. The offset is counted from the start of the
325 rte_crypto_op including other crypto information such as the IVs (since there can
326 be an IV also for authentication).
327
328
329 Enqueue / Dequeue Burst APIs
330 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
331
332 The burst enqueue API uses a Crypto device identifier and a queue pair
333 identifier to specify the Crypto device queue pair to schedule the processing on.
334 The ``nb_ops`` parameter is the number of operations to process which are
335 supplied in the ``ops`` array of ``rte_crypto_op`` structures.
336 The enqueue function returns the number of operations it actually enqueued for
337 processing, a return value equal to ``nb_ops`` means that all packets have been
338 enqueued.
339
340 .. code-block:: c
341
342    uint16_t rte_cryptodev_enqueue_burst(uint8_t dev_id, uint16_t qp_id,
343                                         struct rte_crypto_op **ops, uint16_t nb_ops)
344
345 The dequeue API uses the same format as the enqueue API of processed but
346 the ``nb_ops`` and ``ops`` parameters are now used to specify the max processed
347 operations the user wishes to retrieve and the location in which to store them.
348 The API call returns the actual number of processed operations returned, this
349 can never be larger than ``nb_ops``.
350
351 .. code-block:: c
352
353    uint16_t rte_cryptodev_dequeue_burst(uint8_t dev_id, uint16_t qp_id,
354                                         struct rte_crypto_op **ops, uint16_t nb_ops)
355
356
357 Operation Representation
358 ~~~~~~~~~~~~~~~~~~~~~~~~
359
360 An Crypto operation is represented by an rte_crypto_op structure, which is a
361 generic metadata container for all necessary information required for the
362 Crypto operation to be processed on a particular Crypto device poll mode driver.
363
364 .. figure:: img/crypto_op.*
365
366 The operation structure includes the operation type, the operation status
367 and the session type (session-based/less), a reference to the operation
368 specific data, which can vary in size and content depending on the operation
369 being provisioned. It also contains the source mempool for the operation,
370 if it allocated from a mempool.
371
372 If Crypto operations are allocated from a Crypto operation mempool, see next
373 section, there is also the ability to allocate private memory with the
374 operation for applications purposes.
375
376 Application software is responsible for specifying all the operation specific
377 fields in the ``rte_crypto_op`` structure which are then used by the Crypto PMD
378 to process the requested operation.
379
380
381 Operation Management and Allocation
382 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
383
384 The cryptodev library provides an API set for managing Crypto operations which
385 utilize the Mempool Library to allocate operation buffers. Therefore, it ensures
386 that the crytpo operation is interleaved optimally across the channels and
387 ranks for optimal processing.
388 A ``rte_crypto_op`` contains a field indicating the pool that it originated from.
389 When calling ``rte_crypto_op_free(op)``, the operation returns to its original pool.
390
391 .. code-block:: c
392
393    extern struct rte_mempool *
394    rte_crypto_op_pool_create(const char *name, enum rte_crypto_op_type type,
395                              unsigned nb_elts, unsigned cache_size, uint16_t priv_size,
396                              int socket_id);
397
398 During pool creation ``rte_crypto_op_init()`` is called as a constructor to
399 initialize each Crypto operation which subsequently calls
400 ``__rte_crypto_op_reset()`` to configure any operation type specific fields based
401 on the type parameter.
402
403
404 ``rte_crypto_op_alloc()`` and ``rte_crypto_op_bulk_alloc()`` are used to allocate
405 Crypto operations of a specific type from a given Crypto operation mempool.
406 ``__rte_crypto_op_reset()`` is called on each operation before being returned to
407 allocate to a user so the operation is always in a good known state before use
408 by the application.
409
410 .. code-block:: c
411
412    struct rte_crypto_op *rte_crypto_op_alloc(struct rte_mempool *mempool,
413                                              enum rte_crypto_op_type type)
414
415    unsigned rte_crypto_op_bulk_alloc(struct rte_mempool *mempool,
416                                      enum rte_crypto_op_type type,
417                                      struct rte_crypto_op **ops, uint16_t nb_ops)
418
419 ``rte_crypto_op_free()`` is called by the application to return an operation to
420 its allocating pool.
421
422 .. code-block:: c
423
424    void rte_crypto_op_free(struct rte_crypto_op *op)
425
426
427 Symmetric Cryptography Support
428 ------------------------------
429
430 The cryptodev library currently provides support for the following symmetric
431 Crypto operations; cipher, authentication, including chaining of these
432 operations, as well as also supporting AEAD operations.
433
434
435 Session and Session Management
436 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
437
438 Sessions are used in symmetric cryptographic processing to store the immutable
439 data defined in a cryptographic transform which is used in the operation
440 processing of a packet flow. Sessions are used to manage information such as
441 expand cipher keys and HMAC IPADs and OPADs, which need to be calculated for a
442 particular Crypto operation, but are immutable on a packet to packet basis for
443 a flow. Crypto sessions cache this immutable data in a optimal way for the
444 underlying PMD and this allows further acceleration of the offload of
445 Crypto workloads.
446
447 .. figure:: img/cryptodev_sym_sess.*
448
449 The Crypto device framework provides APIs to allocate and initizalize sessions
450 for crypto devices, where sessions are mempool objects.
451 It is the application's responsibility to create and manage the session mempools.
452 This approach allows for different scenarios such as having a single session
453 mempool for all crypto devices (where the mempool object size is big
454 enough to hold the private session of any crypto device), as well as having
455 multiple session mempools of different sizes for better memory usage.
456
457 An application can use ``rte_cryptodev_sym_get_private_session_size()`` to
458 get the private session size of given crypto device. This function would allow
459 an application to calculate the max device session size of all crypto devices
460 to create a single session mempool.
461 If instead an application creates multiple session mempools, the Crypto device
462 framework also provides ``rte_cryptodev_sym_get_header_session_size`` to get
463 the size of an uninitialized session.
464
465 Once the session mempools have been created, ``rte_cryptodev_sym_session_create()``
466 is used to allocate an uninitialized session from the given mempool.
467 The session then must be initialized using ``rte_cryptodev_sym_session_init()``
468 for each of the required crypto devices. A symmetric transform chain
469 is used to specify the operation and its parameters. See the section below for
470 details on transforms.
471
472 When a session is no longer used, user must call ``rte_cryptodev_sym_session_clear()``
473 for each of the crypto devices that are using the session, to free all driver
474 private session data. Once this is done, session should be freed using
475 ``rte_cryptodev_sym_session_free`` which returns them to their mempool.
476
477
478 Transforms and Transform Chaining
479 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
480
481 Symmetric Crypto transforms (``rte_crypto_sym_xform``) are the mechanism used
482 to specify the details of the Crypto operation. For chaining of symmetric
483 operations such as cipher encrypt and authentication generate, the next pointer
484 allows transform to be chained together. Crypto devices which support chaining
485 must publish the chaining of symmetric Crypto operations feature flag.
486
487 Currently there are three transforms types cipher, authentication and AEAD.
488 Also it is important to note that the order in which the
489 transforms are passed indicates the order of the chaining.
490
491 .. code-block:: c
492
493     struct rte_crypto_sym_xform {
494         struct rte_crypto_sym_xform *next;
495         /**< next xform in chain */
496         enum rte_crypto_sym_xform_type type;
497         /**< xform type */
498         union {
499             struct rte_crypto_auth_xform auth;
500             /**< Authentication / hash xform */
501             struct rte_crypto_cipher_xform cipher;
502             /**< Cipher xform */
503             struct rte_crypto_aead_xform aead;
504             /**< AEAD xform */
505         };
506     };
507
508 The API does not place a limit on the number of transforms that can be chained
509 together but this will be limited by the underlying Crypto device poll mode
510 driver which is processing the operation.
511
512 .. figure:: img/crypto_xform_chain.*
513
514
515 Symmetric Operations
516 ~~~~~~~~~~~~~~~~~~~~
517
518 The symmetric Crypto operation structure contains all the mutable data relating
519 to performing symmetric cryptographic processing on a referenced mbuf data
520 buffer. It is used for either cipher, authentication, AEAD and chained
521 operations.
522
523 As a minimum the symmetric operation must have a source data buffer (``m_src``),
524 a valid session (or transform chain if in session-less mode) and the minimum
525 authentication/ cipher/ AEAD parameters required depending on the type of operation
526 specified in the session or the transform
527 chain.
528
529 .. code-block:: c
530
531     struct rte_crypto_sym_op {
532         struct rte_mbuf *m_src;
533         struct rte_mbuf *m_dst;
534
535         union {
536             struct rte_cryptodev_sym_session *session;
537             /**< Handle for the initialised session context */
538             struct rte_crypto_sym_xform *xform;
539             /**< Session-less API Crypto operation parameters */
540         };
541
542         union {
543             struct {
544                 struct {
545                     uint32_t offset;
546                     uint32_t length;
547                 } data; /**< Data offsets and length for AEAD */
548
549                 struct {
550                     uint8_t *data;
551                     rte_iova_t phys_addr;
552                 } digest; /**< Digest parameters */
553
554                 struct {
555                     uint8_t *data;
556                     rte_iova_t phys_addr;
557                 } aad;
558                 /**< Additional authentication parameters */
559             } aead;
560
561             struct {
562                 struct {
563                     struct {
564                         uint32_t offset;
565                         uint32_t length;
566                     } data; /**< Data offsets and length for ciphering */
567                 } cipher;
568
569                 struct {
570                     struct {
571                         uint32_t offset;
572                         uint32_t length;
573                     } data;
574                     /**< Data offsets and length for authentication */
575
576                     struct {
577                         uint8_t *data;
578                         rte_iova_t phys_addr;
579                     } digest; /**< Digest parameters */
580                 } auth;
581             };
582         };
583     };
584
585 Sample code
586 -----------
587
588 There are various sample applications that show how to use the cryptodev library,
589 such as the L2fwd with Crypto sample application (L2fwd-crypto) and
590 the IPSec Security Gateway application (ipsec-secgw).
591
592 While these applications demonstrate how an application can be created to perform
593 generic crypto operation, the required complexity hides the basic steps of
594 how to use the cryptodev APIs.
595
596 The following sample code shows the basic steps to encrypt several buffers
597 with AES-CBC (although performing other crypto operations is similar),
598 using one of the crypto PMDs available in DPDK.
599
600 .. code-block:: c
601
602     /*
603      * Simple example to encrypt several buffers with AES-CBC using
604      * the Cryptodev APIs.
605      */
606
607     #define MAX_SESSIONS         1024
608     #define NUM_MBUFS            1024
609     #define POOL_CACHE_SIZE      128
610     #define BURST_SIZE           32
611     #define BUFFER_SIZE          1024
612     #define AES_CBC_IV_LENGTH    16
613     #define AES_CBC_KEY_LENGTH   16
614     #define IV_OFFSET            (sizeof(struct rte_crypto_op) + \
615                                  sizeof(struct rte_crypto_sym_op))
616
617     struct rte_mempool *mbuf_pool, *crypto_op_pool, *session_pool;
618     unsigned int session_size;
619     int ret;
620
621     /* Initialize EAL. */
622     ret = rte_eal_init(argc, argv);
623     if (ret < 0)
624         rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
625
626     uint8_t socket_id = rte_socket_id();
627
628     /* Create the mbuf pool. */
629     mbuf_pool = rte_pktmbuf_pool_create("mbuf_pool",
630                                     NUM_MBUFS,
631                                     POOL_CACHE_SIZE,
632                                     0,
633                                     RTE_MBUF_DEFAULT_BUF_SIZE,
634                                     socket_id);
635     if (mbuf_pool == NULL)
636         rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
637
638     /*
639      * The IV is always placed after the crypto operation,
640      * so some private data is required to be reserved.
641      */
642     unsigned int crypto_op_private_data = AES_CBC_IV_LENGTH;
643
644     /* Create crypto operation pool. */
645     crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool",
646                                             RTE_CRYPTO_OP_TYPE_SYMMETRIC,
647                                             NUM_MBUFS,
648                                             POOL_CACHE_SIZE,
649                                             crypto_op_private_data,
650                                             socket_id);
651     if (crypto_op_pool == NULL)
652         rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n");
653
654     /* Create the virtual crypto device. */
655     char args[128];
656     const char *crypto_name = "crypto_aesni_mb0";
657     snprintf(args, sizeof(args), "socket_id=%d", socket_id);
658     ret = rte_vdev_init(crypto_name, args);
659     if (ret != 0)
660         rte_exit(EXIT_FAILURE, "Cannot create virtual device");
661
662     uint8_t cdev_id = rte_cryptodev_get_dev_id(crypto_name);
663
664     /* Get private session data size. */
665     session_size = rte_cryptodev_sym_get_private_session_size(cdev_id);
666
667     /*
668      * Create session mempool, with two objects per session,
669      * one for the session header and another one for the
670      * private session data for the crypto device.
671      */
672     session_pool = rte_mempool_create("session_pool",
673                                     MAX_SESSIONS * 2,
674                                     session_size,
675                                     POOL_CACHE_SIZE,
676                                     0, NULL, NULL, NULL,
677                                     NULL, socket_id,
678                                     0);
679
680     /* Configure the crypto device. */
681     struct rte_cryptodev_config conf = {
682         .nb_queue_pairs = 1,
683         .socket_id = socket_id
684     };
685     struct rte_cryptodev_qp_conf qp_conf = {
686         .nb_descriptors = 2048
687     };
688
689     if (rte_cryptodev_configure(cdev_id, &conf) < 0)
690         rte_exit(EXIT_FAILURE, "Failed to configure cryptodev %u", cdev_id);
691
692     if (rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf,
693                             socket_id, session_pool) < 0)
694         rte_exit(EXIT_FAILURE, "Failed to setup queue pair\n");
695
696     if (rte_cryptodev_start(cdev_id) < 0)
697         rte_exit(EXIT_FAILURE, "Failed to start device\n");
698
699     /* Create the crypto transform. */
700     uint8_t cipher_key[16] = {0};
701     struct rte_crypto_sym_xform cipher_xform = {
702         .next = NULL,
703         .type = RTE_CRYPTO_SYM_XFORM_CIPHER,
704         .cipher = {
705             .op = RTE_CRYPTO_CIPHER_OP_ENCRYPT,
706             .algo = RTE_CRYPTO_CIPHER_AES_CBC,
707             .key = {
708                 .data = cipher_key,
709                 .length = AES_CBC_KEY_LENGTH
710             },
711             .iv = {
712                 .offset = IV_OFFSET,
713                 .length = AES_CBC_IV_LENGTH
714             }
715         }
716     };
717
718     /* Create crypto session and initialize it for the crypto device. */
719     struct rte_cryptodev_sym_session *session;
720     session = rte_cryptodev_sym_session_create(session_pool);
721     if (session == NULL)
722         rte_exit(EXIT_FAILURE, "Session could not be created\n");
723
724     if (rte_cryptodev_sym_session_init(cdev_id, session,
725                     &cipher_xform, session_pool) < 0)
726         rte_exit(EXIT_FAILURE, "Session could not be initialized "
727                     "for the crypto device\n");
728
729     /* Get a burst of crypto operations. */
730     struct rte_crypto_op *crypto_ops[BURST_SIZE];
731     if (rte_crypto_op_bulk_alloc(crypto_op_pool,
732                             RTE_CRYPTO_OP_TYPE_SYMMETRIC,
733                             crypto_ops, BURST_SIZE) == 0)
734         rte_exit(EXIT_FAILURE, "Not enough crypto operations available\n");
735
736     /* Get a burst of mbufs. */
737     struct rte_mbuf *mbufs[BURST_SIZE];
738     if (rte_pktmbuf_alloc_bulk(mbuf_pool, mbufs, BURST_SIZE) < 0)
739         rte_exit(EXIT_FAILURE, "Not enough mbufs available");
740
741     /* Initialize the mbufs and append them to the crypto operations. */
742     unsigned int i;
743     for (i = 0; i < BURST_SIZE; i++) {
744         if (rte_pktmbuf_append(mbufs[i], BUFFER_SIZE) == NULL)
745             rte_exit(EXIT_FAILURE, "Not enough room in the mbuf\n");
746         crypto_ops[i]->sym->m_src = mbufs[i];
747     }
748
749     /* Set up the crypto operations. */
750     for (i = 0; i < BURST_SIZE; i++) {
751         struct rte_crypto_op *op = crypto_ops[i];
752         /* Modify bytes of the IV at the end of the crypto operation */
753         uint8_t *iv_ptr = rte_crypto_op_ctod_offset(op, uint8_t *,
754                                                 IV_OFFSET);
755
756         generate_random_bytes(iv_ptr, AES_CBC_IV_LENGTH);
757
758         op->sym->cipher.data.offset = 0;
759         op->sym->cipher.data.length = BUFFER_SIZE;
760
761         /* Attach the crypto session to the operation */
762         rte_crypto_op_attach_sym_session(op, session);
763     }
764
765     /* Enqueue the crypto operations in the crypto device. */
766     uint16_t num_enqueued_ops = rte_cryptodev_enqueue_burst(cdev_id, 0,
767                                             crypto_ops, BURST_SIZE);
768
769     /*
770      * Dequeue the crypto operations until all the operations
771      * are proccessed in the crypto device.
772      */
773     uint16_t num_dequeued_ops, total_num_dequeued_ops = 0;
774     do {
775         struct rte_crypto_op *dequeued_ops[BURST_SIZE];
776         num_dequeued_ops = rte_cryptodev_dequeue_burst(cdev_id, 0,
777                                         dequeued_ops, BURST_SIZE);
778         total_num_dequeued_ops += num_dequeued_ops;
779
780         /* Check if operation was processed successfully */
781         for (i = 0; i < num_dequeued_ops; i++) {
782             if (dequeued_ops[i]->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
783                 rte_exit(EXIT_FAILURE,
784                         "Some operations were not processed correctly");
785         }
786
787         rte_mempool_put_bulk(crypto_op_pool, (void **)dequeued_ops,
788                                             num_dequeued_ops);
789     } while (total_num_dequeued_ops < num_enqueued_ops);
790
791
792 Asymmetric Cryptography
793 -----------------------
794
795 Asymmetric functionality is currently not supported by the cryptodev API.
796
797
798 Crypto Device API
799 ~~~~~~~~~~~~~~~~~
800
801 The cryptodev Library API is described in the *DPDK API Reference* document.