New upstream version 18.02
[deb_dpdk.git] / drivers / baseband / turbo_sw / bbdev_turbo_software.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <string.h>
6
7 #include <rte_common.h>
8 #include <rte_bus_vdev.h>
9 #include <rte_malloc.h>
10 #include <rte_ring.h>
11 #include <rte_kvargs.h>
12 #include <rte_cycles.h>
13
14 #include <rte_bbdev.h>
15 #include <rte_bbdev_pmd.h>
16
17 #include <phy_turbo.h>
18 #include <phy_crc.h>
19 #include <phy_rate_match.h>
20 #include <divide.h>
21
22 #define DRIVER_NAME baseband_turbo_sw
23
24 /* Turbo SW PMD logging ID */
25 static int bbdev_turbo_sw_logtype;
26
27 /* Helper macro for logging */
28 #define rte_bbdev_log(level, fmt, ...) \
29         rte_log(RTE_LOG_ ## level, bbdev_turbo_sw_logtype, fmt "\n", \
30                 ##__VA_ARGS__)
31
32 #define rte_bbdev_log_debug(fmt, ...) \
33         rte_bbdev_log(DEBUG, RTE_STR(__LINE__) ":%s() " fmt, __func__, \
34                 ##__VA_ARGS__)
35
36 #define DEINT_INPUT_BUF_SIZE (((RTE_BBDEV_MAX_CB_SIZE >> 3) + 1) * 48)
37 #define DEINT_OUTPUT_BUF_SIZE (DEINT_INPUT_BUF_SIZE * 6)
38 #define ADAPTER_OUTPUT_BUF_SIZE ((RTE_BBDEV_MAX_CB_SIZE + 4) * 48)
39
40 /* private data structure */
41 struct bbdev_private {
42         unsigned int max_nb_queues;  /**< Max number of queues */
43 };
44
45 /*  Initialisation params structure that can be used by Turbo SW driver */
46 struct turbo_sw_params {
47         int socket_id;  /*< Turbo SW device socket */
48         uint16_t queues_num;  /*< Turbo SW device queues number */
49 };
50
51 /* Accecptable params for Turbo SW devices */
52 #define TURBO_SW_MAX_NB_QUEUES_ARG  "max_nb_queues"
53 #define TURBO_SW_SOCKET_ID_ARG      "socket_id"
54
55 static const char * const turbo_sw_valid_params[] = {
56         TURBO_SW_MAX_NB_QUEUES_ARG,
57         TURBO_SW_SOCKET_ID_ARG
58 };
59
60 /* queue */
61 struct turbo_sw_queue {
62         /* Ring for processed (encoded/decoded) operations which are ready to
63          * be dequeued.
64          */
65         struct rte_ring *processed_pkts;
66         /* Stores input for turbo encoder (used when CRC attachment is
67          * performed
68          */
69         uint8_t *enc_in;
70         /* Stores output from turbo encoder */
71         uint8_t *enc_out;
72         /* Alpha gamma buf for bblib_turbo_decoder() function */
73         int8_t *ag;
74         /* Temp buf for bblib_turbo_decoder() function */
75         uint16_t *code_block;
76         /* Input buf for bblib_rate_dematching_lte() function */
77         uint8_t *deint_input;
78         /* Output buf for bblib_rate_dematching_lte() function */
79         uint8_t *deint_output;
80         /* Output buf for bblib_turbodec_adapter_lte() function */
81         uint8_t *adapter_output;
82         /* Operation type of this queue */
83         enum rte_bbdev_op_type type;
84 } __rte_cache_aligned;
85
86 /* Calculate index based on Table 5.1.3-3 from TS34.212 */
87 static inline int32_t
88 compute_idx(uint16_t k)
89 {
90         int32_t result = 0;
91
92         if (k < RTE_BBDEV_MIN_CB_SIZE || k > RTE_BBDEV_MAX_CB_SIZE)
93                 return -1;
94
95         if (k > 2048) {
96                 if ((k - 2048) % 64 != 0)
97                         result = -1;
98
99                 result = 124 + (k - 2048) / 64;
100         } else if (k <= 512) {
101                 if ((k - 40) % 8 != 0)
102                         result = -1;
103
104                 result = (k - 40) / 8 + 1;
105         } else if (k <= 1024) {
106                 if ((k - 512) % 16 != 0)
107                         result = -1;
108
109                 result = 60 + (k - 512) / 16;
110         } else { /* 1024 < k <= 2048 */
111                 if ((k - 1024) % 32 != 0)
112                         result = -1;
113
114                 result = 92 + (k - 1024) / 32;
115         }
116
117         return result;
118 }
119
120 /* Read flag value 0/1 from bitmap */
121 static inline bool
122 check_bit(uint32_t bitmap, uint32_t bitmask)
123 {
124         return bitmap & bitmask;
125 }
126
127 /* Get device info */
128 static void
129 info_get(struct rte_bbdev *dev, struct rte_bbdev_driver_info *dev_info)
130 {
131         struct bbdev_private *internals = dev->data->dev_private;
132
133         static const struct rte_bbdev_op_cap bbdev_capabilities[] = {
134                 {
135                         .type = RTE_BBDEV_OP_TURBO_DEC,
136                         .cap.turbo_dec = {
137                                 .capability_flags =
138                                         RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE |
139                                         RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN |
140                                         RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN |
141                                         RTE_BBDEV_TURBO_CRC_TYPE_24B |
142                                         RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP |
143                                         RTE_BBDEV_TURBO_EARLY_TERMINATION,
144                                 .max_llr_modulus = 16,
145                                 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
146                                 .num_buffers_hard_out =
147                                                 RTE_BBDEV_MAX_CODE_BLOCKS,
148                                 .num_buffers_soft_out = 0,
149                         }
150                 },
151                 {
152                         .type   = RTE_BBDEV_OP_TURBO_ENC,
153                         .cap.turbo_enc = {
154                                 .capability_flags =
155                                                 RTE_BBDEV_TURBO_CRC_24B_ATTACH |
156                                                 RTE_BBDEV_TURBO_CRC_24A_ATTACH |
157                                                 RTE_BBDEV_TURBO_RATE_MATCH |
158                                                 RTE_BBDEV_TURBO_RV_INDEX_BYPASS,
159                                 .num_buffers_src = RTE_BBDEV_MAX_CODE_BLOCKS,
160                                 .num_buffers_dst = RTE_BBDEV_MAX_CODE_BLOCKS,
161                         }
162                 },
163                 RTE_BBDEV_END_OF_CAPABILITIES_LIST()
164         };
165
166         static struct rte_bbdev_queue_conf default_queue_conf = {
167                 .queue_size = RTE_BBDEV_QUEUE_SIZE_LIMIT,
168         };
169
170         static const enum rte_cpu_flag_t cpu_flag = RTE_CPUFLAG_SSE4_2;
171
172         default_queue_conf.socket = dev->data->socket_id;
173
174         dev_info->driver_name = RTE_STR(DRIVER_NAME);
175         dev_info->max_num_queues = internals->max_nb_queues;
176         dev_info->queue_size_lim = RTE_BBDEV_QUEUE_SIZE_LIMIT;
177         dev_info->hardware_accelerated = false;
178         dev_info->max_dl_queue_priority = 0;
179         dev_info->max_ul_queue_priority = 0;
180         dev_info->default_queue_conf = default_queue_conf;
181         dev_info->capabilities = bbdev_capabilities;
182         dev_info->cpu_flag_reqs = &cpu_flag;
183         dev_info->min_alignment = 64;
184
185         rte_bbdev_log_debug("got device info from %u\n", dev->data->dev_id);
186 }
187
188 /* Release queue */
189 static int
190 q_release(struct rte_bbdev *dev, uint16_t q_id)
191 {
192         struct turbo_sw_queue *q = dev->data->queues[q_id].queue_private;
193
194         if (q != NULL) {
195                 rte_ring_free(q->processed_pkts);
196                 rte_free(q->enc_out);
197                 rte_free(q->enc_in);
198                 rte_free(q->ag);
199                 rte_free(q->code_block);
200                 rte_free(q->deint_input);
201                 rte_free(q->deint_output);
202                 rte_free(q->adapter_output);
203                 rte_free(q);
204                 dev->data->queues[q_id].queue_private = NULL;
205         }
206
207         rte_bbdev_log_debug("released device queue %u:%u",
208                         dev->data->dev_id, q_id);
209         return 0;
210 }
211
212 /* Setup a queue */
213 static int
214 q_setup(struct rte_bbdev *dev, uint16_t q_id,
215                 const struct rte_bbdev_queue_conf *queue_conf)
216 {
217         int ret;
218         struct turbo_sw_queue *q;
219         char name[RTE_RING_NAMESIZE];
220
221         /* Allocate the queue data structure. */
222         q = rte_zmalloc_socket(RTE_STR(DRIVER_NAME), sizeof(*q),
223                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
224         if (q == NULL) {
225                 rte_bbdev_log(ERR, "Failed to allocate queue memory");
226                 return -ENOMEM;
227         }
228
229         /* Allocate memory for encoder output. */
230         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_enc_o%u:%u",
231                         dev->data->dev_id, q_id);
232         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
233                 rte_bbdev_log(ERR,
234                                 "Creating queue name for device %u queue %u failed",
235                                 dev->data->dev_id, q_id);
236                 return -ENAMETOOLONG;
237         }
238         q->enc_out = rte_zmalloc_socket(name,
239                         ((RTE_BBDEV_MAX_TB_SIZE >> 3) + 3) *
240                         sizeof(*q->enc_out) * 3,
241                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
242         if (q->enc_out == NULL) {
243                 rte_bbdev_log(ERR,
244                         "Failed to allocate queue memory for %s", name);
245                 goto free_q;
246         }
247
248         /* Allocate memory for rate matching output. */
249         ret = snprintf(name, RTE_RING_NAMESIZE,
250                         RTE_STR(DRIVER_NAME)"_enc_i%u:%u", dev->data->dev_id,
251                         q_id);
252         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
253                 rte_bbdev_log(ERR,
254                                 "Creating queue name for device %u queue %u failed",
255                                 dev->data->dev_id, q_id);
256                 return -ENAMETOOLONG;
257         }
258         q->enc_in = rte_zmalloc_socket(name,
259                         (RTE_BBDEV_MAX_CB_SIZE >> 3) * sizeof(*q->enc_in),
260                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
261         if (q->enc_in == NULL) {
262                 rte_bbdev_log(ERR,
263                         "Failed to allocate queue memory for %s", name);
264                 goto free_q;
265         }
266
267         /* Allocate memory for Aplha Gamma temp buffer. */
268         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_ag%u:%u",
269                         dev->data->dev_id, q_id);
270         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
271                 rte_bbdev_log(ERR,
272                                 "Creating queue name for device %u queue %u failed",
273                                 dev->data->dev_id, q_id);
274                 return -ENAMETOOLONG;
275         }
276         q->ag = rte_zmalloc_socket(name,
277                         RTE_BBDEV_MAX_CB_SIZE * 10 * sizeof(*q->ag),
278                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
279         if (q->ag == NULL) {
280                 rte_bbdev_log(ERR,
281                         "Failed to allocate queue memory for %s", name);
282                 goto free_q;
283         }
284
285         /* Allocate memory for code block temp buffer. */
286         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"_cb%u:%u",
287                         dev->data->dev_id, q_id);
288         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
289                 rte_bbdev_log(ERR,
290                                 "Creating queue name for device %u queue %u failed",
291                                 dev->data->dev_id, q_id);
292                 return -ENAMETOOLONG;
293         }
294         q->code_block = rte_zmalloc_socket(name,
295                         RTE_BBDEV_MAX_CB_SIZE * sizeof(*q->code_block),
296                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
297         if (q->code_block == NULL) {
298                 rte_bbdev_log(ERR,
299                         "Failed to allocate queue memory for %s", name);
300                 goto free_q;
301         }
302
303         /* Allocate memory for Deinterleaver input. */
304         ret = snprintf(name, RTE_RING_NAMESIZE,
305                         RTE_STR(DRIVER_NAME)"_de_i%u:%u",
306                         dev->data->dev_id, q_id);
307         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
308                 rte_bbdev_log(ERR,
309                                 "Creating queue name for device %u queue %u failed",
310                                 dev->data->dev_id, q_id);
311                 return -ENAMETOOLONG;
312         }
313         q->deint_input = rte_zmalloc_socket(name,
314                         DEINT_INPUT_BUF_SIZE * sizeof(*q->deint_input),
315                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
316         if (q->deint_input == NULL) {
317                 rte_bbdev_log(ERR,
318                         "Failed to allocate queue memory for %s", name);
319                 goto free_q;
320         }
321
322         /* Allocate memory for Deinterleaver output. */
323         ret = snprintf(name, RTE_RING_NAMESIZE,
324                         RTE_STR(DRIVER_NAME)"_de_o%u:%u",
325                         dev->data->dev_id, q_id);
326         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
327                 rte_bbdev_log(ERR,
328                                 "Creating queue name for device %u queue %u failed",
329                                 dev->data->dev_id, q_id);
330                 return -ENAMETOOLONG;
331         }
332         q->deint_output = rte_zmalloc_socket(NULL,
333                         DEINT_OUTPUT_BUF_SIZE * sizeof(*q->deint_output),
334                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
335         if (q->deint_output == NULL) {
336                 rte_bbdev_log(ERR,
337                         "Failed to allocate queue memory for %s", name);
338                 goto free_q;
339         }
340
341         /* Allocate memory for Adapter output. */
342         ret = snprintf(name, RTE_RING_NAMESIZE,
343                         RTE_STR(DRIVER_NAME)"_ada_o%u:%u",
344                         dev->data->dev_id, q_id);
345         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
346                 rte_bbdev_log(ERR,
347                                 "Creating queue name for device %u queue %u failed",
348                                 dev->data->dev_id, q_id);
349                 return -ENAMETOOLONG;
350         }
351         q->adapter_output = rte_zmalloc_socket(NULL,
352                         ADAPTER_OUTPUT_BUF_SIZE * sizeof(*q->adapter_output),
353                         RTE_CACHE_LINE_SIZE, queue_conf->socket);
354         if (q->adapter_output == NULL) {
355                 rte_bbdev_log(ERR,
356                         "Failed to allocate queue memory for %s", name);
357                 goto free_q;
358         }
359
360         /* Create ring for packets awaiting to be dequeued. */
361         ret = snprintf(name, RTE_RING_NAMESIZE, RTE_STR(DRIVER_NAME)"%u:%u",
362                         dev->data->dev_id, q_id);
363         if ((ret < 0) || (ret >= (int)RTE_RING_NAMESIZE)) {
364                 rte_bbdev_log(ERR,
365                                 "Creating queue name for device %u queue %u failed",
366                                 dev->data->dev_id, q_id);
367                 return -ENAMETOOLONG;
368         }
369         q->processed_pkts = rte_ring_create(name, queue_conf->queue_size,
370                         queue_conf->socket, RING_F_SP_ENQ | RING_F_SC_DEQ);
371         if (q->processed_pkts == NULL) {
372                 rte_bbdev_log(ERR, "Failed to create ring for %s", name);
373                 goto free_q;
374         }
375
376         q->type = queue_conf->op_type;
377
378         dev->data->queues[q_id].queue_private = q;
379         rte_bbdev_log_debug("setup device queue %s", name);
380         return 0;
381
382 free_q:
383         rte_ring_free(q->processed_pkts);
384         rte_free(q->enc_out);
385         rte_free(q->enc_in);
386         rte_free(q->ag);
387         rte_free(q->code_block);
388         rte_free(q->deint_input);
389         rte_free(q->deint_output);
390         rte_free(q->adapter_output);
391         rte_free(q);
392         return -EFAULT;
393 }
394
395 static const struct rte_bbdev_ops pmd_ops = {
396         .info_get = info_get,
397         .queue_setup = q_setup,
398         .queue_release = q_release
399 };
400
401 /* Checks if the encoder input buffer is correct.
402  * Returns 0 if it's valid, -1 otherwise.
403  */
404 static inline int
405 is_enc_input_valid(const uint16_t k, const int32_t k_idx,
406                 const uint16_t in_length)
407 {
408         if (k_idx < 0) {
409                 rte_bbdev_log(ERR, "K Index is invalid");
410                 return -1;
411         }
412
413         if (in_length - (k >> 3) < 0) {
414                 rte_bbdev_log(ERR,
415                                 "Mismatch between input length (%u bytes) and K (%u bits)",
416                                 in_length, k);
417                 return -1;
418         }
419
420         if (k > RTE_BBDEV_MAX_CB_SIZE) {
421                 rte_bbdev_log(ERR, "CB size (%u) is too big, max: %d",
422                                 k, RTE_BBDEV_MAX_CB_SIZE);
423                 return -1;
424         }
425
426         return 0;
427 }
428
429 /* Checks if the decoder input buffer is correct.
430  * Returns 0 if it's valid, -1 otherwise.
431  */
432 static inline int
433 is_dec_input_valid(int32_t k_idx, int16_t kw, int16_t in_length)
434 {
435         if (k_idx < 0) {
436                 rte_bbdev_log(ERR, "K index is invalid");
437                 return -1;
438         }
439
440         if (in_length - kw < 0) {
441                 rte_bbdev_log(ERR,
442                                 "Mismatch between input length (%u) and kw (%u)",
443                                 in_length, kw);
444                 return -1;
445         }
446
447         if (kw > RTE_BBDEV_MAX_KW) {
448                 rte_bbdev_log(ERR, "Input length (%u) is too big, max: %d",
449                                 kw, RTE_BBDEV_MAX_KW);
450                 return -1;
451         }
452
453         return 0;
454 }
455
456 static inline void
457 process_enc_cb(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
458                 uint8_t r, uint8_t c, uint16_t k, uint16_t ncb,
459                 uint32_t e, struct rte_mbuf *m_in, struct rte_mbuf *m_out,
460                 uint16_t in_offset, uint16_t out_offset, uint16_t total_left,
461                 struct rte_bbdev_stats *q_stats)
462 {
463         int ret;
464         int16_t k_idx;
465         uint16_t m;
466         uint8_t *in, *out0, *out1, *out2, *tmp_out, *rm_out;
467         uint64_t first_3_bytes = 0;
468         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
469         struct bblib_crc_request crc_req;
470         struct bblib_crc_response crc_resp;
471         struct bblib_turbo_encoder_request turbo_req;
472         struct bblib_turbo_encoder_response turbo_resp;
473         struct bblib_rate_match_dl_request rm_req;
474         struct bblib_rate_match_dl_response rm_resp;
475 #ifdef RTE_BBDEV_OFFLOAD_COST
476         uint64_t start_time;
477 #else
478         RTE_SET_USED(q_stats);
479 #endif
480
481         k_idx = compute_idx(k);
482         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
483
484         /* CRC24A (for TB) */
485         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH) &&
486                 (enc->code_block_mode == 1)) {
487                 ret = is_enc_input_valid(k - 24, k_idx, total_left);
488                 if (ret != 0) {
489                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
490                         return;
491                 }
492                 crc_req.data = in;
493                 crc_req.len = k - 24;
494                 /* Check if there is a room for CRC bits if not use
495                  * the temporary buffer.
496                  */
497                 if (rte_pktmbuf_append(m_in, 3) == NULL) {
498                         rte_memcpy(q->enc_in, in, (k - 24) >> 3);
499                         in = q->enc_in;
500                 } else {
501                         /* Store 3 first bytes of next CB as they will be
502                          * overwritten by CRC bytes. If it is the last CB then
503                          * there is no point to store 3 next bytes and this
504                          * if..else branch will be omitted.
505                          */
506                         first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
507                 }
508
509                 crc_resp.data = in;
510 #ifdef RTE_BBDEV_OFFLOAD_COST
511                 start_time = rte_rdtsc_precise();
512 #endif
513                 bblib_lte_crc24a_gen(&crc_req, &crc_resp);
514 #ifdef RTE_BBDEV_OFFLOAD_COST
515                 q_stats->offload_time += rte_rdtsc_precise() - start_time;
516 #endif
517         } else if (enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) {
518                 /* CRC24B */
519                 ret = is_enc_input_valid(k - 24, k_idx, total_left);
520                 if (ret != 0) {
521                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
522                         return;
523                 }
524                 crc_req.data = in;
525                 crc_req.len = k - 24;
526                 /* Check if there is a room for CRC bits if this is the last
527                  * CB in TB. If not use temporary buffer.
528                  */
529                 if ((c - r == 1) && (rte_pktmbuf_append(m_in, 3) == NULL)) {
530                         rte_memcpy(q->enc_in, in, (k - 24) >> 3);
531                         in = q->enc_in;
532                 } else if (c - r > 1) {
533                         /* Store 3 first bytes of next CB as they will be
534                          * overwritten by CRC bytes. If it is the last CB then
535                          * there is no point to store 3 next bytes and this
536                          * if..else branch will be omitted.
537                          */
538                         first_3_bytes = *((uint64_t *)&in[(k - 32) >> 3]);
539                 }
540
541                 crc_resp.data = in;
542 #ifdef RTE_BBDEV_OFFLOAD_COST
543                 start_time = rte_rdtsc_precise();
544 #endif
545                 bblib_lte_crc24b_gen(&crc_req, &crc_resp);
546 #ifdef RTE_BBDEV_OFFLOAD_COST
547                 q_stats->offload_time += rte_rdtsc_precise() - start_time;
548 #endif
549         } else {
550                 ret = is_enc_input_valid(k, k_idx, total_left);
551                 if (ret != 0) {
552                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
553                         return;
554                 }
555         }
556
557         /* Turbo encoder */
558
559         /* Each bit layer output from turbo encoder is (k+4) bits long, i.e.
560          * input length + 4 tail bits. That's (k/8) + 1 bytes after rounding up.
561          * So dst_data's length should be 3*(k/8) + 3 bytes.
562          * In Rate-matching bypass case outputs pointers passed to encoder
563          * (out0, out1 and out2) can directly point to addresses of output from
564          * turbo_enc entity.
565          */
566         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
567                 out0 = q->enc_out;
568                 out1 = RTE_PTR_ADD(out0, (k >> 3) + 1);
569                 out2 = RTE_PTR_ADD(out1, (k >> 3) + 1);
570         } else {
571                 out0 = (uint8_t *)rte_pktmbuf_append(m_out, (k >> 3) * 3 + 2);
572                 if (out0 == NULL) {
573                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
574                         rte_bbdev_log(ERR,
575                                         "Too little space in output mbuf");
576                         return;
577                 }
578                 enc->output.length += (k >> 3) * 3 + 2;
579                 /* rte_bbdev_op_data.offset can be different than the
580                  * offset of the appended bytes
581                  */
582                 out0 = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
583                 out1 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
584                                 out_offset + (k >> 3) + 1);
585                 out2 = rte_pktmbuf_mtod_offset(m_out, uint8_t *,
586                                 out_offset + 2 * ((k >> 3) + 1));
587         }
588
589         turbo_req.case_id = k_idx;
590         turbo_req.input_win = in;
591         turbo_req.length = k >> 3;
592         turbo_resp.output_win_0 = out0;
593         turbo_resp.output_win_1 = out1;
594         turbo_resp.output_win_2 = out2;
595
596 #ifdef RTE_BBDEV_OFFLOAD_COST
597         start_time = rte_rdtsc_precise();
598 #endif
599
600         if (bblib_turbo_encoder(&turbo_req, &turbo_resp) != 0) {
601                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
602                 rte_bbdev_log(ERR, "Turbo Encoder failed");
603                 return;
604         }
605
606 #ifdef RTE_BBDEV_OFFLOAD_COST
607         q_stats->offload_time += rte_rdtsc_precise() - start_time;
608 #endif
609
610         /* Restore 3 first bytes of next CB if they were overwritten by CRC*/
611         if (first_3_bytes != 0)
612                 *((uint64_t *)&in[(k - 32) >> 3]) = first_3_bytes;
613
614         /* Rate-matching */
615         if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH) {
616                 uint8_t mask_id;
617                 /* Integer round up division by 8 */
618                 uint16_t out_len = (e + 7) >> 3;
619                 /* The mask array is indexed using E%8. E is an even number so
620                  * there are only 4 possible values.
621                  */
622                 const uint8_t mask_out[] = {0xFF, 0xC0, 0xF0, 0xFC};
623
624                 /* get output data starting address */
625                 rm_out = (uint8_t *)rte_pktmbuf_append(m_out, out_len);
626                 if (rm_out == NULL) {
627                         op->status |= 1 << RTE_BBDEV_DATA_ERROR;
628                         rte_bbdev_log(ERR,
629                                         "Too little space in output mbuf");
630                         return;
631                 }
632                 /* rte_bbdev_op_data.offset can be different than the offset
633                  * of the appended bytes
634                  */
635                 rm_out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
636
637                 /* index of current code block */
638                 rm_req.r = r;
639                 /* total number of code block */
640                 rm_req.C = c;
641                 /* For DL - 1, UL - 0 */
642                 rm_req.direction = 1;
643                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nsoft, KMIMO
644                  * and MDL_HARQ are used for Ncb calculation. As Ncb is already
645                  * known we can adjust those parameters
646                  */
647                 rm_req.Nsoft = ncb * rm_req.C;
648                 rm_req.KMIMO = 1;
649                 rm_req.MDL_HARQ = 1;
650                 /* According to 3ggp 36.212 Spec 5.1.4.1.2 section Nl, Qm and G
651                  * are used for E calculation. As E is already known we can
652                  * adjust those parameters
653                  */
654                 rm_req.NL = e;
655                 rm_req.Qm = 1;
656                 rm_req.G = rm_req.NL * rm_req.Qm * rm_req.C;
657
658                 rm_req.rvidx = enc->rv_index;
659                 rm_req.Kidx = k_idx - 1;
660                 rm_req.nLen = k + 4;
661                 rm_req.tin0 = out0;
662                 rm_req.tin1 = out1;
663                 rm_req.tin2 = out2;
664                 rm_resp.output = rm_out;
665                 rm_resp.OutputLen = out_len;
666                 if (enc->op_flags & RTE_BBDEV_TURBO_RV_INDEX_BYPASS)
667                         rm_req.bypass_rvidx = 1;
668                 else
669                         rm_req.bypass_rvidx = 0;
670
671 #ifdef RTE_BBDEV_OFFLOAD_COST
672                 start_time = rte_rdtsc_precise();
673 #endif
674
675                 if (bblib_rate_match_dl(&rm_req, &rm_resp) != 0) {
676                         op->status |= 1 << RTE_BBDEV_DRV_ERROR;
677                         rte_bbdev_log(ERR, "Rate matching failed");
678                         return;
679                 }
680
681                 /* SW fills an entire last byte even if E%8 != 0. Clear the
682                  * superfluous data bits for consistency with HW device.
683                  */
684                 mask_id = (e & 7) >> 1;
685                 rm_out[out_len - 1] &= mask_out[mask_id];
686
687 #ifdef RTE_BBDEV_OFFLOAD_COST
688                 q_stats->offload_time += rte_rdtsc_precise() - start_time;
689 #endif
690
691                 enc->output.length += rm_resp.OutputLen;
692         } else {
693                 /* Rate matching is bypassed */
694
695                 /* Completing last byte of out0 (where 4 tail bits are stored)
696                  * by moving first 4 bits from out1
697                  */
698                 tmp_out = (uint8_t *) --out1;
699                 *tmp_out = *tmp_out | ((*(tmp_out + 1) & 0xF0) >> 4);
700                 tmp_out++;
701                 /* Shifting out1 data by 4 bits to the left */
702                 for (m = 0; m < k >> 3; ++m) {
703                         uint8_t *first = tmp_out;
704                         uint8_t second = *(tmp_out + 1);
705                         *first = (*first << 4) | ((second & 0xF0) >> 4);
706                         tmp_out++;
707                 }
708                 /* Shifting out2 data by 8 bits to the left */
709                 for (m = 0; m < (k >> 3) + 1; ++m) {
710                         *tmp_out = *(tmp_out + 1);
711                         tmp_out++;
712                 }
713                 *tmp_out = 0;
714         }
715 }
716
717 static inline void
718 enqueue_enc_one_op(struct turbo_sw_queue *q, struct rte_bbdev_enc_op *op,
719                 struct rte_bbdev_stats *queue_stats)
720 {
721         uint8_t c, r, crc24_bits = 0;
722         uint16_t k, ncb;
723         uint32_t e;
724         struct rte_bbdev_op_turbo_enc *enc = &op->turbo_enc;
725         uint16_t in_offset = enc->input.offset;
726         uint16_t out_offset = enc->output.offset;
727         struct rte_mbuf *m_in = enc->input.data;
728         struct rte_mbuf *m_out = enc->output.data;
729         uint16_t total_left = enc->input.length;
730
731         /* Clear op status */
732         op->status = 0;
733
734         if (total_left > RTE_BBDEV_MAX_TB_SIZE >> 3) {
735                 rte_bbdev_log(ERR, "TB size (%u) is too big, max: %d",
736                                 total_left, RTE_BBDEV_MAX_TB_SIZE);
737                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
738                 return;
739         }
740
741         if (m_in == NULL || m_out == NULL) {
742                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
743                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
744                 return;
745         }
746
747         if ((enc->op_flags & RTE_BBDEV_TURBO_CRC_24B_ATTACH) ||
748                 (enc->op_flags & RTE_BBDEV_TURBO_CRC_24A_ATTACH))
749                 crc24_bits = 24;
750
751         if (enc->code_block_mode == 0) { /* For Transport Block mode */
752                 c = enc->tb_params.c;
753                 r = enc->tb_params.r;
754         } else {/* For Code Block mode */
755                 c = 1;
756                 r = 0;
757         }
758
759         while (total_left > 0 && r < c) {
760                 if (enc->code_block_mode == 0) {
761                         k = (r < enc->tb_params.c_neg) ?
762                                 enc->tb_params.k_neg : enc->tb_params.k_pos;
763                         ncb = (r < enc->tb_params.c_neg) ?
764                                 enc->tb_params.ncb_neg : enc->tb_params.ncb_pos;
765                         e = (r < enc->tb_params.cab) ?
766                                 enc->tb_params.ea : enc->tb_params.eb;
767                 } else {
768                         k = enc->cb_params.k;
769                         ncb = enc->cb_params.ncb;
770                         e = enc->cb_params.e;
771                 }
772
773                 process_enc_cb(q, op, r, c, k, ncb, e, m_in,
774                                 m_out, in_offset, out_offset, total_left,
775                                 queue_stats);
776                 /* Update total_left */
777                 total_left -= (k - crc24_bits) >> 3;
778                 /* Update offsets for next CBs (if exist) */
779                 in_offset += (k - crc24_bits) >> 3;
780                 if (enc->op_flags & RTE_BBDEV_TURBO_RATE_MATCH)
781                         out_offset += e >> 3;
782                 else
783                         out_offset += (k >> 3) * 3 + 2;
784                 r++;
785         }
786
787         /* check if all input data was processed */
788         if (total_left != 0) {
789                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
790                 rte_bbdev_log(ERR,
791                                 "Mismatch between mbuf length and included CBs sizes");
792         }
793 }
794
795 static inline uint16_t
796 enqueue_enc_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_enc_op **ops,
797                 uint16_t nb_ops, struct rte_bbdev_stats *queue_stats)
798 {
799         uint16_t i;
800 #ifdef RTE_BBDEV_OFFLOAD_COST
801         queue_stats->offload_time = 0;
802 #endif
803
804         for (i = 0; i < nb_ops; ++i)
805                 enqueue_enc_one_op(q, ops[i], queue_stats);
806
807         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
808                         NULL);
809 }
810
811 /* Remove the padding bytes from a cyclic buffer.
812  * The input buffer is a data stream wk as described in 3GPP TS 36.212 section
813  * 5.1.4.1.2 starting from w0 and with length Ncb bytes.
814  * The output buffer is a data stream wk with pruned padding bytes. It's length
815  * is 3*D bytes and the order of non-padding bytes is preserved.
816  */
817 static inline void
818 remove_nulls_from_circular_buf(const uint8_t *in, uint8_t *out, uint16_t k,
819                 uint16_t ncb)
820 {
821         uint32_t in_idx, out_idx, c_idx;
822         const uint32_t d = k + 4;
823         const uint32_t kw = (ncb / 3);
824         const uint32_t nd = kw - d;
825         const uint32_t r_subblock = kw / RTE_BBDEV_C_SUBBLOCK;
826         /* Inter-column permutation pattern */
827         const uint32_t P[RTE_BBDEV_C_SUBBLOCK] = {0, 16, 8, 24, 4, 20, 12, 28,
828                         2, 18, 10, 26, 6, 22, 14, 30, 1, 17, 9, 25, 5, 21, 13,
829                         29, 3, 19, 11, 27, 7, 23, 15, 31};
830         in_idx = 0;
831         out_idx = 0;
832
833         /* The padding bytes are at the first Nd positions in the first row. */
834         for (c_idx = 0; in_idx < kw; in_idx += r_subblock, ++c_idx) {
835                 if (P[c_idx] < nd) {
836                         rte_memcpy(&out[out_idx], &in[in_idx + 1],
837                                         r_subblock - 1);
838                         out_idx += r_subblock - 1;
839                 } else {
840                         rte_memcpy(&out[out_idx], &in[in_idx], r_subblock);
841                         out_idx += r_subblock;
842                 }
843         }
844
845         /* First and second parity bits sub-blocks are interlaced. */
846         for (c_idx = 0; in_idx < ncb - 2 * r_subblock;
847                         in_idx += 2 * r_subblock, ++c_idx) {
848                 uint32_t second_block_c_idx = P[c_idx];
849                 uint32_t third_block_c_idx = P[c_idx] + 1;
850
851                 if (second_block_c_idx < nd && third_block_c_idx < nd) {
852                         rte_memcpy(&out[out_idx], &in[in_idx + 2],
853                                         2 * r_subblock - 2);
854                         out_idx += 2 * r_subblock - 2;
855                 } else if (second_block_c_idx >= nd &&
856                                 third_block_c_idx >= nd) {
857                         rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock);
858                         out_idx += 2 * r_subblock;
859                 } else if (second_block_c_idx < nd) {
860                         out[out_idx++] = in[in_idx];
861                         rte_memcpy(&out[out_idx], &in[in_idx + 2],
862                                         2 * r_subblock - 2);
863                         out_idx += 2 * r_subblock - 2;
864                 } else {
865                         rte_memcpy(&out[out_idx], &in[in_idx + 1],
866                                         2 * r_subblock - 1);
867                         out_idx += 2 * r_subblock - 1;
868                 }
869         }
870
871         /* Last interlaced row is different - its last byte is the only padding
872          * byte. We can have from 4 up to 28 padding bytes (Nd) per sub-block.
873          * After interlacing the 1st and 2nd parity sub-blocks we can have 0, 1
874          * or 2 padding bytes each time we make a step of 2 * R_SUBBLOCK bytes
875          * (moving to another column). 2nd parity sub-block uses the same
876          * inter-column permutation pattern as the systematic and 1st parity
877          * sub-blocks but it adds '1' to the resulting index and calculates the
878          * modulus of the result and Kw. Last column is mapped to itself (id 31)
879          * so the first byte taken from the 2nd parity sub-block will be the
880          * 32nd (31+1) byte, then 64th etc. (step is C_SUBBLOCK == 32) and the
881          * last byte will be the first byte from the sub-block:
882          * (32 + 32 * (R_SUBBLOCK-1)) % Kw == Kw % Kw == 0. Nd can't  be smaller
883          * than 4 so we know that bytes with ids 0, 1, 2 and 3 must be the
884          * padding bytes. The bytes from the 1st parity sub-block are the bytes
885          * from the 31st column - Nd can't be greater than 28 so we are sure
886          * that there are no padding bytes in 31st column.
887          */
888         rte_memcpy(&out[out_idx], &in[in_idx], 2 * r_subblock - 1);
889 }
890
891 static inline void
892 move_padding_bytes(const uint8_t *in, uint8_t *out, uint16_t k,
893                 uint16_t ncb)
894 {
895         uint16_t d = k + 4;
896         uint16_t kpi = ncb / 3;
897         uint16_t nd = kpi - d;
898
899         rte_memcpy(&out[nd], in, d);
900         rte_memcpy(&out[nd + kpi + 64], &in[kpi], d);
901         rte_memcpy(&out[(nd - 1) + 2 * (kpi + 64)], &in[2 * kpi], d);
902 }
903
904 static inline void
905 process_dec_cb(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op,
906                 uint8_t c, uint16_t k, uint16_t kw, struct rte_mbuf *m_in,
907                 struct rte_mbuf *m_out, uint16_t in_offset, uint16_t out_offset,
908                 bool check_crc_24b, uint16_t crc24_overlap, uint16_t total_left)
909 {
910         int ret;
911         int32_t k_idx;
912         int32_t iter_cnt;
913         uint8_t *in, *out, *adapter_input;
914         int32_t ncb, ncb_without_null;
915         struct bblib_turbo_adapter_ul_response adapter_resp;
916         struct bblib_turbo_adapter_ul_request adapter_req;
917         struct bblib_turbo_decoder_request turbo_req;
918         struct bblib_turbo_decoder_response turbo_resp;
919         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
920
921         k_idx = compute_idx(k);
922
923         ret = is_dec_input_valid(k_idx, kw, total_left);
924         if (ret != 0) {
925                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
926                 return;
927         }
928
929         in = rte_pktmbuf_mtod_offset(m_in, uint8_t *, in_offset);
930         ncb = kw;
931         ncb_without_null = (k + 4) * 3;
932
933         if (check_bit(dec->op_flags, RTE_BBDEV_TURBO_SUBBLOCK_DEINTERLEAVE)) {
934                 struct bblib_deinterleave_ul_request deint_req;
935                 struct bblib_deinterleave_ul_response deint_resp;
936
937                 /* SW decoder accepts only a circular buffer without NULL bytes
938                  * so the input needs to be converted.
939                  */
940                 remove_nulls_from_circular_buf(in, q->deint_input, k, ncb);
941
942                 deint_req.pharqbuffer = q->deint_input;
943                 deint_req.ncb = ncb_without_null;
944                 deint_resp.pinteleavebuffer = q->deint_output;
945                 bblib_deinterleave_ul(&deint_req, &deint_resp);
946         } else
947                 move_padding_bytes(in, q->deint_output, k, ncb);
948
949         adapter_input = q->deint_output;
950
951         if (dec->op_flags & RTE_BBDEV_TURBO_POS_LLR_1_BIT_IN)
952                 adapter_req.isinverted = 1;
953         else if (dec->op_flags & RTE_BBDEV_TURBO_NEG_LLR_1_BIT_IN)
954                 adapter_req.isinverted = 0;
955         else {
956                 op->status |= 1 << RTE_BBDEV_DRV_ERROR;
957                 rte_bbdev_log(ERR, "LLR format wasn't specified");
958                 return;
959         }
960
961         adapter_req.ncb = ncb_without_null;
962         adapter_req.pinteleavebuffer = adapter_input;
963         adapter_resp.pharqout = q->adapter_output;
964         bblib_turbo_adapter_ul(&adapter_req, &adapter_resp);
965
966         out = (uint8_t *)rte_pktmbuf_append(m_out, ((k - crc24_overlap) >> 3));
967         if (out == NULL) {
968                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
969                 rte_bbdev_log(ERR, "Too little space in output mbuf");
970                 return;
971         }
972         /* rte_bbdev_op_data.offset can be different than the offset of the
973          * appended bytes
974          */
975         out = rte_pktmbuf_mtod_offset(m_out, uint8_t *, out_offset);
976         if (check_crc_24b)
977                 turbo_req.c = c + 1;
978         else
979                 turbo_req.c = c;
980         turbo_req.input = (int8_t *)q->adapter_output;
981         turbo_req.k = k;
982         turbo_req.k_idx = k_idx;
983         turbo_req.max_iter_num = dec->iter_max;
984         turbo_req.early_term_disable = !check_bit(dec->op_flags,
985                         RTE_BBDEV_TURBO_EARLY_TERMINATION);
986         turbo_resp.ag_buf = q->ag;
987         turbo_resp.cb_buf = q->code_block;
988         turbo_resp.output = out;
989         iter_cnt = bblib_turbo_decoder(&turbo_req, &turbo_resp);
990         dec->hard_output.length += (k >> 3);
991
992         if (iter_cnt > 0) {
993                 /* Temporary solution for returned iter_count from SDK */
994                 iter_cnt = (iter_cnt - 1) / 2;
995                 dec->iter_count = RTE_MAX(iter_cnt, dec->iter_count);
996         } else {
997                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
998                 rte_bbdev_log(ERR, "Turbo Decoder failed");
999                 return;
1000         }
1001 }
1002
1003 static inline void
1004 enqueue_dec_one_op(struct turbo_sw_queue *q, struct rte_bbdev_dec_op *op)
1005 {
1006         uint8_t c, r = 0;
1007         uint16_t kw, k = 0;
1008         uint16_t crc24_overlap = 0;
1009         struct rte_bbdev_op_turbo_dec *dec = &op->turbo_dec;
1010         struct rte_mbuf *m_in = dec->input.data;
1011         struct rte_mbuf *m_out = dec->hard_output.data;
1012         uint16_t in_offset = dec->input.offset;
1013         uint16_t total_left = dec->input.length;
1014         uint16_t out_offset = dec->hard_output.offset;
1015
1016         /* Clear op status */
1017         op->status = 0;
1018
1019         if (m_in == NULL || m_out == NULL) {
1020                 rte_bbdev_log(ERR, "Invalid mbuf pointer");
1021                 op->status = 1 << RTE_BBDEV_DATA_ERROR;
1022                 return;
1023         }
1024
1025         if (dec->code_block_mode == 0) { /* For Transport Block mode */
1026                 c = dec->tb_params.c;
1027         } else { /* For Code Block mode */
1028                 k = dec->cb_params.k;
1029                 c = 1;
1030         }
1031
1032         if ((c > 1) && !check_bit(dec->op_flags,
1033                 RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP))
1034                 crc24_overlap = 24;
1035
1036         while (total_left > 0) {
1037                 if (dec->code_block_mode == 0)
1038                         k = (r < dec->tb_params.c_neg) ?
1039                                 dec->tb_params.k_neg : dec->tb_params.k_pos;
1040
1041                 /* Calculates circular buffer size (Kw).
1042                  * According to 3gpp 36.212 section 5.1.4.2
1043                  *   Kw = 3 * Kpi,
1044                  * where:
1045                  *   Kpi = nCol * nRow
1046                  * where nCol is 32 and nRow can be calculated from:
1047                  *   D =< nCol * nRow
1048                  * where D is the size of each output from turbo encoder block
1049                  * (k + 4).
1050                  */
1051                 kw = RTE_ALIGN_CEIL(k + 4, RTE_BBDEV_C_SUBBLOCK) * 3;
1052
1053                 process_dec_cb(q, op, c, k, kw, m_in, m_out, in_offset,
1054                                 out_offset, check_bit(dec->op_flags,
1055                                 RTE_BBDEV_TURBO_CRC_TYPE_24B), crc24_overlap,
1056                                 total_left);
1057                 /* To keep CRC24 attached to end of Code block, use
1058                  * RTE_BBDEV_TURBO_DEC_TB_CRC_24B_KEEP flag as it
1059                  * removed by default once verified.
1060                  */
1061
1062                 /* Update total_left */
1063                 total_left -= kw;
1064                 /* Update offsets for next CBs (if exist) */
1065                 in_offset += kw;
1066                 out_offset += ((k - crc24_overlap) >> 3);
1067                 r++;
1068         }
1069         if (total_left != 0) {
1070                 op->status |= 1 << RTE_BBDEV_DATA_ERROR;
1071                 rte_bbdev_log(ERR,
1072                                 "Mismatch between mbuf length and included Circular buffer sizes");
1073         }
1074 }
1075
1076 static inline uint16_t
1077 enqueue_dec_all_ops(struct turbo_sw_queue *q, struct rte_bbdev_dec_op **ops,
1078                 uint16_t nb_ops)
1079 {
1080         uint16_t i;
1081
1082         for (i = 0; i < nb_ops; ++i)
1083                 enqueue_dec_one_op(q, ops[i]);
1084
1085         return rte_ring_enqueue_burst(q->processed_pkts, (void **)ops, nb_ops,
1086                         NULL);
1087 }
1088
1089 /* Enqueue burst */
1090 static uint16_t
1091 enqueue_enc_ops(struct rte_bbdev_queue_data *q_data,
1092                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1093 {
1094         void *queue = q_data->queue_private;
1095         struct turbo_sw_queue *q = queue;
1096         uint16_t nb_enqueued = 0;
1097
1098         nb_enqueued = enqueue_enc_all_ops(q, ops, nb_ops, &q_data->queue_stats);
1099
1100         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1101         q_data->queue_stats.enqueued_count += nb_enqueued;
1102
1103         return nb_enqueued;
1104 }
1105
1106 /* Enqueue burst */
1107 static uint16_t
1108 enqueue_dec_ops(struct rte_bbdev_queue_data *q_data,
1109                  struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1110 {
1111         void *queue = q_data->queue_private;
1112         struct turbo_sw_queue *q = queue;
1113         uint16_t nb_enqueued = 0;
1114
1115         nb_enqueued = enqueue_dec_all_ops(q, ops, nb_ops);
1116
1117         q_data->queue_stats.enqueue_err_count += nb_ops - nb_enqueued;
1118         q_data->queue_stats.enqueued_count += nb_enqueued;
1119
1120         return nb_enqueued;
1121 }
1122
1123 /* Dequeue decode burst */
1124 static uint16_t
1125 dequeue_dec_ops(struct rte_bbdev_queue_data *q_data,
1126                 struct rte_bbdev_dec_op **ops, uint16_t nb_ops)
1127 {
1128         struct turbo_sw_queue *q = q_data->queue_private;
1129         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1130                         (void **)ops, nb_ops, NULL);
1131         q_data->queue_stats.dequeued_count += nb_dequeued;
1132
1133         return nb_dequeued;
1134 }
1135
1136 /* Dequeue encode burst */
1137 static uint16_t
1138 dequeue_enc_ops(struct rte_bbdev_queue_data *q_data,
1139                 struct rte_bbdev_enc_op **ops, uint16_t nb_ops)
1140 {
1141         struct turbo_sw_queue *q = q_data->queue_private;
1142         uint16_t nb_dequeued = rte_ring_dequeue_burst(q->processed_pkts,
1143                         (void **)ops, nb_ops, NULL);
1144         q_data->queue_stats.dequeued_count += nb_dequeued;
1145
1146         return nb_dequeued;
1147 }
1148
1149 /* Parse 16bit integer from string argument */
1150 static inline int
1151 parse_u16_arg(const char *key, const char *value, void *extra_args)
1152 {
1153         uint16_t *u16 = extra_args;
1154         unsigned int long result;
1155
1156         if ((value == NULL) || (extra_args == NULL))
1157                 return -EINVAL;
1158         errno = 0;
1159         result = strtoul(value, NULL, 0);
1160         if ((result >= (1 << 16)) || (errno != 0)) {
1161                 rte_bbdev_log(ERR, "Invalid value %lu for %s", result, key);
1162                 return -ERANGE;
1163         }
1164         *u16 = (uint16_t)result;
1165         return 0;
1166 }
1167
1168 /* Parse parameters used to create device */
1169 static int
1170 parse_turbo_sw_params(struct turbo_sw_params *params, const char *input_args)
1171 {
1172         struct rte_kvargs *kvlist = NULL;
1173         int ret = 0;
1174
1175         if (params == NULL)
1176                 return -EINVAL;
1177         if (input_args) {
1178                 kvlist = rte_kvargs_parse(input_args, turbo_sw_valid_params);
1179                 if (kvlist == NULL)
1180                         return -EFAULT;
1181
1182                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[0],
1183                                         &parse_u16_arg, &params->queues_num);
1184                 if (ret < 0)
1185                         goto exit;
1186
1187                 ret = rte_kvargs_process(kvlist, turbo_sw_valid_params[1],
1188                                         &parse_u16_arg, &params->socket_id);
1189                 if (ret < 0)
1190                         goto exit;
1191
1192                 if (params->socket_id >= RTE_MAX_NUMA_NODES) {
1193                         rte_bbdev_log(ERR, "Invalid socket, must be < %u",
1194                                         RTE_MAX_NUMA_NODES);
1195                         goto exit;
1196                 }
1197         }
1198
1199 exit:
1200         if (kvlist)
1201                 rte_kvargs_free(kvlist);
1202         return ret;
1203 }
1204
1205 /* Create device */
1206 static int
1207 turbo_sw_bbdev_create(struct rte_vdev_device *vdev,
1208                 struct turbo_sw_params *init_params)
1209 {
1210         struct rte_bbdev *bbdev;
1211         const char *name = rte_vdev_device_name(vdev);
1212
1213         bbdev = rte_bbdev_allocate(name);
1214         if (bbdev == NULL)
1215                 return -ENODEV;
1216
1217         bbdev->data->dev_private = rte_zmalloc_socket(name,
1218                         sizeof(struct bbdev_private), RTE_CACHE_LINE_SIZE,
1219                         init_params->socket_id);
1220         if (bbdev->data->dev_private == NULL) {
1221                 rte_bbdev_release(bbdev);
1222                 return -ENOMEM;
1223         }
1224
1225         bbdev->dev_ops = &pmd_ops;
1226         bbdev->device = &vdev->device;
1227         bbdev->data->socket_id = init_params->socket_id;
1228         bbdev->intr_handle = NULL;
1229
1230         /* register rx/tx burst functions for data path */
1231         bbdev->dequeue_enc_ops = dequeue_enc_ops;
1232         bbdev->dequeue_dec_ops = dequeue_dec_ops;
1233         bbdev->enqueue_enc_ops = enqueue_enc_ops;
1234         bbdev->enqueue_dec_ops = enqueue_dec_ops;
1235         ((struct bbdev_private *) bbdev->data->dev_private)->max_nb_queues =
1236                         init_params->queues_num;
1237
1238         return 0;
1239 }
1240
1241 /* Initialise device */
1242 static int
1243 turbo_sw_bbdev_probe(struct rte_vdev_device *vdev)
1244 {
1245         struct turbo_sw_params init_params = {
1246                 rte_socket_id(),
1247                 RTE_BBDEV_DEFAULT_MAX_NB_QUEUES
1248         };
1249         const char *name;
1250         const char *input_args;
1251
1252         if (vdev == NULL)
1253                 return -EINVAL;
1254
1255         name = rte_vdev_device_name(vdev);
1256         if (name == NULL)
1257                 return -EINVAL;
1258         input_args = rte_vdev_device_args(vdev);
1259         parse_turbo_sw_params(&init_params, input_args);
1260
1261         rte_bbdev_log_debug(
1262                         "Initialising %s on NUMA node %d with max queues: %d\n",
1263                         name, init_params.socket_id, init_params.queues_num);
1264
1265         return turbo_sw_bbdev_create(vdev, &init_params);
1266 }
1267
1268 /* Uninitialise device */
1269 static int
1270 turbo_sw_bbdev_remove(struct rte_vdev_device *vdev)
1271 {
1272         struct rte_bbdev *bbdev;
1273         const char *name;
1274
1275         if (vdev == NULL)
1276                 return -EINVAL;
1277
1278         name = rte_vdev_device_name(vdev);
1279         if (name == NULL)
1280                 return -EINVAL;
1281
1282         bbdev = rte_bbdev_get_named_dev(name);
1283         if (bbdev == NULL)
1284                 return -EINVAL;
1285
1286         rte_free(bbdev->data->dev_private);
1287
1288         return rte_bbdev_release(bbdev);
1289 }
1290
1291 static struct rte_vdev_driver bbdev_turbo_sw_pmd_drv = {
1292         .probe = turbo_sw_bbdev_probe,
1293         .remove = turbo_sw_bbdev_remove
1294 };
1295
1296 RTE_PMD_REGISTER_VDEV(DRIVER_NAME, bbdev_turbo_sw_pmd_drv);
1297 RTE_PMD_REGISTER_PARAM_STRING(DRIVER_NAME,
1298         TURBO_SW_MAX_NB_QUEUES_ARG"=<int> "
1299         TURBO_SW_SOCKET_ID_ARG"=<int>");
1300 RTE_PMD_REGISTER_ALIAS(DRIVER_NAME, turbo_sw);
1301
1302 RTE_INIT(turbo_sw_bbdev_init_log)
1303 {
1304         bbdev_turbo_sw_logtype = rte_log_register("pmd.bb.turbo_sw");
1305         if (bbdev_turbo_sw_logtype >= 0)
1306                 rte_log_set_level(bbdev_turbo_sw_logtype, RTE_LOG_NOTICE);
1307 }