New upstream version 18.08
[deb_dpdk.git] / doc / guides / prog_guide / hash_lib.rst
1 ..  SPDX-License-Identifier: BSD-3-Clause
2     Copyright(c) 2010-2015 Intel Corporation.
3
4 .. _Hash_Library:
5
6 Hash Library
7 ============
8
9 The DPDK provides a Hash Library for creating hash table for fast lookup.
10 The hash table is a data structure optimized for searching through a set of entries that are each identified by a unique key.
11 For increased performance the DPDK Hash requires that all the keys have the same number of bytes which is set at the hash creation time.
12
13 Hash API Overview
14 -----------------
15
16 The main configuration parameters for the hash are:
17
18 *   Total number of hash entries
19
20 *   Size of the key in bytes
21
22 *   An extra flag used to describe additional settings, for example the multithreading mode of operation (as will be described later)
23
24 The hash also allows the configuration of some low-level implementation related parameters such as:
25
26 *   Hash function to translate the key into a bucket index
27
28 The main methods exported by the hash are:
29
30 *   Add entry with key: The key is provided as input. If a new entry is successfully added to the hash for the specified key,
31     or there is already an entry in the hash for the specified key, then the position of the entry is returned.
32     If the operation was not successful, for example due to lack of free entries in the hash, then a negative value is returned;
33
34 *   Delete entry with key: The key is provided as input. If an entry with the specified key is found in the hash,
35     then the entry is removed from the hash and the position where the entry was found in the hash is returned.
36     If no entry with the specified key exists in the hash, then a negative value is returned
37
38 *   Lookup for entry with key: The key is provided as input. If an entry with the specified key is found in the hash (lookup hit),
39     then the position of the entry is returned, otherwise (lookup miss) a negative value is returned.
40
41 Apart from these method explained above, the API allows the user three more options:
42
43 *   Add / lookup / delete with key and precomputed hash: Both the key and its precomputed hash are provided as input. This allows
44     the user to perform these operations faster, as hash is already computed.
45
46 *   Add / lookup with key and data: A pair of key-value is provided as input. This allows the user to store
47     not only the key, but also data which may be either a 8-byte integer or a pointer to external data (if data size is more than 8 bytes).
48
49 *   Combination of the two options above: User can provide key, precomputed hash and data.
50
51 Also, the API contains a method to allow the user to look up entries in bursts, achieving higher performance
52 than looking up individual entries, as the function prefetches next entries at the time it is operating
53 with the first ones, which reduces significantly the impact of the necessary memory accesses.
54
55
56 The actual data associated with each key can be either managed by the user using a separate table that
57 mirrors the hash in terms of number of entries and position of each entry,
58 as shown in the Flow Classification use case describes in the following sections,
59 or stored in the hash table itself.
60
61 The example hash tables in the L2/L3 Forwarding sample applications defines which port to forward a packet to based on a packet flow identified by the five-tuple lookup.
62 However, this table could also be used for more sophisticated features and provide many other functions and actions that could be performed on the packets and flows.
63
64 Multi-process support
65 ---------------------
66
67 The hash library can be used in a multi-process environment.
68 The only function that can only be used in single-process mode is rte_hash_set_cmp_func(), which sets up
69 a custom compare function, which is assigned to a function pointer (therefore, it is not supported in
70 multi-process mode).
71
72
73 Multi-thread support
74 ---------------------
75
76 The hash library supports multithreading, and the user specifies the needed mode of operation at the creation time of the hash table
77 by appropriately setting the flag. In all modes of operation lookups are thread-safe meaning lookups can be called from multiple
78 threads concurrently.
79
80 For concurrent writes, and concurrent reads and writes the following flag values define the corresponding modes of operation:
81
82 *  If the multi-writer flag (RTE_HASH_EXTRA_FLAGS_MULTI_WRITER_ADD) is set, multiple threads writing to the table is allowed.
83    Key add, delete, and table reset are protected from other writer threads. With only this flag set, readers are not protected from ongoing writes.
84
85 *  If the read/write concurrency (RTE_HASH_EXTRA_FLAGS_RW_CONCURRENCY) is set, multithread read/write operation is safe
86    (i.e., no need to stop the readers from accessing the hash table until writers finish their updates. Reads and writes can operate table concurrently).
87
88 *  In addition to these two flag values, if the transactional memory flag (RTE_HASH_EXTRA_FLAGS_TRANS_MEM_SUPPORT) is also set,
89    hardware transactional memory will be used to guarantee the thread safety as long as it is supported by the hardware (for example the IntelĀ® TSX support).
90
91 If the platform supports IntelĀ® TSX, it is advised to set the transactional memory flag, as this will speed up concurrent table operations.
92 Otherwise concurrent operations will be slower because of the overhead associated with the software locking mechanisms.
93
94 Implementation Details
95 ----------------------
96
97 The hash table has two main tables:
98
99 * First table is an array of entries which is further divided into buckets,
100   with the same number of consecutive array entries in each bucket. Each entry contains the computed primary
101   and secondary hashes of a given key (explained below), and an index to the second table.
102
103 * The second table is an array of all the keys stored in the hash table and its data associated to each key.
104
105 The hash library uses the cuckoo hash method to resolve collisions.
106 For any input key, there are two possible buckets (primary and secondary/alternative location)
107 where that key can be stored in the hash, therefore only the entries within those bucket need to be examined
108 when the key is looked up.
109 The lookup speed is achieved by reducing the number of entries to be scanned from the total
110 number of hash entries down to the number of entries in the two hash buckets,
111 as opposed to the basic method of linearly scanning all the entries in the array.
112 The hash uses a hash function (configurable) to translate the input key into a 4-byte key signature.
113 The bucket index is the key signature modulo the number of hash buckets.
114
115 Once the buckets are identified, the scope of the hash add,
116 delete and lookup operations is reduced to the entries in those buckets (it is very likely that entries are in the primary bucket).
117
118 To speed up the search logic within the bucket, each hash entry stores the 4-byte key signature together with the full key for each hash entry.
119 For large key sizes, comparing the input key against a key from the bucket can take significantly more time than
120 comparing the 4-byte signature of the input key against the signature of a key from the bucket.
121 Therefore, the signature comparison is done first and the full key comparison done only when the signatures matches.
122 The full key comparison is still necessary, as two input keys from the same bucket can still potentially have the same 4-byte hash signature,
123 although this event is relatively rare for hash functions providing good uniform distributions for the set of input keys.
124
125 Example of lookup:
126
127 First of all, the primary bucket is identified and entry is likely to be stored there.
128 If signature was stored there, we compare its key against the one provided and return the position
129 where it was stored and/or the data associated to that key if there is a match.
130 If signature is not in the primary bucket, the secondary bucket is looked up, where same procedure
131 is carried out. If there is no match there either, key is considered not to be in the table.
132
133 Example of addition:
134
135 Like lookup, the primary and secondary buckets are identified. If there is an empty slot in
136 the primary bucket, primary and secondary signatures are stored in that slot, key and data (if any) are added to
137 the second table and an index to the position in the second table is stored in the slot of the first table.
138 If there is no space in the primary bucket, one of the entries on that bucket is pushed to its alternative location,
139 and the key to be added is inserted in its position.
140 To know where the alternative bucket of the evicted entry is, the secondary signature is looked up and alternative bucket index
141 is calculated from doing the modulo, as seen above. If there is room in the alternative bucket, the evicted entry
142 is stored in it. If not, same process is repeated (one of the entries gets pushed) until a non full bucket is found.
143 Notice that despite all the entry movement in the first table, the second table is not touched, which would impact
144 greatly in performance.
145
146 In the very unlikely event that table enters in a loop where same entries are being evicted indefinitely,
147 key is considered not able to be stored.
148 With random keys, this method allows the user to get around 90% of the table utilization, without
149 having to drop any stored entry (LRU) or allocate more memory (extended buckets).
150
151 Entry distribution in hash table
152 --------------------------------
153
154 As mentioned above, Cuckoo hash implementation pushes elements out of their bucket,
155 if there is a new entry to be added which primary location coincides with their current bucket,
156 being pushed to their alternative location.
157 Therefore, as user adds more entries to the hash table, distribution of the hash values
158 in the buckets will change, being most of them in their primary location and a few in
159 their secondary location, which the later will increase, as table gets busier.
160 This information is quite useful, as performance may be lower as more entries
161 are evicted to their secondary location.
162
163 See the tables below showing example entry distribution as table utilization increases.
164
165 .. _table_hash_lib_1:
166
167 .. table:: Entry distribution measured with an example table with 1024 random entries using jhash algorithm
168
169    +--------------+-----------------------+-------------------------+
170    | % Table used | % In Primary location | % In Secondary location |
171    +==============+=======================+=========================+
172    |      25      |         100           |           0             |
173    +--------------+-----------------------+-------------------------+
174    |      50      |         96.1          |           3.9           |
175    +--------------+-----------------------+-------------------------+
176    |      75      |         88.2          |           11.8          |
177    +--------------+-----------------------+-------------------------+
178    |      80      |         86.3          |           13.7          |
179    +--------------+-----------------------+-------------------------+
180    |      85      |         83.1          |           16.9          |
181    +--------------+-----------------------+-------------------------+
182    |      90      |         77.3          |           22.7          |
183    +--------------+-----------------------+-------------------------+
184    |      95.8    |         64.5          |           35.5          |
185    +--------------+-----------------------+-------------------------+
186
187 |
188
189 .. _table_hash_lib_2:
190
191 .. table:: Entry distribution measured with an example table with 1 million random entries using jhash algorithm
192
193    +--------------+-----------------------+-------------------------+
194    | % Table used | % In Primary location | % In Secondary location |
195    +==============+=======================+=========================+
196    |      50      |         96            |           4             |
197    +--------------+-----------------------+-------------------------+
198    |      75      |         86.9          |           13.1          |
199    +--------------+-----------------------+-------------------------+
200    |      80      |         83.9          |           16.1          |
201    +--------------+-----------------------+-------------------------+
202    |      85      |         80.1          |           19.9          |
203    +--------------+-----------------------+-------------------------+
204    |      90      |         74.8          |           25.2          |
205    +--------------+-----------------------+-------------------------+
206    |      94.5    |         67.4          |           32.6          |
207    +--------------+-----------------------+-------------------------+
208
209 .. note::
210
211    Last values on the tables above are the average maximum table
212    utilization with random keys and using Jenkins hash function.
213
214 Use Case: Flow Classification
215 -----------------------------
216
217 Flow classification is used to map each input packet to the connection/flow it belongs to.
218 This operation is necessary as the processing of each input packet is usually done in the context of their connection,
219 so the same set of operations is applied to all the packets from the same flow.
220
221 Applications using flow classification typically have a flow table to manage, with each separate flow having an entry associated with it in this table.
222 The size of the flow table entry is application specific, with typical values of 4, 16, 32 or 64 bytes.
223
224 Each application using flow classification typically has a mechanism defined to uniquely identify a flow based on
225 a number of fields read from the input packet that make up the flow key.
226 One example is to use the DiffServ 5-tuple made up of the following fields of the IP and transport layer packet headers:
227 Source IP Address, Destination IP Address, Protocol, Source Port, Destination Port.
228
229 The DPDK hash provides a generic method to implement an application specific flow classification mechanism.
230 Given a flow table implemented as an array, the application should create a hash object with the same number of entries as the flow table and
231 with the hash key size set to the number of bytes in the selected flow key.
232
233 The flow table operations on the application side are described below:
234
235 *   Add flow: Add the flow key to hash.
236     If the returned position is valid, use it to access the flow entry in the flow table for adding a new flow or
237     updating the information associated with an existing flow.
238     Otherwise, the flow addition failed, for example due to lack of free entries for storing new flows.
239
240 *   Delete flow: Delete the flow key from the hash. If the returned position is valid,
241     use it to access the flow entry in the flow table to invalidate the information associated with the flow.
242
243 *   Lookup flow: Lookup for the flow key in the hash.
244     If the returned position is valid (flow lookup hit), use the returned position to access the flow entry in the flow table.
245     Otherwise (flow lookup miss) there is no flow registered for the current packet.
246
247 References
248 ----------
249
250 *   Donald E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching (2nd Edition), 1998, Addison-Wesley Professional