5d407cc01d6f6497b7f738ed2c399766df26d864
[deb_dpdk.git] / drivers / bus / fslmc / qbman / qbman_portal.c
1 /*-
2  *   BSD LICENSE
3  *
4  * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *     * Redistributions of source code must retain the above copyright
9  *       notice, this list of conditions and the following disclaimer.
10  *     * Redistributions in binary form must reproduce the above copyright
11  *       notice, this list of conditions and the following disclaimer in the
12  *       documentation and/or other materials provided with the distribution.
13  *     * Neither the name of Freescale Semiconductor nor the
14  *       names of its contributors may be used to endorse or promote products
15  *       derived from this software without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
18  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
19  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
20  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
21  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
22  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28
29 #include "qbman_portal.h"
30
31 /* QBMan portal management command codes */
32 #define QBMAN_MC_ACQUIRE       0x30
33 #define QBMAN_WQCHAN_CONFIGURE 0x46
34
35 /* CINH register offsets */
36 #define QBMAN_CINH_SWP_EQCR_PI 0x800
37 #define QBMAN_CINH_SWP_EQCR_CI 0x840
38 #define QBMAN_CINH_SWP_EQAR    0x8c0
39 #define QBMAN_CINH_SWP_DQPI    0xa00
40 #define QBMAN_CINH_SWP_DCAP    0xac0
41 #define QBMAN_CINH_SWP_SDQCR   0xb00
42 #define QBMAN_CINH_SWP_RAR     0xcc0
43 #define QBMAN_CINH_SWP_ISR     0xe00
44 #define QBMAN_CINH_SWP_IER     0xe40
45 #define QBMAN_CINH_SWP_ISDR    0xe80
46 #define QBMAN_CINH_SWP_IIR     0xec0
47
48 /* CENA register offsets */
49 #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((uint32_t)(n) << 6))
50 #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((uint32_t)(n) << 6))
51 #define QBMAN_CENA_SWP_RCR(n)  (0x400 + ((uint32_t)(n) << 6))
52 #define QBMAN_CENA_SWP_CR      0x600
53 #define QBMAN_CENA_SWP_RR(vb)  (0x700 + ((uint32_t)(vb) >> 1))
54 #define QBMAN_CENA_SWP_VDQCR   0x780
55 #define QBMAN_CENA_SWP_EQCR_CI 0x840
56
57 /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
58 #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)p & 0x1ff) >> 6)
59
60 /* QBMan FQ management command codes */
61 #define QBMAN_FQ_SCHEDULE       0x48
62 #define QBMAN_FQ_FORCE          0x49
63 #define QBMAN_FQ_XON            0x4d
64 #define QBMAN_FQ_XOFF           0x4e
65
66 /*******************************/
67 /* Pre-defined attribute codes */
68 /*******************************/
69
70 struct qb_attr_code code_generic_verb = QB_CODE(0, 0, 7);
71 struct qb_attr_code code_generic_rslt = QB_CODE(0, 8, 8);
72
73 /*************************/
74 /* SDQCR attribute codes */
75 /*************************/
76
77 /* we put these here because at least some of them are required by
78  * qbman_swp_init()
79  */
80 struct qb_attr_code code_sdqcr_dct = QB_CODE(0, 24, 2);
81 struct qb_attr_code code_sdqcr_fc = QB_CODE(0, 29, 1);
82 struct qb_attr_code code_sdqcr_tok = QB_CODE(0, 16, 8);
83 static struct qb_attr_code code_eq_dca_idx;
84 #define CODE_SDQCR_DQSRC(n) QB_CODE(0, n, 1)
85 enum qbman_sdqcr_dct {
86         qbman_sdqcr_dct_null = 0,
87         qbman_sdqcr_dct_prio_ics,
88         qbman_sdqcr_dct_active_ics,
89         qbman_sdqcr_dct_active
90 };
91
92 enum qbman_sdqcr_fc {
93         qbman_sdqcr_fc_one = 0,
94         qbman_sdqcr_fc_up_to_3 = 1
95 };
96
97 struct qb_attr_code code_sdqcr_dqsrc = QB_CODE(0, 0, 16);
98
99 /* We need to keep track of which SWP triggered a pull command
100  * so keep an array of portal IDs and use the token field to
101  * be able to find the proper portal
102  */
103 #define MAX_QBMAN_PORTALS  35
104 static struct qbman_swp *portal_idx_map[MAX_QBMAN_PORTALS];
105
106 uint32_t qman_version;
107
108 /*********************************/
109 /* Portal constructor/destructor */
110 /*********************************/
111
112 /* Software portals should always be in the power-on state when we initialise,
113  * due to the CCSR-based portal reset functionality that MC has.
114  *
115  * Erk! Turns out that QMan versions prior to 4.1 do not correctly reset DQRR
116  * valid-bits, so we need to support a workaround where we don't trust
117  * valid-bits when detecting new entries until any stale ring entries have been
118  * overwritten at least once. The idea is that we read PI for the first few
119  * entries, then switch to valid-bit after that. The trick is to clear the
120  * bug-work-around boolean once the PI wraps around the ring for the first time.
121  *
122  * Note: this still carries a slight additional cost once the decrementer hits
123  * zero.
124  */
125 struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
126 {
127         int ret;
128         uint32_t eqcr_pi;
129         struct qbman_swp *p = kmalloc(sizeof(*p), GFP_KERNEL);
130
131         if (!p)
132                 return NULL;
133         p->desc = *d;
134 #ifdef QBMAN_CHECKING
135         p->mc.check = swp_mc_can_start;
136 #endif
137         p->mc.valid_bit = QB_VALID_BIT;
138         p->sdq = 0;
139         qb_attr_code_encode(&code_sdqcr_dct, &p->sdq, qbman_sdqcr_dct_prio_ics);
140         qb_attr_code_encode(&code_sdqcr_fc, &p->sdq, qbman_sdqcr_fc_up_to_3);
141         qb_attr_code_encode(&code_sdqcr_tok, &p->sdq, 0xbb);
142         atomic_set(&p->vdq.busy, 1);
143         p->vdq.valid_bit = QB_VALID_BIT;
144         p->dqrr.next_idx = 0;
145         p->dqrr.valid_bit = QB_VALID_BIT;
146         qman_version = p->desc.qman_version;
147         if ((qman_version & 0xFFFF0000) < QMAN_REV_4100) {
148                 p->dqrr.dqrr_size = 4;
149                 p->dqrr.reset_bug = 1;
150                 /* Set size of DQRR to 4, encoded in 2 bits */
151                 code_eq_dca_idx = (struct qb_attr_code)QB_CODE(0, 8, 2);
152         } else {
153                 p->dqrr.dqrr_size = 8;
154                 p->dqrr.reset_bug = 0;
155                 /* Set size of DQRR to 8, encoded in 3 bits */
156                 code_eq_dca_idx = (struct qb_attr_code)QB_CODE(0, 8, 3);
157         }
158
159         ret = qbman_swp_sys_init(&p->sys, d, p->dqrr.dqrr_size);
160         if (ret) {
161                 kfree(p);
162                 pr_err("qbman_swp_sys_init() failed %d\n", ret);
163                 return NULL;
164         }
165         /* SDQCR needs to be initialized to 0 when no channels are
166          * being dequeued from or else the QMan HW will indicate an
167          * error.  The values that were calculated above will be
168          * applied when dequeues from a specific channel are enabled
169          */
170         qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_SDQCR, 0);
171         eqcr_pi = qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_EQCR_PI);
172         p->eqcr.pi = eqcr_pi & 0xF;
173         p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT;
174         p->eqcr.ci = qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_EQCR_CI) & 0xF;
175         p->eqcr.available = QBMAN_EQCR_SIZE - qm_cyc_diff(QBMAN_EQCR_SIZE,
176                                                 p->eqcr.ci, p->eqcr.pi);
177
178         portal_idx_map[p->desc.idx] = p;
179         return p;
180 }
181
182 void qbman_swp_finish(struct qbman_swp *p)
183 {
184 #ifdef QBMAN_CHECKING
185         QBMAN_BUG_ON(p->mc.check != swp_mc_can_start);
186 #endif
187         qbman_swp_sys_finish(&p->sys);
188         portal_idx_map[p->desc.idx] = NULL;
189         kfree(p);
190 }
191
192 const struct qbman_swp_desc *qbman_swp_get_desc(struct qbman_swp *p)
193 {
194         return &p->desc;
195 }
196
197 /**************/
198 /* Interrupts */
199 /**************/
200
201 uint32_t qbman_swp_interrupt_get_vanish(struct qbman_swp *p)
202 {
203         return qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_ISDR);
204 }
205
206 void qbman_swp_interrupt_set_vanish(struct qbman_swp *p, uint32_t mask)
207 {
208         qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_ISDR, mask);
209 }
210
211 uint32_t qbman_swp_interrupt_read_status(struct qbman_swp *p)
212 {
213         return qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_ISR);
214 }
215
216 void qbman_swp_interrupt_clear_status(struct qbman_swp *p, uint32_t mask)
217 {
218         qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_ISR, mask);
219 }
220
221 uint32_t qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
222 {
223         return qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_IER);
224 }
225
226 void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, uint32_t mask)
227 {
228         qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_IER, mask);
229 }
230
231 int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
232 {
233         return qbman_cinh_read(&p->sys, QBMAN_CINH_SWP_IIR);
234 }
235
236 void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
237 {
238         qbman_cinh_write(&p->sys, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
239 }
240
241 /***********************/
242 /* Management commands */
243 /***********************/
244
245 /*
246  * Internal code common to all types of management commands.
247  */
248
249 void *qbman_swp_mc_start(struct qbman_swp *p)
250 {
251         void *ret;
252 #ifdef QBMAN_CHECKING
253         QBMAN_BUG_ON(p->mc.check != swp_mc_can_start);
254 #endif
255         ret = qbman_cena_write_start(&p->sys, QBMAN_CENA_SWP_CR);
256 #ifdef QBMAN_CHECKING
257         if (!ret)
258                 p->mc.check = swp_mc_can_submit;
259 #endif
260         return ret;
261 }
262
263 void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, uint32_t cmd_verb)
264 {
265         uint32_t *v = cmd;
266 #ifdef QBMAN_CHECKING
267         QBMAN_BUG_ON(!(p->mc.check != swp_mc_can_submit));
268 #endif
269         /* TBD: "|=" is going to hurt performance. Need to move as many fields
270          * out of word zero, and for those that remain, the "OR" needs to occur
271          * at the caller side. This debug check helps to catch cases where the
272          * caller wants to OR but has forgotten to do so.
273          */
274         QBMAN_BUG_ON((*v & cmd_verb) != *v);
275         *v = cmd_verb | p->mc.valid_bit;
276         qbman_cena_write_complete(&p->sys, QBMAN_CENA_SWP_CR, cmd);
277 #ifdef QBMAN_CHECKING
278         p->mc.check = swp_mc_can_poll;
279 #endif
280 }
281
282 void *qbman_swp_mc_result(struct qbman_swp *p)
283 {
284         uint32_t *ret, verb;
285 #ifdef QBMAN_CHECKING
286         QBMAN_BUG_ON(p->mc.check != swp_mc_can_poll);
287 #endif
288         qbman_cena_invalidate_prefetch(&p->sys,
289                                        QBMAN_CENA_SWP_RR(p->mc.valid_bit));
290         ret = qbman_cena_read(&p->sys, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
291         /* Remove the valid-bit - command completed iff the rest is non-zero */
292         verb = ret[0] & ~QB_VALID_BIT;
293         if (!verb)
294                 return NULL;
295 #ifdef QBMAN_CHECKING
296         p->mc.check = swp_mc_can_start;
297 #endif
298         p->mc.valid_bit ^= QB_VALID_BIT;
299         return ret;
300 }
301
302 /***********/
303 /* Enqueue */
304 /***********/
305
306 /* These should be const, eventually */
307 static struct qb_attr_code code_eq_cmd = QB_CODE(0, 0, 2);
308 static struct qb_attr_code code_eq_eqdi = QB_CODE(0, 3, 1);
309 static struct qb_attr_code code_eq_dca_en = QB_CODE(0, 15, 1);
310 static struct qb_attr_code code_eq_dca_pk = QB_CODE(0, 14, 1);
311 /* Can't set code_eq_dca_idx width. Need qman version. Read at runtime */
312 static struct qb_attr_code code_eq_orp_en = QB_CODE(0, 2, 1);
313 static struct qb_attr_code code_eq_orp_is_nesn = QB_CODE(0, 31, 1);
314 static struct qb_attr_code code_eq_orp_nlis = QB_CODE(0, 30, 1);
315 static struct qb_attr_code code_eq_orp_seqnum = QB_CODE(0, 16, 14);
316 static struct qb_attr_code code_eq_opr_id = QB_CODE(1, 0, 16);
317 static struct qb_attr_code code_eq_tgt_id = QB_CODE(2, 0, 24);
318 /* static struct qb_attr_code code_eq_tag = QB_CODE(3, 0, 32); */
319 static struct qb_attr_code code_eq_qd_en = QB_CODE(0, 4, 1);
320 static struct qb_attr_code code_eq_qd_bin = QB_CODE(4, 0, 16);
321 static struct qb_attr_code code_eq_qd_pri = QB_CODE(4, 16, 4);
322 static struct qb_attr_code code_eq_rsp_stash = QB_CODE(5, 16, 1);
323 static struct qb_attr_code code_eq_rsp_id = QB_CODE(5, 24, 8);
324 static struct qb_attr_code code_eq_rsp_lo = QB_CODE(6, 0, 32);
325
326 enum qbman_eq_cmd_e {
327         /* No enqueue, primarily for plugging ORP gaps for dropped frames */
328         qbman_eq_cmd_empty,
329         /* DMA an enqueue response once complete */
330         qbman_eq_cmd_respond,
331         /* DMA an enqueue response only if the enqueue fails */
332         qbman_eq_cmd_respond_reject
333 };
334
335 void qbman_eq_desc_clear(struct qbman_eq_desc *d)
336 {
337         memset(d, 0, sizeof(*d));
338 }
339
340 void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
341 {
342         uint32_t *cl = qb_cl(d);
343
344         qb_attr_code_encode(&code_eq_orp_en, cl, 0);
345         qb_attr_code_encode(&code_eq_cmd, cl,
346                             respond_success ? qbman_eq_cmd_respond :
347                                               qbman_eq_cmd_respond_reject);
348 }
349
350 void qbman_eq_desc_set_orp(struct qbman_eq_desc *d, int respond_success,
351                            uint32_t opr_id, uint32_t seqnum, int incomplete)
352 {
353         uint32_t *cl = qb_cl(d);
354
355         qb_attr_code_encode(&code_eq_orp_en, cl, 1);
356         qb_attr_code_encode(&code_eq_cmd, cl,
357                             respond_success ? qbman_eq_cmd_respond :
358                                               qbman_eq_cmd_respond_reject);
359         qb_attr_code_encode(&code_eq_opr_id, cl, opr_id);
360         qb_attr_code_encode(&code_eq_orp_seqnum, cl, seqnum);
361         qb_attr_code_encode(&code_eq_orp_nlis, cl, !!incomplete);
362 }
363
364 void qbman_eq_desc_set_orp_hole(struct qbman_eq_desc *d, uint32_t opr_id,
365                                 uint32_t seqnum)
366 {
367         uint32_t *cl = qb_cl(d);
368
369         qb_attr_code_encode(&code_eq_orp_en, cl, 1);
370         qb_attr_code_encode(&code_eq_cmd, cl, qbman_eq_cmd_empty);
371         qb_attr_code_encode(&code_eq_opr_id, cl, opr_id);
372         qb_attr_code_encode(&code_eq_orp_seqnum, cl, seqnum);
373         qb_attr_code_encode(&code_eq_orp_nlis, cl, 0);
374         qb_attr_code_encode(&code_eq_orp_is_nesn, cl, 0);
375 }
376
377 void qbman_eq_desc_set_orp_nesn(struct qbman_eq_desc *d, uint32_t opr_id,
378                                 uint32_t seqnum)
379 {
380         uint32_t *cl = qb_cl(d);
381
382         qb_attr_code_encode(&code_eq_orp_en, cl, 1);
383         qb_attr_code_encode(&code_eq_cmd, cl, qbman_eq_cmd_empty);
384         qb_attr_code_encode(&code_eq_opr_id, cl, opr_id);
385         qb_attr_code_encode(&code_eq_orp_seqnum, cl, seqnum);
386         qb_attr_code_encode(&code_eq_orp_nlis, cl, 0);
387         qb_attr_code_encode(&code_eq_orp_is_nesn, cl, 1);
388 }
389
390 void qbman_eq_desc_set_response(struct qbman_eq_desc *d,
391                                 dma_addr_t storage_phys,
392                                 int stash)
393 {
394         uint32_t *cl = qb_cl(d);
395
396         qb_attr_code_encode_64(&code_eq_rsp_lo, (uint64_t *)cl, storage_phys);
397         qb_attr_code_encode(&code_eq_rsp_stash, cl, !!stash);
398 }
399
400 void qbman_eq_desc_set_token(struct qbman_eq_desc *d, uint8_t token)
401 {
402         uint32_t *cl = qb_cl(d);
403
404         qb_attr_code_encode(&code_eq_rsp_id, cl, (uint32_t)token);
405 }
406
407 void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, uint32_t fqid)
408 {
409         uint32_t *cl = qb_cl(d);
410
411         qb_attr_code_encode(&code_eq_qd_en, cl, 0);
412         qb_attr_code_encode(&code_eq_tgt_id, cl, fqid);
413 }
414
415 void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, uint32_t qdid,
416                           uint32_t qd_bin, uint32_t qd_prio)
417 {
418         uint32_t *cl = qb_cl(d);
419
420         qb_attr_code_encode(&code_eq_qd_en, cl, 1);
421         qb_attr_code_encode(&code_eq_tgt_id, cl, qdid);
422         qb_attr_code_encode(&code_eq_qd_bin, cl, qd_bin);
423         qb_attr_code_encode(&code_eq_qd_pri, cl, qd_prio);
424 }
425
426 void qbman_eq_desc_set_eqdi(struct qbman_eq_desc *d, int enable)
427 {
428         uint32_t *cl = qb_cl(d);
429
430         qb_attr_code_encode(&code_eq_eqdi, cl, !!enable);
431 }
432
433 void qbman_eq_desc_set_dca(struct qbman_eq_desc *d, int enable,
434                            uint32_t dqrr_idx, int park)
435 {
436         uint32_t *cl = qb_cl(d);
437
438         qb_attr_code_encode(&code_eq_dca_en, cl, !!enable);
439         if (enable) {
440                 qb_attr_code_encode(&code_eq_dca_pk, cl, !!park);
441                 qb_attr_code_encode(&code_eq_dca_idx, cl, dqrr_idx);
442         }
443 }
444
445 #define EQAR_IDX(eqar)     ((eqar) & 0x7)
446 #define EQAR_VB(eqar)      ((eqar) & 0x80)
447 #define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
448 static int qbman_swp_enqueue_array_mode(struct qbman_swp *s,
449                                         const struct qbman_eq_desc *d,
450                                  const struct qbman_fd *fd)
451 {
452         uint32_t *p;
453         const uint32_t *cl = qb_cl(d);
454         uint32_t eqar = qbman_cinh_read(&s->sys, QBMAN_CINH_SWP_EQAR);
455
456         pr_debug("EQAR=%08x\n", eqar);
457         if (!EQAR_SUCCESS(eqar))
458                 return -EBUSY;
459         p = qbman_cena_write_start_wo_shadow(&s->sys,
460                         QBMAN_CENA_SWP_EQCR(EQAR_IDX(eqar)));
461         word_copy(&p[1], &cl[1], 7);
462         word_copy(&p[8], fd, sizeof(*fd) >> 2);
463         /* Set the verb byte, have to substitute in the valid-bit */
464         lwsync();
465         p[0] = cl[0] | EQAR_VB(eqar);
466         qbman_cena_write_complete_wo_shadow(&s->sys,
467                         QBMAN_CENA_SWP_EQCR(EQAR_IDX(eqar)));
468         return 0;
469 }
470
471 static int qbman_swp_enqueue_ring_mode(struct qbman_swp *s,
472                                        const struct qbman_eq_desc *d,
473                                 const struct qbman_fd *fd)
474 {
475         uint32_t *p;
476         const uint32_t *cl = qb_cl(d);
477         uint32_t eqcr_ci;
478         uint8_t diff;
479
480         if (!s->eqcr.available) {
481                 eqcr_ci = s->eqcr.ci;
482                 s->eqcr.ci = qbman_cena_read_reg(&s->sys,
483                                 QBMAN_CENA_SWP_EQCR_CI) & 0xF;
484                 diff = qm_cyc_diff(QBMAN_EQCR_SIZE,
485                                    eqcr_ci, s->eqcr.ci);
486                 s->eqcr.available += diff;
487                 if (!diff)
488                         return -EBUSY;
489         }
490
491         p = qbman_cena_write_start_wo_shadow(&s->sys,
492                 QBMAN_CENA_SWP_EQCR(s->eqcr.pi & 7));
493         word_copy(&p[1], &cl[1], 7);
494         word_copy(&p[8], fd, sizeof(*fd) >> 2);
495         lwsync();
496         /* Set the verb byte, have to substitute in the valid-bit */
497         p[0] = cl[0] | s->eqcr.pi_vb;
498         qbman_cena_write_complete_wo_shadow(&s->sys,
499                 QBMAN_CENA_SWP_EQCR(s->eqcr.pi & 7));
500         s->eqcr.pi++;
501         s->eqcr.pi &= 0xF;
502         s->eqcr.available--;
503         if (!(s->eqcr.pi & 7))
504                 s->eqcr.pi_vb ^= QB_VALID_BIT;
505         return 0;
506 }
507
508 int qbman_swp_fill_ring(struct qbman_swp *s,
509                         const struct qbman_eq_desc *d,
510                         const struct qbman_fd *fd,
511                         __attribute__((unused)) uint8_t burst_index)
512 {
513         uint32_t *p;
514         const uint32_t *cl = qb_cl(d);
515         uint32_t eqcr_ci;
516         uint8_t diff;
517
518         if (!s->eqcr.available) {
519                 eqcr_ci = s->eqcr.ci;
520                 s->eqcr.ci = qbman_cena_read_reg(&s->sys,
521                                 QBMAN_CENA_SWP_EQCR_CI) & 0xF;
522                 diff = qm_cyc_diff(QBMAN_EQCR_SIZE,
523                                    eqcr_ci, s->eqcr.ci);
524                 s->eqcr.available += diff;
525                 if (!diff)
526                         return -EBUSY;
527         }
528         p = qbman_cena_write_start_wo_shadow(&s->sys,
529                 QBMAN_CENA_SWP_EQCR((s->eqcr.pi/* +burst_index */) & 7));
530         /* word_copy(&p[1], &cl[1], 7); */
531         memcpy(&p[1], &cl[1], 7 * 4);
532         /* word_copy(&p[8], fd, sizeof(*fd) >> 2); */
533         memcpy(&p[8], fd, sizeof(struct qbman_fd));
534
535         /* lwsync(); */
536         p[0] = cl[0] | s->eqcr.pi_vb;
537
538         s->eqcr.pi++;
539         s->eqcr.pi &= 0xF;
540         s->eqcr.available--;
541         if (!(s->eqcr.pi & 7))
542                 s->eqcr.pi_vb ^= QB_VALID_BIT;
543
544         return 0;
545 }
546
547 int qbman_swp_flush_ring(struct qbman_swp *s)
548 {
549         void *ptr = s->sys.addr_cena;
550
551         dcbf((uint64_t)ptr);
552         dcbf((uint64_t)ptr + 0x40);
553         dcbf((uint64_t)ptr + 0x80);
554         dcbf((uint64_t)ptr + 0xc0);
555         dcbf((uint64_t)ptr + 0x100);
556         dcbf((uint64_t)ptr + 0x140);
557         dcbf((uint64_t)ptr + 0x180);
558         dcbf((uint64_t)ptr + 0x1c0);
559
560         return 0;
561 }
562
563 void qbman_sync(void)
564 {
565         lwsync();
566 }
567
568 int qbman_swp_enqueue(struct qbman_swp *s, const struct qbman_eq_desc *d,
569                       const struct qbman_fd *fd)
570 {
571         if (s->sys.eqcr_mode == qman_eqcr_vb_array)
572                 return qbman_swp_enqueue_array_mode(s, d, fd);
573         else    /* Use ring mode by default */
574                 return qbman_swp_enqueue_ring_mode(s, d, fd);
575 }
576
577 /*************************/
578 /* Static (push) dequeue */
579 /*************************/
580
581 void qbman_swp_push_get(struct qbman_swp *s, uint8_t channel_idx, int *enabled)
582 {
583         struct qb_attr_code code = CODE_SDQCR_DQSRC(channel_idx);
584
585         QBMAN_BUG_ON(channel_idx > 15);
586         *enabled = (int)qb_attr_code_decode(&code, &s->sdq);
587 }
588
589 void qbman_swp_push_set(struct qbman_swp *s, uint8_t channel_idx, int enable)
590 {
591         uint16_t dqsrc;
592         struct qb_attr_code code = CODE_SDQCR_DQSRC(channel_idx);
593
594         QBMAN_BUG_ON(channel_idx > 15);
595         qb_attr_code_encode(&code, &s->sdq, !!enable);
596         /* Read make the complete src map.  If no channels are enabled
597          * the SDQCR must be 0 or else QMan will assert errors
598          */
599         dqsrc = (uint16_t)qb_attr_code_decode(&code_sdqcr_dqsrc, &s->sdq);
600         if (dqsrc != 0)
601                 qbman_cinh_write(&s->sys, QBMAN_CINH_SWP_SDQCR, s->sdq);
602         else
603                 qbman_cinh_write(&s->sys, QBMAN_CINH_SWP_SDQCR, 0);
604 }
605
606 /***************************/
607 /* Volatile (pull) dequeue */
608 /***************************/
609
610 /* These should be const, eventually */
611 static struct qb_attr_code code_pull_dct = QB_CODE(0, 0, 2);
612 static struct qb_attr_code code_pull_dt = QB_CODE(0, 2, 2);
613 static struct qb_attr_code code_pull_rls = QB_CODE(0, 4, 1);
614 static struct qb_attr_code code_pull_stash = QB_CODE(0, 5, 1);
615 static struct qb_attr_code code_pull_numframes = QB_CODE(0, 8, 4);
616 static struct qb_attr_code code_pull_token = QB_CODE(0, 16, 8);
617 static struct qb_attr_code code_pull_dqsource = QB_CODE(1, 0, 24);
618 static struct qb_attr_code code_pull_rsp_lo = QB_CODE(2, 0, 32);
619
620 enum qb_pull_dt_e {
621         qb_pull_dt_channel,
622         qb_pull_dt_workqueue,
623         qb_pull_dt_framequeue
624 };
625
626 void qbman_pull_desc_clear(struct qbman_pull_desc *d)
627 {
628         memset(d, 0, sizeof(*d));
629 }
630
631 void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
632                                  struct qbman_result *storage,
633                                  dma_addr_t storage_phys,
634                                  int stash)
635 {
636         uint32_t *cl = qb_cl(d);
637         /* Squiggle the pointer 'storage' into the extra 2 words of the
638          * descriptor (which aren't copied to the hw command)
639          */
640         *(void **)&cl[4] = storage;
641         if (!storage) {
642                 qb_attr_code_encode(&code_pull_rls, cl, 0);
643                 return;
644         }
645         qb_attr_code_encode(&code_pull_rls, cl, 1);
646         qb_attr_code_encode(&code_pull_stash, cl, !!stash);
647         qb_attr_code_encode_64(&code_pull_rsp_lo, (uint64_t *)cl, storage_phys);
648 }
649
650 void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, uint8_t numframes)
651 {
652         uint32_t *cl = qb_cl(d);
653
654         QBMAN_BUG_ON(!numframes || (numframes > 16));
655         qb_attr_code_encode(&code_pull_numframes, cl,
656                             (uint32_t)(numframes - 1));
657 }
658
659 void qbman_pull_desc_set_token(struct qbman_pull_desc *d, uint8_t token)
660 {
661         uint32_t *cl = qb_cl(d);
662
663         qb_attr_code_encode(&code_pull_token, cl, token);
664 }
665
666 void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, uint32_t fqid)
667 {
668         uint32_t *cl = qb_cl(d);
669
670         qb_attr_code_encode(&code_pull_dct, cl, 1);
671         qb_attr_code_encode(&code_pull_dt, cl, qb_pull_dt_framequeue);
672         qb_attr_code_encode(&code_pull_dqsource, cl, fqid);
673 }
674
675 void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, uint32_t wqid,
676                             enum qbman_pull_type_e dct)
677 {
678         uint32_t *cl = qb_cl(d);
679
680         qb_attr_code_encode(&code_pull_dct, cl, dct);
681         qb_attr_code_encode(&code_pull_dt, cl, qb_pull_dt_workqueue);
682         qb_attr_code_encode(&code_pull_dqsource, cl, wqid);
683 }
684
685 void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, uint32_t chid,
686                                  enum qbman_pull_type_e dct)
687 {
688         uint32_t *cl = qb_cl(d);
689
690         qb_attr_code_encode(&code_pull_dct, cl, dct);
691         qb_attr_code_encode(&code_pull_dt, cl, qb_pull_dt_channel);
692         qb_attr_code_encode(&code_pull_dqsource, cl, chid);
693 }
694
695 int qbman_swp_pull(struct qbman_swp *s, struct qbman_pull_desc *d)
696 {
697         uint32_t *p;
698         uint32_t *cl = qb_cl(d);
699
700         if (!atomic_dec_and_test(&s->vdq.busy)) {
701                 atomic_inc(&s->vdq.busy);
702                 return -EBUSY;
703         }
704         s->vdq.storage = *(void **)&cl[4];
705         /* We use portal index +1 as token so that 0 still indicates
706          * that the result isn't valid yet.
707          */
708         qb_attr_code_encode(&code_pull_token, cl, s->desc.idx + 1);
709         p = qbman_cena_write_start_wo_shadow(&s->sys, QBMAN_CENA_SWP_VDQCR);
710         word_copy(&p[1], &cl[1], 3);
711         /* Set the verb byte, have to substitute in the valid-bit */
712         lwsync();
713         p[0] = cl[0] | s->vdq.valid_bit;
714         s->vdq.valid_bit ^= QB_VALID_BIT;
715         qbman_cena_write_complete_wo_shadow(&s->sys, QBMAN_CENA_SWP_VDQCR);
716         return 0;
717 }
718
719 /****************/
720 /* Polling DQRR */
721 /****************/
722
723 static struct qb_attr_code code_dqrr_verb = QB_CODE(0, 0, 8);
724 static struct qb_attr_code code_dqrr_response = QB_CODE(0, 0, 7);
725 static struct qb_attr_code code_dqrr_stat = QB_CODE(0, 8, 8);
726 static struct qb_attr_code code_dqrr_seqnum = QB_CODE(0, 16, 14);
727 static struct qb_attr_code code_dqrr_odpid = QB_CODE(1, 0, 16);
728 /* static struct qb_attr_code code_dqrr_tok = QB_CODE(1, 24, 8); */
729 static struct qb_attr_code code_dqrr_fqid = QB_CODE(2, 0, 24);
730 static struct qb_attr_code code_dqrr_byte_count = QB_CODE(4, 0, 32);
731 static struct qb_attr_code code_dqrr_frame_count = QB_CODE(5, 0, 24);
732 static struct qb_attr_code code_dqrr_ctx_lo = QB_CODE(6, 0, 32);
733
734 #define QBMAN_RESULT_DQ        0x60
735 #define QBMAN_RESULT_FQRN      0x21
736 #define QBMAN_RESULT_FQRNI     0x22
737 #define QBMAN_RESULT_FQPN      0x24
738 #define QBMAN_RESULT_FQDAN     0x25
739 #define QBMAN_RESULT_CDAN      0x26
740 #define QBMAN_RESULT_CSCN_MEM  0x27
741 #define QBMAN_RESULT_CGCU      0x28
742 #define QBMAN_RESULT_BPSCN     0x29
743 #define QBMAN_RESULT_CSCN_WQ   0x2a
744
745 static struct qb_attr_code code_dqpi_pi = QB_CODE(0, 0, 4);
746
747 /* NULL return if there are no unconsumed DQRR entries. Returns a DQRR entry
748  * only once, so repeated calls can return a sequence of DQRR entries, without
749  * requiring they be consumed immediately or in any particular order.
750  */
751 const struct qbman_result *qbman_swp_dqrr_next(struct qbman_swp *s)
752 {
753         uint32_t verb;
754         uint32_t response_verb;
755         uint32_t flags;
756         const struct qbman_result *dq;
757         const uint32_t *p;
758
759         /* Before using valid-bit to detect if something is there, we have to
760          * handle the case of the DQRR reset bug...
761          */
762         if (unlikely(s->dqrr.reset_bug)) {
763                 /* We pick up new entries by cache-inhibited producer index,
764                  * which means that a non-coherent mapping would require us to
765                  * invalidate and read *only* once that PI has indicated that
766                  * there's an entry here. The first trip around the DQRR ring
767                  * will be much less efficient than all subsequent trips around
768                  * it...
769                  */
770                 uint32_t dqpi = qbman_cinh_read(&s->sys, QBMAN_CINH_SWP_DQPI);
771                 uint32_t pi = qb_attr_code_decode(&code_dqpi_pi, &dqpi);
772                 /* there are new entries iff pi != next_idx */
773                 if (pi == s->dqrr.next_idx)
774                         return NULL;
775                 /* if next_idx is/was the last ring index, and 'pi' is
776                  * different, we can disable the workaround as all the ring
777                  * entries have now been DMA'd to so valid-bit checking is
778                  * repaired. Note: this logic needs to be based on next_idx
779                  * (which increments one at a time), rather than on pi (which
780                  * can burst and wrap-around between our snapshots of it).
781                  */
782                 QBMAN_BUG_ON((s->dqrr.dqrr_size - 1) < 0);
783                 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1u)) {
784                         pr_debug("DEBUG: next_idx=%d, pi=%d, clear reset bug\n",
785                                  s->dqrr.next_idx, pi);
786                         s->dqrr.reset_bug = 0;
787                 }
788                 qbman_cena_invalidate_prefetch(&s->sys,
789                                 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
790         }
791         dq = qbman_cena_read_wo_shadow(&s->sys,
792                                        QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
793         p = qb_cl(dq);
794         verb = qb_attr_code_decode(&code_dqrr_verb, p);
795         /* If the valid-bit isn't of the expected polarity, nothing there. Note,
796          * in the DQRR reset bug workaround, we shouldn't need to skip these
797          * check, because we've already determined that a new entry is available
798          * and we've invalidated the cacheline before reading it, so the
799          * valid-bit behaviour is repaired and should tell us what we already
800          * knew from reading PI.
801          */
802         if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit)
803                 return NULL;
804
805         /* There's something there. Move "next_idx" attention to the next ring
806          * entry (and prefetch it) before returning what we found.
807          */
808         s->dqrr.next_idx++;
809         if (s->dqrr.next_idx == s->dqrr.dqrr_size) {
810                 s->dqrr.next_idx = 0;
811                 s->dqrr.valid_bit ^= QB_VALID_BIT;
812         }
813         /* If this is the final response to a volatile dequeue command
814          * indicate that the vdq is no longer busy.
815          */
816         flags = qbman_result_DQ_flags(dq);
817         response_verb = qb_attr_code_decode(&code_dqrr_response, &verb);
818         if ((response_verb == QBMAN_RESULT_DQ) &&
819             (flags & QBMAN_DQ_STAT_VOLATILE) &&
820             (flags & QBMAN_DQ_STAT_EXPIRED))
821                 atomic_inc(&s->vdq.busy);
822
823         return dq;
824 }
825
826 /* Consume DQRR entries previously returned from qbman_swp_dqrr_next(). */
827 void qbman_swp_dqrr_consume(struct qbman_swp *s,
828                             const struct qbman_result *dq)
829 {
830         qbman_cinh_write(&s->sys, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
831 }
832
833 /*********************************/
834 /* Polling user-provided storage */
835 /*********************************/
836
837 int qbman_result_has_new_result(__attribute__((unused)) struct qbman_swp *s,
838                                 const struct qbman_result *dq)
839 {
840         /* To avoid converting the little-endian DQ entry to host-endian prior
841          * to us knowing whether there is a valid entry or not (and run the
842          * risk of corrupting the incoming hardware LE write), we detect in
843          * hardware endianness rather than host. This means we need a different
844          * "code" depending on whether we are BE or LE in software, which is
845          * where DQRR_TOK_OFFSET comes in...
846          */
847         static struct qb_attr_code code_dqrr_tok_detect =
848                                         QB_CODE(0, DQRR_TOK_OFFSET, 8);
849         /* The user trying to poll for a result treats "dq" as const. It is
850          * however the same address that was provided to us non-const in the
851          * first place, for directing hardware DMA to. So we can cast away the
852          * const because it is mutable from our perspective.
853          */
854         uint32_t *p = (uint32_t *)(unsigned long)qb_cl(dq);
855         uint32_t token;
856
857         token = qb_attr_code_decode(&code_dqrr_tok_detect, &p[1]);
858         if (token == 0)
859                 return 0;
860         /* Entry is valid - overwrite token back to 0 so
861          * a) If this memory is reused tokesn will be 0
862          * b) If someone calls "has_new_result()" again on this entry it
863          *    will not appear to be new
864          */
865         qb_attr_code_encode(&code_dqrr_tok_detect, &p[1], 0);
866
867         /* Only now do we convert from hardware to host endianness. Also, as we
868          * are returning success, the user has promised not to call us again, so
869          * there's no risk of us converting the endianness twice...
870          */
871         make_le32_n(p, 16);
872         return 1;
873 }
874
875 int qbman_check_command_complete(struct qbman_swp *s,
876                                  const struct qbman_result *dq)
877 {
878         /* To avoid converting the little-endian DQ entry to host-endian prior
879          * to us knowing whether there is a valid entry or not (and run the
880          * risk of corrupting the incoming hardware LE write), we detect in
881          * hardware endianness rather than host. This means we need a different
882          * "code" depending on whether we are BE or LE in software, which is
883          * where DQRR_TOK_OFFSET comes in...
884          */
885         static struct qb_attr_code code_dqrr_tok_detect =
886                                         QB_CODE(0, DQRR_TOK_OFFSET, 8);
887         /* The user trying to poll for a result treats "dq" as const. It is
888          * however the same address that was provided to us non-const in the
889          * first place, for directing hardware DMA to. So we can cast away the
890          * const because it is mutable from our perspective.
891          */
892         uint32_t *p = (uint32_t *)(unsigned long)qb_cl(dq);
893         uint32_t token;
894
895         token = qb_attr_code_decode(&code_dqrr_tok_detect, &p[1]);
896         if (token == 0)
897                 return 0;
898         /* TODO: Remove qbman_swp from parameters and make it a local
899          * once we've tested the reserve portal map change
900          */
901         s = portal_idx_map[token - 1];
902         /* When token is set it indicates that VDQ command has been fetched
903          * by qbman and is working on it. It is safe for software to issue
904          * another VDQ command, so incrementing the busy variable.
905          */
906         if (s->vdq.storage == dq) {
907                 s->vdq.storage = NULL;
908                 atomic_inc(&s->vdq.busy);
909         }
910         return 1;
911 }
912
913 /********************************/
914 /* Categorising qbman results   */
915 /********************************/
916
917 static struct qb_attr_code code_result_in_mem =
918                         QB_CODE(0, QBMAN_RESULT_VERB_OFFSET_IN_MEM, 7);
919
920 static inline int __qbman_result_is_x(const struct qbman_result *dq,
921                                       uint32_t x)
922 {
923         const uint32_t *p = qb_cl(dq);
924         uint32_t response_verb = qb_attr_code_decode(&code_dqrr_response, p);
925
926         return (response_verb == x);
927 }
928
929 static inline int __qbman_result_is_x_in_mem(const struct qbman_result *dq,
930                                              uint32_t x)
931 {
932         const uint32_t *p = qb_cl(dq);
933         uint32_t response_verb = qb_attr_code_decode(&code_result_in_mem, p);
934
935         return (response_verb == x);
936 }
937
938 int qbman_result_is_DQ(const struct qbman_result *dq)
939 {
940         return __qbman_result_is_x(dq, QBMAN_RESULT_DQ);
941 }
942
943 int qbman_result_is_FQDAN(const struct qbman_result *dq)
944 {
945         return __qbman_result_is_x(dq, QBMAN_RESULT_FQDAN);
946 }
947
948 int qbman_result_is_CDAN(const struct qbman_result *dq)
949 {
950         return __qbman_result_is_x(dq, QBMAN_RESULT_CDAN);
951 }
952
953 int qbman_result_is_CSCN(const struct qbman_result *dq)
954 {
955         return __qbman_result_is_x_in_mem(dq, QBMAN_RESULT_CSCN_MEM) ||
956                 __qbman_result_is_x(dq, QBMAN_RESULT_CSCN_WQ);
957 }
958
959 int qbman_result_is_BPSCN(const struct qbman_result *dq)
960 {
961         return __qbman_result_is_x_in_mem(dq, QBMAN_RESULT_BPSCN);
962 }
963
964 int qbman_result_is_CGCU(const struct qbman_result *dq)
965 {
966         return __qbman_result_is_x_in_mem(dq, QBMAN_RESULT_CGCU);
967 }
968
969 int qbman_result_is_FQRN(const struct qbman_result *dq)
970 {
971         return __qbman_result_is_x_in_mem(dq, QBMAN_RESULT_FQRN);
972 }
973
974 int qbman_result_is_FQRNI(const struct qbman_result *dq)
975 {
976         return __qbman_result_is_x_in_mem(dq, QBMAN_RESULT_FQRNI);
977 }
978
979 int qbman_result_is_FQPN(const struct qbman_result *dq)
980 {
981         return __qbman_result_is_x(dq, QBMAN_RESULT_FQPN);
982 }
983
984 /*********************************/
985 /* Parsing frame dequeue results */
986 /*********************************/
987
988 /* These APIs assume qbman_result_is_DQ() is TRUE */
989
990 uint32_t qbman_result_DQ_flags(const struct qbman_result *dq)
991 {
992         const uint32_t *p = qb_cl(dq);
993
994         return qb_attr_code_decode(&code_dqrr_stat, p);
995 }
996
997 uint16_t qbman_result_DQ_seqnum(const struct qbman_result *dq)
998 {
999         const uint32_t *p = qb_cl(dq);
1000
1001         return (uint16_t)qb_attr_code_decode(&code_dqrr_seqnum, p);
1002 }
1003
1004 uint16_t qbman_result_DQ_odpid(const struct qbman_result *dq)
1005 {
1006         const uint32_t *p = qb_cl(dq);
1007
1008         return (uint16_t)qb_attr_code_decode(&code_dqrr_odpid, p);
1009 }
1010
1011 uint32_t qbman_result_DQ_fqid(const struct qbman_result *dq)
1012 {
1013         const uint32_t *p = qb_cl(dq);
1014
1015         return qb_attr_code_decode(&code_dqrr_fqid, p);
1016 }
1017
1018 uint32_t qbman_result_DQ_byte_count(const struct qbman_result *dq)
1019 {
1020         const uint32_t *p = qb_cl(dq);
1021
1022         return qb_attr_code_decode(&code_dqrr_byte_count, p);
1023 }
1024
1025 uint32_t qbman_result_DQ_frame_count(const struct qbman_result *dq)
1026 {
1027         const uint32_t *p = qb_cl(dq);
1028
1029         return qb_attr_code_decode(&code_dqrr_frame_count, p);
1030 }
1031
1032 uint64_t qbman_result_DQ_fqd_ctx(const struct qbman_result *dq)
1033 {
1034         const uint64_t *p = (const uint64_t *)qb_cl(dq);
1035
1036         return qb_attr_code_decode_64(&code_dqrr_ctx_lo, p);
1037 }
1038
1039 const struct qbman_fd *qbman_result_DQ_fd(const struct qbman_result *dq)
1040 {
1041         const uint32_t *p = qb_cl(dq);
1042
1043         return (const struct qbman_fd *)&p[8];
1044 }
1045
1046 /**************************************/
1047 /* Parsing state-change notifications */
1048 /**************************************/
1049
1050 static struct qb_attr_code code_scn_state = QB_CODE(0, 16, 8);
1051 static struct qb_attr_code code_scn_rid = QB_CODE(1, 0, 24);
1052 static struct qb_attr_code code_scn_state_in_mem =
1053                         QB_CODE(0, SCN_STATE_OFFSET_IN_MEM, 8);
1054 static struct qb_attr_code code_scn_rid_in_mem =
1055                         QB_CODE(1, SCN_RID_OFFSET_IN_MEM, 24);
1056 static struct qb_attr_code code_scn_ctx_lo = QB_CODE(2, 0, 32);
1057
1058 uint8_t qbman_result_SCN_state(const struct qbman_result *scn)
1059 {
1060         const uint32_t *p = qb_cl(scn);
1061
1062         return (uint8_t)qb_attr_code_decode(&code_scn_state, p);
1063 }
1064
1065 uint32_t qbman_result_SCN_rid(const struct qbman_result *scn)
1066 {
1067         const uint32_t *p = qb_cl(scn);
1068
1069         return qb_attr_code_decode(&code_scn_rid, p);
1070 }
1071
1072 uint64_t qbman_result_SCN_ctx(const struct qbman_result *scn)
1073 {
1074         const uint64_t *p = (const uint64_t *)qb_cl(scn);
1075
1076         return qb_attr_code_decode_64(&code_scn_ctx_lo, p);
1077 }
1078
1079 uint8_t qbman_result_SCN_state_in_mem(const struct qbman_result *scn)
1080 {
1081         const uint32_t *p = qb_cl(scn);
1082
1083         return (uint8_t)qb_attr_code_decode(&code_scn_state_in_mem, p);
1084 }
1085
1086 uint32_t qbman_result_SCN_rid_in_mem(const struct qbman_result *scn)
1087 {
1088         const uint32_t *p = qb_cl(scn);
1089         uint32_t result_rid;
1090
1091         result_rid = qb_attr_code_decode(&code_scn_rid_in_mem, p);
1092         return make_le24(result_rid);
1093 }
1094
1095 /*****************/
1096 /* Parsing BPSCN */
1097 /*****************/
1098 uint16_t qbman_result_bpscn_bpid(const struct qbman_result *scn)
1099 {
1100         return (uint16_t)qbman_result_SCN_rid_in_mem(scn) & 0x3FFF;
1101 }
1102
1103 int qbman_result_bpscn_has_free_bufs(const struct qbman_result *scn)
1104 {
1105         return !(int)(qbman_result_SCN_state_in_mem(scn) & 0x1);
1106 }
1107
1108 int qbman_result_bpscn_is_depleted(const struct qbman_result *scn)
1109 {
1110         return (int)(qbman_result_SCN_state_in_mem(scn) & 0x2);
1111 }
1112
1113 int qbman_result_bpscn_is_surplus(const struct qbman_result *scn)
1114 {
1115         return (int)(qbman_result_SCN_state_in_mem(scn) & 0x4);
1116 }
1117
1118 uint64_t qbman_result_bpscn_ctx(const struct qbman_result *scn)
1119 {
1120         uint64_t ctx;
1121         uint32_t ctx_hi, ctx_lo;
1122
1123         ctx = qbman_result_SCN_ctx(scn);
1124         ctx_hi = upper32(ctx);
1125         ctx_lo = lower32(ctx);
1126         return ((uint64_t)make_le32(ctx_hi) << 32 |
1127                 (uint64_t)make_le32(ctx_lo));
1128 }
1129
1130 /*****************/
1131 /* Parsing CGCU  */
1132 /*****************/
1133 uint16_t qbman_result_cgcu_cgid(const struct qbman_result *scn)
1134 {
1135         return (uint16_t)qbman_result_SCN_rid_in_mem(scn) & 0xFFFF;
1136 }
1137
1138 uint64_t qbman_result_cgcu_icnt(const struct qbman_result *scn)
1139 {
1140         uint64_t ctx;
1141         uint32_t ctx_hi, ctx_lo;
1142
1143         ctx = qbman_result_SCN_ctx(scn);
1144         ctx_hi = upper32(ctx);
1145         ctx_lo = lower32(ctx);
1146         return ((uint64_t)(make_le32(ctx_hi) & 0xFF) << 32) |
1147                 (uint64_t)make_le32(ctx_lo);
1148 }
1149
1150 /******************/
1151 /* Buffer release */
1152 /******************/
1153
1154 /* These should be const, eventually */
1155 /* static struct qb_attr_code code_release_num = QB_CODE(0, 0, 3); */
1156 static struct qb_attr_code code_release_set_me = QB_CODE(0, 5, 1);
1157 static struct qb_attr_code code_release_rcdi = QB_CODE(0, 6, 1);
1158 static struct qb_attr_code code_release_bpid = QB_CODE(0, 16, 16);
1159
1160 void qbman_release_desc_clear(struct qbman_release_desc *d)
1161 {
1162         uint32_t *cl;
1163
1164         memset(d, 0, sizeof(*d));
1165         cl = qb_cl(d);
1166         qb_attr_code_encode(&code_release_set_me, cl, 1);
1167 }
1168
1169 void qbman_release_desc_set_bpid(struct qbman_release_desc *d, uint32_t bpid)
1170 {
1171         uint32_t *cl = qb_cl(d);
1172
1173         qb_attr_code_encode(&code_release_bpid, cl, bpid);
1174 }
1175
1176 void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
1177 {
1178         uint32_t *cl = qb_cl(d);
1179
1180         qb_attr_code_encode(&code_release_rcdi, cl, !!enable);
1181 }
1182
1183 #define RAR_IDX(rar)     ((rar) & 0x7)
1184 #define RAR_VB(rar)      ((rar) & 0x80)
1185 #define RAR_SUCCESS(rar) ((rar) & 0x100)
1186
1187 int qbman_swp_release(struct qbman_swp *s, const struct qbman_release_desc *d,
1188                       const uint64_t *buffers, unsigned int num_buffers)
1189 {
1190         uint32_t *p;
1191         const uint32_t *cl = qb_cl(d);
1192         uint32_t rar = qbman_cinh_read(&s->sys, QBMAN_CINH_SWP_RAR);
1193
1194         pr_debug("RAR=%08x\n", rar);
1195         if (!RAR_SUCCESS(rar))
1196                 return -EBUSY;
1197         QBMAN_BUG_ON(!num_buffers || (num_buffers > 7));
1198         /* Start the release command */
1199         p = qbman_cena_write_start_wo_shadow(&s->sys,
1200                                              QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
1201         /* Copy the caller's buffer pointers to the command */
1202         u64_to_le32_copy(&p[2], buffers, num_buffers);
1203         /* Set the verb byte, have to substitute in the valid-bit and the number
1204          * of buffers.
1205          */
1206         lwsync();
1207         p[0] = cl[0] | RAR_VB(rar) | num_buffers;
1208         qbman_cena_write_complete_wo_shadow(&s->sys,
1209                                             QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
1210         return 0;
1211 }
1212
1213 /*******************/
1214 /* Buffer acquires */
1215 /*******************/
1216
1217 /* These should be const, eventually */
1218 static struct qb_attr_code code_acquire_bpid = QB_CODE(0, 16, 16);
1219 static struct qb_attr_code code_acquire_num = QB_CODE(1, 0, 3);
1220 static struct qb_attr_code code_acquire_r_num = QB_CODE(1, 0, 3);
1221
1222 int qbman_swp_acquire(struct qbman_swp *s, uint32_t bpid, uint64_t *buffers,
1223                       unsigned int num_buffers)
1224 {
1225         uint32_t *p;
1226         uint32_t rslt, num;
1227
1228         QBMAN_BUG_ON(!num_buffers || (num_buffers > 7));
1229
1230         /* Start the management command */
1231         p = qbman_swp_mc_start(s);
1232
1233         if (!p)
1234                 return -EBUSY;
1235
1236         /* Encode the caller-provided attributes */
1237         qb_attr_code_encode(&code_acquire_bpid, p, bpid);
1238         qb_attr_code_encode(&code_acquire_num, p, num_buffers);
1239
1240         /* Complete the management command */
1241         p = qbman_swp_mc_complete(s, p, p[0] | QBMAN_MC_ACQUIRE);
1242
1243         /* Decode the outcome */
1244         rslt = qb_attr_code_decode(&code_generic_rslt, p);
1245         num = qb_attr_code_decode(&code_acquire_r_num, p);
1246         QBMAN_BUG_ON(qb_attr_code_decode(&code_generic_verb, p) !=
1247                      QBMAN_MC_ACQUIRE);
1248
1249         /* Determine success or failure */
1250         if (unlikely(rslt != QBMAN_MC_RSLT_OK)) {
1251                 pr_err("Acquire buffers from BPID 0x%x failed, code=0x%02x\n",
1252                        bpid, rslt);
1253                 return -EIO;
1254         }
1255         QBMAN_BUG_ON(num > num_buffers);
1256         /* Copy the acquired buffers to the caller's array */
1257         u64_from_le32_copy(buffers, &p[2], num);
1258         return (int)num;
1259 }
1260
1261 /*****************/
1262 /* FQ management */
1263 /*****************/
1264
1265 static struct qb_attr_code code_fqalt_fqid = QB_CODE(1, 0, 32);
1266
1267 static int qbman_swp_alt_fq_state(struct qbman_swp *s, uint32_t fqid,
1268                                   uint8_t alt_fq_verb)
1269 {
1270         uint32_t *p;
1271         uint32_t rslt;
1272
1273         /* Start the management command */
1274         p = qbman_swp_mc_start(s);
1275         if (!p)
1276                 return -EBUSY;
1277
1278         qb_attr_code_encode(&code_fqalt_fqid, p, fqid);
1279         /* Complete the management command */
1280         p = qbman_swp_mc_complete(s, p, p[0] | alt_fq_verb);
1281
1282         /* Decode the outcome */
1283         rslt = qb_attr_code_decode(&code_generic_rslt, p);
1284         QBMAN_BUG_ON(qb_attr_code_decode(&code_generic_verb, p) != alt_fq_verb);
1285
1286         /* Determine success or failure */
1287         if (unlikely(rslt != QBMAN_MC_RSLT_OK)) {
1288                 pr_err("ALT FQID %d failed: verb = 0x%08x, code = 0x%02x\n",
1289                        fqid, alt_fq_verb, rslt);
1290                 return -EIO;
1291         }
1292
1293         return 0;
1294 }
1295
1296 int qbman_swp_fq_schedule(struct qbman_swp *s, uint32_t fqid)
1297 {
1298         return qbman_swp_alt_fq_state(s, fqid, QBMAN_FQ_SCHEDULE);
1299 }
1300
1301 int qbman_swp_fq_force(struct qbman_swp *s, uint32_t fqid)
1302 {
1303         return qbman_swp_alt_fq_state(s, fqid, QBMAN_FQ_FORCE);
1304 }
1305
1306 int qbman_swp_fq_xon(struct qbman_swp *s, uint32_t fqid)
1307 {
1308         return qbman_swp_alt_fq_state(s, fqid, QBMAN_FQ_XON);
1309 }
1310
1311 int qbman_swp_fq_xoff(struct qbman_swp *s, uint32_t fqid)
1312 {
1313         return qbman_swp_alt_fq_state(s, fqid, QBMAN_FQ_XOFF);
1314 }
1315
1316 /**********************/
1317 /* Channel management */
1318 /**********************/
1319
1320 static struct qb_attr_code code_cdan_cid = QB_CODE(0, 16, 12);
1321 static struct qb_attr_code code_cdan_we = QB_CODE(1, 0, 8);
1322 static struct qb_attr_code code_cdan_en = QB_CODE(1, 8, 1);
1323 static struct qb_attr_code code_cdan_ctx_lo = QB_CODE(2, 0, 32);
1324
1325 /* Hide "ICD" for now as we don't use it, don't set it, and don't test it, so it
1326  * would be irresponsible to expose it.
1327  */
1328 #define CODE_CDAN_WE_EN    0x1
1329 #define CODE_CDAN_WE_CTX   0x4
1330
1331 static int qbman_swp_CDAN_set(struct qbman_swp *s, uint16_t channelid,
1332                               uint8_t we_mask, uint8_t cdan_en,
1333                               uint64_t ctx)
1334 {
1335         uint32_t *p;
1336         uint32_t rslt;
1337
1338         /* Start the management command */
1339         p = qbman_swp_mc_start(s);
1340         if (!p)
1341                 return -EBUSY;
1342
1343         /* Encode the caller-provided attributes */
1344         qb_attr_code_encode(&code_cdan_cid, p, channelid);
1345         qb_attr_code_encode(&code_cdan_we, p, we_mask);
1346         qb_attr_code_encode(&code_cdan_en, p, cdan_en);
1347         qb_attr_code_encode_64(&code_cdan_ctx_lo, (uint64_t *)p, ctx);
1348         /* Complete the management command */
1349         p = qbman_swp_mc_complete(s, p, p[0] | QBMAN_WQCHAN_CONFIGURE);
1350
1351         /* Decode the outcome */
1352         rslt = qb_attr_code_decode(&code_generic_rslt, p);
1353         QBMAN_BUG_ON(qb_attr_code_decode(&code_generic_verb, p)
1354                                         != QBMAN_WQCHAN_CONFIGURE);
1355
1356         /* Determine success or failure */
1357         if (unlikely(rslt != QBMAN_MC_RSLT_OK)) {
1358                 pr_err("CDAN cQID %d failed: code = 0x%02x\n",
1359                        channelid, rslt);
1360                 return -EIO;
1361         }
1362
1363         return 0;
1364 }
1365
1366 int qbman_swp_CDAN_set_context(struct qbman_swp *s, uint16_t channelid,
1367                                uint64_t ctx)
1368 {
1369         return qbman_swp_CDAN_set(s, channelid,
1370                                   CODE_CDAN_WE_CTX,
1371                                   0, ctx);
1372 }
1373
1374 int qbman_swp_CDAN_enable(struct qbman_swp *s, uint16_t channelid)
1375 {
1376         return qbman_swp_CDAN_set(s, channelid,
1377                                   CODE_CDAN_WE_EN,
1378                                   1, 0);
1379 }
1380
1381 int qbman_swp_CDAN_disable(struct qbman_swp *s, uint16_t channelid)
1382 {
1383         return qbman_swp_CDAN_set(s, channelid,
1384                                   CODE_CDAN_WE_EN,
1385                                   0, 0);
1386 }
1387
1388 int qbman_swp_CDAN_set_context_enable(struct qbman_swp *s, uint16_t channelid,
1389                                       uint64_t ctx)
1390 {
1391         return qbman_swp_CDAN_set(s, channelid,
1392                                   CODE_CDAN_WE_EN | CODE_CDAN_WE_CTX,
1393                                   1, ctx);
1394 }
1395
1396 uint8_t qbman_get_dqrr_idx(struct qbman_result *dqrr)
1397 {
1398         return QBMAN_IDX_FROM_DQRR(dqrr);
1399 }
1400
1401 struct qbman_result *qbman_get_dqrr_from_idx(struct qbman_swp *s, uint8_t idx)
1402 {
1403         struct qbman_result *dq;
1404
1405         dq = qbman_cena_read(&s->sys, QBMAN_CENA_SWP_DQRR(idx));
1406         return dq;
1407 }
1408
1409 int qbman_swp_send_multiple(struct qbman_swp *s,
1410                             const struct qbman_eq_desc *d,
1411                             const struct qbman_fd *fd,
1412                             int frames_to_send)
1413 {
1414         uint32_t *p;
1415         const uint32_t *cl = qb_cl(d);
1416         uint32_t eqcr_ci;
1417         uint8_t diff;
1418         int sent = 0;
1419         int i;
1420         int initial_pi = s->eqcr.pi;
1421         uint64_t start_pointer;
1422
1423         if (!s->eqcr.available) {
1424                 eqcr_ci = s->eqcr.ci;
1425                 s->eqcr.ci = qbman_cena_read_reg(&s->sys,
1426                                  QBMAN_CENA_SWP_EQCR_CI) & 0xF;
1427                 diff = qm_cyc_diff(QBMAN_EQCR_SIZE,
1428                                    eqcr_ci, s->eqcr.ci);
1429                 if (!diff)
1430                         goto done;
1431                 s->eqcr.available += diff;
1432         }
1433
1434         /* we are trying to send frames_to_send,
1435          * if we have enough space in the ring
1436          */
1437         while (s->eqcr.available && frames_to_send--) {
1438                 p = qbman_cena_write_start_wo_shadow_fast(&s->sys,
1439                                         QBMAN_CENA_SWP_EQCR((initial_pi) & 7));
1440                 /* Write command (except of first byte) and FD */
1441                 memcpy(&p[1], &cl[1], 7 * 4);
1442                 memcpy(&p[8], &fd[sent], sizeof(struct qbman_fd));
1443
1444                 initial_pi++;
1445                 initial_pi &= 0xF;
1446                 s->eqcr.available--;
1447                 sent++;
1448         }
1449
1450 done:
1451         initial_pi =  s->eqcr.pi;
1452         lwsync();
1453
1454         /* in order for flushes to complete faster:
1455          * we use a following trick: we record all lines in 32 bit word
1456          */
1457
1458         initial_pi =  s->eqcr.pi;
1459         for (i = 0; i < sent; i++) {
1460                 p = qbman_cena_write_start_wo_shadow_fast(&s->sys,
1461                                         QBMAN_CENA_SWP_EQCR((initial_pi) & 7));
1462
1463                 p[0] = cl[0] | s->eqcr.pi_vb;
1464                 initial_pi++;
1465                 initial_pi &= 0xF;
1466
1467                 if (!(initial_pi & 7))
1468                         s->eqcr.pi_vb ^= QB_VALID_BIT;
1469         }
1470
1471         initial_pi = s->eqcr.pi;
1472
1473         /* We need  to flush all the lines but without
1474          * load/store operations between them.
1475          * We assign start_pointer before we start loop so that
1476          * in loop we do not read it from memory
1477          */
1478         start_pointer = (uint64_t)s->sys.addr_cena;
1479         for (i = 0; i < sent; i++) {
1480                 p = (uint32_t *)(start_pointer
1481                                  + QBMAN_CENA_SWP_EQCR(initial_pi & 7));
1482                 dcbf((uint64_t)p);
1483                 initial_pi++;
1484                 initial_pi &= 0xF;
1485         }
1486
1487         /* Update producer index for the next call */
1488         s->eqcr.pi = initial_pi;
1489
1490         return sent;
1491 }
1492
1493 int qbman_get_version(void)
1494 {
1495         return qman_version;
1496 }