New upstream version 18.11-rc1
[deb_dpdk.git] / drivers / crypto / openssl / rte_openssl_pmd.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4
5 #include <rte_common.h>
6 #include <rte_hexdump.h>
7 #include <rte_cryptodev.h>
8 #include <rte_cryptodev_pmd.h>
9 #include <rte_bus_vdev.h>
10 #include <rte_malloc.h>
11 #include <rte_cpuflags.h>
12
13 #include <openssl/hmac.h>
14 #include <openssl/evp.h>
15
16 #include "rte_openssl_pmd_private.h"
17 #include "compat.h"
18
19 #define DES_BLOCK_SIZE 8
20
21 static uint8_t cryptodev_driver_id;
22
23 #if (OPENSSL_VERSION_NUMBER < 0x10100000L)
24 static HMAC_CTX *HMAC_CTX_new(void)
25 {
26         HMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx));
27
28         if (ctx != NULL)
29                 HMAC_CTX_init(ctx);
30         return ctx;
31 }
32
33 static void HMAC_CTX_free(HMAC_CTX *ctx)
34 {
35         if (ctx != NULL) {
36                 HMAC_CTX_cleanup(ctx);
37                 OPENSSL_free(ctx);
38         }
39 }
40 #endif
41
42 static int cryptodev_openssl_remove(struct rte_vdev_device *vdev);
43
44 /*----------------------------------------------------------------------------*/
45
46 /**
47  * Increment counter by 1
48  * Counter is 64 bit array, big-endian
49  */
50 static void
51 ctr_inc(uint8_t *ctr)
52 {
53         uint64_t *ctr64 = (uint64_t *)ctr;
54
55         *ctr64 = __builtin_bswap64(*ctr64);
56         (*ctr64)++;
57         *ctr64 = __builtin_bswap64(*ctr64);
58 }
59
60 /*
61  *------------------------------------------------------------------------------
62  * Session Prepare
63  *------------------------------------------------------------------------------
64  */
65
66 /** Get xform chain order */
67 static enum openssl_chain_order
68 openssl_get_chain_order(const struct rte_crypto_sym_xform *xform)
69 {
70         enum openssl_chain_order res = OPENSSL_CHAIN_NOT_SUPPORTED;
71
72         if (xform != NULL) {
73                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AUTH) {
74                         if (xform->next == NULL)
75                                 res =  OPENSSL_CHAIN_ONLY_AUTH;
76                         else if (xform->next->type ==
77                                         RTE_CRYPTO_SYM_XFORM_CIPHER)
78                                 res =  OPENSSL_CHAIN_AUTH_CIPHER;
79                 }
80                 if (xform->type == RTE_CRYPTO_SYM_XFORM_CIPHER) {
81                         if (xform->next == NULL)
82                                 res =  OPENSSL_CHAIN_ONLY_CIPHER;
83                         else if (xform->next->type == RTE_CRYPTO_SYM_XFORM_AUTH)
84                                 res =  OPENSSL_CHAIN_CIPHER_AUTH;
85                 }
86                 if (xform->type == RTE_CRYPTO_SYM_XFORM_AEAD)
87                         res = OPENSSL_CHAIN_COMBINED;
88         }
89
90         return res;
91 }
92
93 /** Get session cipher key from input cipher key */
94 static void
95 get_cipher_key(uint8_t *input_key, int keylen, uint8_t *session_key)
96 {
97         memcpy(session_key, input_key, keylen);
98 }
99
100 /** Get key ede 24 bytes standard from input key */
101 static int
102 get_cipher_key_ede(uint8_t *key, int keylen, uint8_t *key_ede)
103 {
104         int res = 0;
105
106         /* Initialize keys - 24 bytes: [key1-key2-key3] */
107         switch (keylen) {
108         case 24:
109                 memcpy(key_ede, key, 24);
110                 break;
111         case 16:
112                 /* K3 = K1 */
113                 memcpy(key_ede, key, 16);
114                 memcpy(key_ede + 16, key, 8);
115                 break;
116         case 8:
117                 /* K1 = K2 = K3 (DES compatibility) */
118                 memcpy(key_ede, key, 8);
119                 memcpy(key_ede + 8, key, 8);
120                 memcpy(key_ede + 16, key, 8);
121                 break;
122         default:
123                 OPENSSL_LOG(ERR, "Unsupported key size");
124                 res = -EINVAL;
125         }
126
127         return res;
128 }
129
130 /** Get adequate openssl function for input cipher algorithm */
131 static uint8_t
132 get_cipher_algo(enum rte_crypto_cipher_algorithm sess_algo, size_t keylen,
133                 const EVP_CIPHER **algo)
134 {
135         int res = 0;
136
137         if (algo != NULL) {
138                 switch (sess_algo) {
139                 case RTE_CRYPTO_CIPHER_3DES_CBC:
140                         switch (keylen) {
141                         case 8:
142                                 *algo = EVP_des_cbc();
143                                 break;
144                         case 16:
145                                 *algo = EVP_des_ede_cbc();
146                                 break;
147                         case 24:
148                                 *algo = EVP_des_ede3_cbc();
149                                 break;
150                         default:
151                                 res = -EINVAL;
152                         }
153                         break;
154                 case RTE_CRYPTO_CIPHER_3DES_CTR:
155                         break;
156                 case RTE_CRYPTO_CIPHER_AES_CBC:
157                         switch (keylen) {
158                         case 16:
159                                 *algo = EVP_aes_128_cbc();
160                                 break;
161                         case 24:
162                                 *algo = EVP_aes_192_cbc();
163                                 break;
164                         case 32:
165                                 *algo = EVP_aes_256_cbc();
166                                 break;
167                         default:
168                                 res = -EINVAL;
169                         }
170                         break;
171                 case RTE_CRYPTO_CIPHER_AES_CTR:
172                         switch (keylen) {
173                         case 16:
174                                 *algo = EVP_aes_128_ctr();
175                                 break;
176                         case 24:
177                                 *algo = EVP_aes_192_ctr();
178                                 break;
179                         case 32:
180                                 *algo = EVP_aes_256_ctr();
181                                 break;
182                         default:
183                                 res = -EINVAL;
184                         }
185                         break;
186                 default:
187                         res = -EINVAL;
188                         break;
189                 }
190         } else {
191                 res = -EINVAL;
192         }
193
194         return res;
195 }
196
197 /** Get adequate openssl function for input auth algorithm */
198 static uint8_t
199 get_auth_algo(enum rte_crypto_auth_algorithm sessalgo,
200                 const EVP_MD **algo)
201 {
202         int res = 0;
203
204         if (algo != NULL) {
205                 switch (sessalgo) {
206                 case RTE_CRYPTO_AUTH_MD5:
207                 case RTE_CRYPTO_AUTH_MD5_HMAC:
208                         *algo = EVP_md5();
209                         break;
210                 case RTE_CRYPTO_AUTH_SHA1:
211                 case RTE_CRYPTO_AUTH_SHA1_HMAC:
212                         *algo = EVP_sha1();
213                         break;
214                 case RTE_CRYPTO_AUTH_SHA224:
215                 case RTE_CRYPTO_AUTH_SHA224_HMAC:
216                         *algo = EVP_sha224();
217                         break;
218                 case RTE_CRYPTO_AUTH_SHA256:
219                 case RTE_CRYPTO_AUTH_SHA256_HMAC:
220                         *algo = EVP_sha256();
221                         break;
222                 case RTE_CRYPTO_AUTH_SHA384:
223                 case RTE_CRYPTO_AUTH_SHA384_HMAC:
224                         *algo = EVP_sha384();
225                         break;
226                 case RTE_CRYPTO_AUTH_SHA512:
227                 case RTE_CRYPTO_AUTH_SHA512_HMAC:
228                         *algo = EVP_sha512();
229                         break;
230                 default:
231                         res = -EINVAL;
232                         break;
233                 }
234         } else {
235                 res = -EINVAL;
236         }
237
238         return res;
239 }
240
241 /** Get adequate openssl function for input cipher algorithm */
242 static uint8_t
243 get_aead_algo(enum rte_crypto_aead_algorithm sess_algo, size_t keylen,
244                 const EVP_CIPHER **algo)
245 {
246         int res = 0;
247
248         if (algo != NULL) {
249                 switch (sess_algo) {
250                 case RTE_CRYPTO_AEAD_AES_GCM:
251                         switch (keylen) {
252                         case 16:
253                                 *algo = EVP_aes_128_gcm();
254                                 break;
255                         case 24:
256                                 *algo = EVP_aes_192_gcm();
257                                 break;
258                         case 32:
259                                 *algo = EVP_aes_256_gcm();
260                                 break;
261                         default:
262                                 res = -EINVAL;
263                         }
264                         break;
265                 case RTE_CRYPTO_AEAD_AES_CCM:
266                         switch (keylen) {
267                         case 16:
268                                 *algo = EVP_aes_128_ccm();
269                                 break;
270                         case 24:
271                                 *algo = EVP_aes_192_ccm();
272                                 break;
273                         case 32:
274                                 *algo = EVP_aes_256_ccm();
275                                 break;
276                         default:
277                                 res = -EINVAL;
278                         }
279                         break;
280                 default:
281                         res = -EINVAL;
282                         break;
283                 }
284         } else {
285                 res = -EINVAL;
286         }
287
288         return res;
289 }
290
291 /* Set session AEAD encryption parameters */
292 static int
293 openssl_set_sess_aead_enc_param(struct openssl_session *sess,
294                 enum rte_crypto_aead_algorithm algo,
295                 uint8_t tag_len, uint8_t *key)
296 {
297         int iv_type = 0;
298         unsigned int do_ccm;
299
300         sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
301         sess->auth.operation = RTE_CRYPTO_AUTH_OP_GENERATE;
302
303         /* Select AEAD algo */
304         switch (algo) {
305         case RTE_CRYPTO_AEAD_AES_GCM:
306                 iv_type = EVP_CTRL_GCM_SET_IVLEN;
307                 if (tag_len != 16)
308                         return -EINVAL;
309                 do_ccm = 0;
310                 break;
311         case RTE_CRYPTO_AEAD_AES_CCM:
312                 iv_type = EVP_CTRL_CCM_SET_IVLEN;
313                 /* Digest size can be 4, 6, 8, 10, 12, 14 or 16 bytes */
314                 if (tag_len < 4 || tag_len > 16 || (tag_len & 1) == 1)
315                         return -EINVAL;
316                 do_ccm = 1;
317                 break;
318         default:
319                 return -ENOTSUP;
320         }
321
322         sess->cipher.mode = OPENSSL_CIPHER_LIB;
323         sess->cipher.ctx = EVP_CIPHER_CTX_new();
324
325         if (get_aead_algo(algo, sess->cipher.key.length,
326                         &sess->cipher.evp_algo) != 0)
327                 return -EINVAL;
328
329         get_cipher_key(key, sess->cipher.key.length, sess->cipher.key.data);
330
331         sess->chain_order = OPENSSL_CHAIN_COMBINED;
332
333         if (EVP_EncryptInit_ex(sess->cipher.ctx, sess->cipher.evp_algo,
334                         NULL, NULL, NULL) <= 0)
335                 return -EINVAL;
336
337         if (EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, iv_type, sess->iv.length,
338                         NULL) <= 0)
339                 return -EINVAL;
340
341         if (do_ccm)
342                 EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, EVP_CTRL_CCM_SET_TAG,
343                                 tag_len, NULL);
344
345         if (EVP_EncryptInit_ex(sess->cipher.ctx, NULL, NULL, key, NULL) <= 0)
346                 return -EINVAL;
347
348         return 0;
349 }
350
351 /* Set session AEAD decryption parameters */
352 static int
353 openssl_set_sess_aead_dec_param(struct openssl_session *sess,
354                 enum rte_crypto_aead_algorithm algo,
355                 uint8_t tag_len, uint8_t *key)
356 {
357         int iv_type = 0;
358         unsigned int do_ccm = 0;
359
360         sess->cipher.direction = RTE_CRYPTO_CIPHER_OP_DECRYPT;
361         sess->auth.operation = RTE_CRYPTO_AUTH_OP_VERIFY;
362
363         /* Select AEAD algo */
364         switch (algo) {
365         case RTE_CRYPTO_AEAD_AES_GCM:
366                 iv_type = EVP_CTRL_GCM_SET_IVLEN;
367                 if (tag_len != 16)
368                         return -EINVAL;
369                 break;
370         case RTE_CRYPTO_AEAD_AES_CCM:
371                 iv_type = EVP_CTRL_CCM_SET_IVLEN;
372                 /* Digest size can be 4, 6, 8, 10, 12, 14 or 16 bytes */
373                 if (tag_len < 4 || tag_len > 16 || (tag_len & 1) == 1)
374                         return -EINVAL;
375                 do_ccm = 1;
376                 break;
377         default:
378                 return -ENOTSUP;
379         }
380
381         sess->cipher.mode = OPENSSL_CIPHER_LIB;
382         sess->cipher.ctx = EVP_CIPHER_CTX_new();
383
384         if (get_aead_algo(algo, sess->cipher.key.length,
385                         &sess->cipher.evp_algo) != 0)
386                 return -EINVAL;
387
388         get_cipher_key(key, sess->cipher.key.length, sess->cipher.key.data);
389
390         sess->chain_order = OPENSSL_CHAIN_COMBINED;
391
392         if (EVP_DecryptInit_ex(sess->cipher.ctx, sess->cipher.evp_algo,
393                         NULL, NULL, NULL) <= 0)
394                 return -EINVAL;
395
396         if (EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, iv_type,
397                         sess->iv.length, NULL) <= 0)
398                 return -EINVAL;
399
400         if (do_ccm)
401                 EVP_CIPHER_CTX_ctrl(sess->cipher.ctx, EVP_CTRL_CCM_SET_TAG,
402                                 tag_len, NULL);
403
404         if (EVP_DecryptInit_ex(sess->cipher.ctx, NULL, NULL, key, NULL) <= 0)
405                 return -EINVAL;
406
407         return 0;
408 }
409
410 /** Set session cipher parameters */
411 static int
412 openssl_set_session_cipher_parameters(struct openssl_session *sess,
413                 const struct rte_crypto_sym_xform *xform)
414 {
415         /* Select cipher direction */
416         sess->cipher.direction = xform->cipher.op;
417         /* Select cipher key */
418         sess->cipher.key.length = xform->cipher.key.length;
419
420         /* Set IV parameters */
421         sess->iv.offset = xform->cipher.iv.offset;
422         sess->iv.length = xform->cipher.iv.length;
423
424         /* Select cipher algo */
425         switch (xform->cipher.algo) {
426         case RTE_CRYPTO_CIPHER_3DES_CBC:
427         case RTE_CRYPTO_CIPHER_AES_CBC:
428         case RTE_CRYPTO_CIPHER_AES_CTR:
429                 sess->cipher.mode = OPENSSL_CIPHER_LIB;
430                 sess->cipher.algo = xform->cipher.algo;
431                 sess->cipher.ctx = EVP_CIPHER_CTX_new();
432
433                 if (get_cipher_algo(sess->cipher.algo, sess->cipher.key.length,
434                                 &sess->cipher.evp_algo) != 0)
435                         return -EINVAL;
436
437                 get_cipher_key(xform->cipher.key.data, sess->cipher.key.length,
438                         sess->cipher.key.data);
439                 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
440                         if (EVP_EncryptInit_ex(sess->cipher.ctx,
441                                         sess->cipher.evp_algo,
442                                         NULL, xform->cipher.key.data,
443                                         NULL) != 1) {
444                                 return -EINVAL;
445                         }
446                 } else if (sess->cipher.direction ==
447                                 RTE_CRYPTO_CIPHER_OP_DECRYPT) {
448                         if (EVP_DecryptInit_ex(sess->cipher.ctx,
449                                         sess->cipher.evp_algo,
450                                         NULL, xform->cipher.key.data,
451                                         NULL) != 1) {
452                                 return -EINVAL;
453                         }
454                 }
455
456                 break;
457
458         case RTE_CRYPTO_CIPHER_3DES_CTR:
459                 sess->cipher.mode = OPENSSL_CIPHER_DES3CTR;
460                 sess->cipher.ctx = EVP_CIPHER_CTX_new();
461
462                 if (get_cipher_key_ede(xform->cipher.key.data,
463                                 sess->cipher.key.length,
464                                 sess->cipher.key.data) != 0)
465                         return -EINVAL;
466                 break;
467
468         case RTE_CRYPTO_CIPHER_DES_CBC:
469                 sess->cipher.algo = xform->cipher.algo;
470                 sess->cipher.ctx = EVP_CIPHER_CTX_new();
471                 sess->cipher.evp_algo = EVP_des_cbc();
472
473                 get_cipher_key(xform->cipher.key.data, sess->cipher.key.length,
474                         sess->cipher.key.data);
475                 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
476                         if (EVP_EncryptInit_ex(sess->cipher.ctx,
477                                         sess->cipher.evp_algo,
478                                         NULL, xform->cipher.key.data,
479                                         NULL) != 1) {
480                                 return -EINVAL;
481                         }
482                 } else if (sess->cipher.direction ==
483                                 RTE_CRYPTO_CIPHER_OP_DECRYPT) {
484                         if (EVP_DecryptInit_ex(sess->cipher.ctx,
485                                         sess->cipher.evp_algo,
486                                         NULL, xform->cipher.key.data,
487                                         NULL) != 1) {
488                                 return -EINVAL;
489                         }
490                 }
491
492                 break;
493
494         case RTE_CRYPTO_CIPHER_DES_DOCSISBPI:
495                 sess->cipher.algo = xform->cipher.algo;
496                 sess->chain_order = OPENSSL_CHAIN_CIPHER_BPI;
497                 sess->cipher.ctx = EVP_CIPHER_CTX_new();
498                 sess->cipher.evp_algo = EVP_des_cbc();
499
500                 sess->cipher.bpi_ctx = EVP_CIPHER_CTX_new();
501                 /* IV will be ECB encrypted whether direction is encrypt or decrypt */
502                 if (EVP_EncryptInit_ex(sess->cipher.bpi_ctx, EVP_des_ecb(),
503                                 NULL, xform->cipher.key.data, 0) != 1)
504                         return -EINVAL;
505
506                 get_cipher_key(xform->cipher.key.data, sess->cipher.key.length,
507                         sess->cipher.key.data);
508                 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
509                         if (EVP_EncryptInit_ex(sess->cipher.ctx,
510                                         sess->cipher.evp_algo,
511                                         NULL, xform->cipher.key.data,
512                                         NULL) != 1) {
513                                 return -EINVAL;
514                         }
515                 } else if (sess->cipher.direction ==
516                                 RTE_CRYPTO_CIPHER_OP_DECRYPT) {
517                         if (EVP_DecryptInit_ex(sess->cipher.ctx,
518                                         sess->cipher.evp_algo,
519                                         NULL, xform->cipher.key.data,
520                                         NULL) != 1) {
521                                 return -EINVAL;
522                         }
523                 }
524
525                 break;
526         default:
527                 sess->cipher.algo = RTE_CRYPTO_CIPHER_NULL;
528                 return -ENOTSUP;
529         }
530
531         return 0;
532 }
533
534 /* Set session auth parameters */
535 static int
536 openssl_set_session_auth_parameters(struct openssl_session *sess,
537                 const struct rte_crypto_sym_xform *xform)
538 {
539         /* Select auth generate/verify */
540         sess->auth.operation = xform->auth.op;
541         sess->auth.algo = xform->auth.algo;
542
543         sess->auth.digest_length = xform->auth.digest_length;
544
545         /* Select auth algo */
546         switch (xform->auth.algo) {
547         case RTE_CRYPTO_AUTH_AES_GMAC:
548                 /*
549                  * OpenSSL requires GMAC to be a GCM operation
550                  * with no cipher data length
551                  */
552                 sess->cipher.key.length = xform->auth.key.length;
553
554                 /* Set IV parameters */
555                 sess->iv.offset = xform->auth.iv.offset;
556                 sess->iv.length = xform->auth.iv.length;
557
558                 if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_GENERATE)
559                         return openssl_set_sess_aead_enc_param(sess,
560                                                 RTE_CRYPTO_AEAD_AES_GCM,
561                                                 xform->auth.digest_length,
562                                                 xform->auth.key.data);
563                 else
564                         return openssl_set_sess_aead_dec_param(sess,
565                                                 RTE_CRYPTO_AEAD_AES_GCM,
566                                                 xform->auth.digest_length,
567                                                 xform->auth.key.data);
568                 break;
569
570         case RTE_CRYPTO_AUTH_MD5:
571         case RTE_CRYPTO_AUTH_SHA1:
572         case RTE_CRYPTO_AUTH_SHA224:
573         case RTE_CRYPTO_AUTH_SHA256:
574         case RTE_CRYPTO_AUTH_SHA384:
575         case RTE_CRYPTO_AUTH_SHA512:
576                 sess->auth.mode = OPENSSL_AUTH_AS_AUTH;
577                 if (get_auth_algo(xform->auth.algo,
578                                 &sess->auth.auth.evp_algo) != 0)
579                         return -EINVAL;
580                 sess->auth.auth.ctx = EVP_MD_CTX_create();
581                 break;
582
583         case RTE_CRYPTO_AUTH_MD5_HMAC:
584         case RTE_CRYPTO_AUTH_SHA1_HMAC:
585         case RTE_CRYPTO_AUTH_SHA224_HMAC:
586         case RTE_CRYPTO_AUTH_SHA256_HMAC:
587         case RTE_CRYPTO_AUTH_SHA384_HMAC:
588         case RTE_CRYPTO_AUTH_SHA512_HMAC:
589                 sess->auth.mode = OPENSSL_AUTH_AS_HMAC;
590                 sess->auth.hmac.ctx = HMAC_CTX_new();
591                 if (get_auth_algo(xform->auth.algo,
592                                 &sess->auth.hmac.evp_algo) != 0)
593                         return -EINVAL;
594
595                 if (HMAC_Init_ex(sess->auth.hmac.ctx,
596                                 xform->auth.key.data,
597                                 xform->auth.key.length,
598                                 sess->auth.hmac.evp_algo, NULL) != 1)
599                         return -EINVAL;
600                 break;
601
602         default:
603                 return -ENOTSUP;
604         }
605
606         return 0;
607 }
608
609 /* Set session AEAD parameters */
610 static int
611 openssl_set_session_aead_parameters(struct openssl_session *sess,
612                 const struct rte_crypto_sym_xform *xform)
613 {
614         /* Select cipher key */
615         sess->cipher.key.length = xform->aead.key.length;
616
617         /* Set IV parameters */
618         if (xform->aead.algo == RTE_CRYPTO_AEAD_AES_CCM)
619                 /*
620                  * For AES-CCM, the actual IV is placed
621                  * one byte after the start of the IV field,
622                  * according to the API.
623                  */
624                 sess->iv.offset = xform->aead.iv.offset + 1;
625         else
626                 sess->iv.offset = xform->aead.iv.offset;
627
628         sess->iv.length = xform->aead.iv.length;
629
630         sess->auth.aad_length = xform->aead.aad_length;
631         sess->auth.digest_length = xform->aead.digest_length;
632
633         sess->aead_algo = xform->aead.algo;
634         /* Select cipher direction */
635         if (xform->aead.op == RTE_CRYPTO_AEAD_OP_ENCRYPT)
636                 return openssl_set_sess_aead_enc_param(sess, xform->aead.algo,
637                                 xform->aead.digest_length, xform->aead.key.data);
638         else
639                 return openssl_set_sess_aead_dec_param(sess, xform->aead.algo,
640                                 xform->aead.digest_length, xform->aead.key.data);
641 }
642
643 /** Parse crypto xform chain and set private session parameters */
644 int
645 openssl_set_session_parameters(struct openssl_session *sess,
646                 const struct rte_crypto_sym_xform *xform)
647 {
648         const struct rte_crypto_sym_xform *cipher_xform = NULL;
649         const struct rte_crypto_sym_xform *auth_xform = NULL;
650         const struct rte_crypto_sym_xform *aead_xform = NULL;
651         int ret;
652
653         sess->chain_order = openssl_get_chain_order(xform);
654         switch (sess->chain_order) {
655         case OPENSSL_CHAIN_ONLY_CIPHER:
656                 cipher_xform = xform;
657                 break;
658         case OPENSSL_CHAIN_ONLY_AUTH:
659                 auth_xform = xform;
660                 break;
661         case OPENSSL_CHAIN_CIPHER_AUTH:
662                 cipher_xform = xform;
663                 auth_xform = xform->next;
664                 break;
665         case OPENSSL_CHAIN_AUTH_CIPHER:
666                 auth_xform = xform;
667                 cipher_xform = xform->next;
668                 break;
669         case OPENSSL_CHAIN_COMBINED:
670                 aead_xform = xform;
671                 break;
672         default:
673                 return -EINVAL;
674         }
675
676         /* Default IV length = 0 */
677         sess->iv.length = 0;
678
679         /* cipher_xform must be check before auth_xform */
680         if (cipher_xform) {
681                 ret = openssl_set_session_cipher_parameters(
682                                 sess, cipher_xform);
683                 if (ret != 0) {
684                         OPENSSL_LOG(ERR,
685                                 "Invalid/unsupported cipher parameters");
686                         return ret;
687                 }
688         }
689
690         if (auth_xform) {
691                 ret = openssl_set_session_auth_parameters(sess, auth_xform);
692                 if (ret != 0) {
693                         OPENSSL_LOG(ERR,
694                                 "Invalid/unsupported auth parameters");
695                         return ret;
696                 }
697         }
698
699         if (aead_xform) {
700                 ret = openssl_set_session_aead_parameters(sess, aead_xform);
701                 if (ret != 0) {
702                         OPENSSL_LOG(ERR,
703                                 "Invalid/unsupported AEAD parameters");
704                         return ret;
705                 }
706         }
707
708         return 0;
709 }
710
711 /** Reset private session parameters */
712 void
713 openssl_reset_session(struct openssl_session *sess)
714 {
715         EVP_CIPHER_CTX_free(sess->cipher.ctx);
716
717         if (sess->chain_order == OPENSSL_CHAIN_CIPHER_BPI)
718                 EVP_CIPHER_CTX_free(sess->cipher.bpi_ctx);
719
720         switch (sess->auth.mode) {
721         case OPENSSL_AUTH_AS_AUTH:
722                 EVP_MD_CTX_destroy(sess->auth.auth.ctx);
723                 break;
724         case OPENSSL_AUTH_AS_HMAC:
725                 EVP_PKEY_free(sess->auth.hmac.pkey);
726                 HMAC_CTX_free(sess->auth.hmac.ctx);
727                 break;
728         default:
729                 break;
730         }
731 }
732
733 /** Provide session for operation */
734 static void *
735 get_session(struct openssl_qp *qp, struct rte_crypto_op *op)
736 {
737         struct openssl_session *sess = NULL;
738         struct openssl_asym_session *asym_sess = NULL;
739
740         if (op->sess_type == RTE_CRYPTO_OP_WITH_SESSION) {
741                 if (op->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC) {
742                         /* get existing session */
743                         if (likely(op->sym->session != NULL))
744                                 sess = (struct openssl_session *)
745                                                 get_sym_session_private_data(
746                                                 op->sym->session,
747                                                 cryptodev_driver_id);
748                 } else {
749                         if (likely(op->asym->session != NULL))
750                                 asym_sess = (struct openssl_asym_session *)
751                                                 get_asym_session_private_data(
752                                                 op->asym->session,
753                                                 cryptodev_driver_id);
754                         if (asym_sess == NULL)
755                                 op->status =
756                                         RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
757                         return asym_sess;
758                 }
759         } else {
760                 /* sessionless asymmetric not supported */
761                 if (op->type == RTE_CRYPTO_OP_TYPE_ASYMMETRIC)
762                         return NULL;
763
764                 /* provide internal session */
765                 void *_sess = NULL;
766                 void *_sess_private_data = NULL;
767
768                 if (rte_mempool_get(qp->sess_mp, (void **)&_sess))
769                         return NULL;
770
771                 if (rte_mempool_get(qp->sess_mp, (void **)&_sess_private_data))
772                         return NULL;
773
774                 sess = (struct openssl_session *)_sess_private_data;
775
776                 if (unlikely(openssl_set_session_parameters(sess,
777                                 op->sym->xform) != 0)) {
778                         rte_mempool_put(qp->sess_mp, _sess);
779                         rte_mempool_put(qp->sess_mp, _sess_private_data);
780                         sess = NULL;
781                 }
782                 op->sym->session = (struct rte_cryptodev_sym_session *)_sess;
783                 set_sym_session_private_data(op->sym->session,
784                                 cryptodev_driver_id, _sess_private_data);
785         }
786
787         if (sess == NULL)
788                 op->status = RTE_CRYPTO_OP_STATUS_INVALID_SESSION;
789
790         return sess;
791 }
792
793 /*
794  *------------------------------------------------------------------------------
795  * Process Operations
796  *------------------------------------------------------------------------------
797  */
798 static inline int
799 process_openssl_encryption_update(struct rte_mbuf *mbuf_src, int offset,
800                 uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx)
801 {
802         struct rte_mbuf *m;
803         int dstlen;
804         int l, n = srclen;
805         uint8_t *src;
806
807         for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
808                         m = m->next)
809                 offset -= rte_pktmbuf_data_len(m);
810
811         if (m == 0)
812                 return -1;
813
814         src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
815
816         l = rte_pktmbuf_data_len(m) - offset;
817         if (srclen <= l) {
818                 if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0)
819                         return -1;
820                 *dst += l;
821                 return 0;
822         }
823
824         if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
825                 return -1;
826
827         *dst += dstlen;
828         n -= l;
829
830         for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
831                 src = rte_pktmbuf_mtod(m, uint8_t *);
832                 l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
833                 if (EVP_EncryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
834                         return -1;
835                 *dst += dstlen;
836                 n -= l;
837         }
838
839         return 0;
840 }
841
842 static inline int
843 process_openssl_decryption_update(struct rte_mbuf *mbuf_src, int offset,
844                 uint8_t **dst, int srclen, EVP_CIPHER_CTX *ctx)
845 {
846         struct rte_mbuf *m;
847         int dstlen;
848         int l, n = srclen;
849         uint8_t *src;
850
851         for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
852                         m = m->next)
853                 offset -= rte_pktmbuf_data_len(m);
854
855         if (m == 0)
856                 return -1;
857
858         src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
859
860         l = rte_pktmbuf_data_len(m) - offset;
861         if (srclen <= l) {
862                 if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, srclen) <= 0)
863                         return -1;
864                 *dst += l;
865                 return 0;
866         }
867
868         if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
869                 return -1;
870
871         *dst += dstlen;
872         n -= l;
873
874         for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
875                 src = rte_pktmbuf_mtod(m, uint8_t *);
876                 l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
877                 if (EVP_DecryptUpdate(ctx, *dst, &dstlen, src, l) <= 0)
878                         return -1;
879                 *dst += dstlen;
880                 n -= l;
881         }
882
883         return 0;
884 }
885
886 /** Process standard openssl cipher encryption */
887 static int
888 process_openssl_cipher_encrypt(struct rte_mbuf *mbuf_src, uint8_t *dst,
889                 int offset, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx)
890 {
891         int totlen;
892
893         if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
894                 goto process_cipher_encrypt_err;
895
896         EVP_CIPHER_CTX_set_padding(ctx, 0);
897
898         if (process_openssl_encryption_update(mbuf_src, offset, &dst,
899                         srclen, ctx))
900                 goto process_cipher_encrypt_err;
901
902         if (EVP_EncryptFinal_ex(ctx, dst, &totlen) <= 0)
903                 goto process_cipher_encrypt_err;
904
905         return 0;
906
907 process_cipher_encrypt_err:
908         OPENSSL_LOG(ERR, "Process openssl cipher encrypt failed");
909         return -EINVAL;
910 }
911
912 /** Process standard openssl cipher encryption */
913 static int
914 process_openssl_cipher_bpi_encrypt(uint8_t *src, uint8_t *dst,
915                 uint8_t *iv, int srclen,
916                 EVP_CIPHER_CTX *ctx)
917 {
918         uint8_t i;
919         uint8_t encrypted_iv[DES_BLOCK_SIZE];
920         int encrypted_ivlen;
921
922         if (EVP_EncryptUpdate(ctx, encrypted_iv, &encrypted_ivlen,
923                         iv, DES_BLOCK_SIZE) <= 0)
924                 goto process_cipher_encrypt_err;
925
926         for (i = 0; i < srclen; i++)
927                 *(dst + i) = *(src + i) ^ (encrypted_iv[i]);
928
929         return 0;
930
931 process_cipher_encrypt_err:
932         OPENSSL_LOG(ERR, "Process openssl cipher bpi encrypt failed");
933         return -EINVAL;
934 }
935 /** Process standard openssl cipher decryption */
936 static int
937 process_openssl_cipher_decrypt(struct rte_mbuf *mbuf_src, uint8_t *dst,
938                 int offset, uint8_t *iv, int srclen, EVP_CIPHER_CTX *ctx)
939 {
940         int totlen;
941
942         if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
943                 goto process_cipher_decrypt_err;
944
945         EVP_CIPHER_CTX_set_padding(ctx, 0);
946
947         if (process_openssl_decryption_update(mbuf_src, offset, &dst,
948                         srclen, ctx))
949                 goto process_cipher_decrypt_err;
950
951         if (EVP_DecryptFinal_ex(ctx, dst, &totlen) <= 0)
952                 goto process_cipher_decrypt_err;
953         return 0;
954
955 process_cipher_decrypt_err:
956         OPENSSL_LOG(ERR, "Process openssl cipher decrypt failed");
957         return -EINVAL;
958 }
959
960 /** Process cipher des 3 ctr encryption, decryption algorithm */
961 static int
962 process_openssl_cipher_des3ctr(struct rte_mbuf *mbuf_src, uint8_t *dst,
963                 int offset, uint8_t *iv, uint8_t *key, int srclen,
964                 EVP_CIPHER_CTX *ctx)
965 {
966         uint8_t ebuf[8], ctr[8];
967         int unused, n;
968         struct rte_mbuf *m;
969         uint8_t *src;
970         int l;
971
972         for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
973                         m = m->next)
974                 offset -= rte_pktmbuf_data_len(m);
975
976         if (m == 0)
977                 goto process_cipher_des3ctr_err;
978
979         src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
980         l = rte_pktmbuf_data_len(m) - offset;
981
982         /* We use 3DES encryption also for decryption.
983          * IV is not important for 3DES ecb
984          */
985         if (EVP_EncryptInit_ex(ctx, EVP_des_ede3_ecb(), NULL, key, NULL) <= 0)
986                 goto process_cipher_des3ctr_err;
987
988         memcpy(ctr, iv, 8);
989
990         for (n = 0; n < srclen; n++) {
991                 if (n % 8 == 0) {
992                         if (EVP_EncryptUpdate(ctx,
993                                         (unsigned char *)&ebuf, &unused,
994                                         (const unsigned char *)&ctr, 8) <= 0)
995                                 goto process_cipher_des3ctr_err;
996                         ctr_inc(ctr);
997                 }
998                 dst[n] = *(src++) ^ ebuf[n % 8];
999
1000                 l--;
1001                 if (!l) {
1002                         m = m->next;
1003                         if (m) {
1004                                 src = rte_pktmbuf_mtod(m, uint8_t *);
1005                                 l = rte_pktmbuf_data_len(m);
1006                         }
1007                 }
1008         }
1009
1010         return 0;
1011
1012 process_cipher_des3ctr_err:
1013         OPENSSL_LOG(ERR, "Process openssl cipher des 3 ede ctr failed");
1014         return -EINVAL;
1015 }
1016
1017 /** Process AES-GCM encrypt algorithm */
1018 static int
1019 process_openssl_auth_encryption_gcm(struct rte_mbuf *mbuf_src, int offset,
1020                 int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1021                 uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx)
1022 {
1023         int len = 0, unused = 0;
1024         uint8_t empty[] = {};
1025
1026         if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1027                 goto process_auth_encryption_gcm_err;
1028
1029         if (aadlen > 0)
1030                 if (EVP_EncryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0)
1031                         goto process_auth_encryption_gcm_err;
1032
1033         if (srclen > 0)
1034                 if (process_openssl_encryption_update(mbuf_src, offset, &dst,
1035                                 srclen, ctx))
1036                         goto process_auth_encryption_gcm_err;
1037
1038         /* Workaround open ssl bug in version less then 1.0.1f */
1039         if (EVP_EncryptUpdate(ctx, empty, &unused, empty, 0) <= 0)
1040                 goto process_auth_encryption_gcm_err;
1041
1042         if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0)
1043                 goto process_auth_encryption_gcm_err;
1044
1045         if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, 16, tag) <= 0)
1046                 goto process_auth_encryption_gcm_err;
1047
1048         return 0;
1049
1050 process_auth_encryption_gcm_err:
1051         OPENSSL_LOG(ERR, "Process openssl auth encryption gcm failed");
1052         return -EINVAL;
1053 }
1054
1055 /** Process AES-CCM encrypt algorithm */
1056 static int
1057 process_openssl_auth_encryption_ccm(struct rte_mbuf *mbuf_src, int offset,
1058                 int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1059                 uint8_t *dst, uint8_t *tag, uint8_t taglen, EVP_CIPHER_CTX *ctx)
1060 {
1061         int len = 0;
1062
1063         if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1064                 goto process_auth_encryption_ccm_err;
1065
1066         if (EVP_EncryptUpdate(ctx, NULL, &len, NULL, srclen) <= 0)
1067                 goto process_auth_encryption_ccm_err;
1068
1069         if (aadlen > 0)
1070                 /*
1071                  * For AES-CCM, the actual AAD is placed
1072                  * 18 bytes after the start of the AAD field,
1073                  * according to the API.
1074                  */
1075                 if (EVP_EncryptUpdate(ctx, NULL, &len, aad + 18, aadlen) <= 0)
1076                         goto process_auth_encryption_ccm_err;
1077
1078         if (srclen > 0)
1079                 if (process_openssl_encryption_update(mbuf_src, offset, &dst,
1080                                 srclen, ctx))
1081                         goto process_auth_encryption_ccm_err;
1082
1083         if (EVP_EncryptFinal_ex(ctx, dst, &len) <= 0)
1084                 goto process_auth_encryption_ccm_err;
1085
1086         if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_GET_TAG, taglen, tag) <= 0)
1087                 goto process_auth_encryption_ccm_err;
1088
1089         return 0;
1090
1091 process_auth_encryption_ccm_err:
1092         OPENSSL_LOG(ERR, "Process openssl auth encryption ccm failed");
1093         return -EINVAL;
1094 }
1095
1096 /** Process AES-GCM decrypt algorithm */
1097 static int
1098 process_openssl_auth_decryption_gcm(struct rte_mbuf *mbuf_src, int offset,
1099                 int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1100                 uint8_t *dst, uint8_t *tag, EVP_CIPHER_CTX *ctx)
1101 {
1102         int len = 0, unused = 0;
1103         uint8_t empty[] = {};
1104
1105         if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, 16, tag) <= 0)
1106                 goto process_auth_decryption_gcm_err;
1107
1108         if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1109                 goto process_auth_decryption_gcm_err;
1110
1111         if (aadlen > 0)
1112                 if (EVP_DecryptUpdate(ctx, NULL, &len, aad, aadlen) <= 0)
1113                         goto process_auth_decryption_gcm_err;
1114
1115         if (srclen > 0)
1116                 if (process_openssl_decryption_update(mbuf_src, offset, &dst,
1117                                 srclen, ctx))
1118                         goto process_auth_decryption_gcm_err;
1119
1120         /* Workaround open ssl bug in version less then 1.0.1f */
1121         if (EVP_DecryptUpdate(ctx, empty, &unused, empty, 0) <= 0)
1122                 goto process_auth_decryption_gcm_err;
1123
1124         if (EVP_DecryptFinal_ex(ctx, dst, &len) <= 0)
1125                 return -EFAULT;
1126
1127         return 0;
1128
1129 process_auth_decryption_gcm_err:
1130         OPENSSL_LOG(ERR, "Process openssl auth decryption gcm failed");
1131         return -EINVAL;
1132 }
1133
1134 /** Process AES-CCM decrypt algorithm */
1135 static int
1136 process_openssl_auth_decryption_ccm(struct rte_mbuf *mbuf_src, int offset,
1137                 int srclen, uint8_t *aad, int aadlen, uint8_t *iv,
1138                 uint8_t *dst, uint8_t *tag, uint8_t tag_len,
1139                 EVP_CIPHER_CTX *ctx)
1140 {
1141         int len = 0;
1142
1143         if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_TAG, tag_len, tag) <= 0)
1144                 goto process_auth_decryption_ccm_err;
1145
1146         if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) <= 0)
1147                 goto process_auth_decryption_ccm_err;
1148
1149         if (EVP_DecryptUpdate(ctx, NULL, &len, NULL, srclen) <= 0)
1150                 goto process_auth_decryption_ccm_err;
1151
1152         if (aadlen > 0)
1153                 /*
1154                  * For AES-CCM, the actual AAD is placed
1155                  * 18 bytes after the start of the AAD field,
1156                  * according to the API.
1157                  */
1158                 if (EVP_DecryptUpdate(ctx, NULL, &len, aad + 18, aadlen) <= 0)
1159                         goto process_auth_decryption_ccm_err;
1160
1161         if (srclen > 0)
1162                 if (process_openssl_decryption_update(mbuf_src, offset, &dst,
1163                                 srclen, ctx))
1164                         return -EFAULT;
1165
1166         return 0;
1167
1168 process_auth_decryption_ccm_err:
1169         OPENSSL_LOG(ERR, "Process openssl auth decryption ccm failed");
1170         return -EINVAL;
1171 }
1172
1173 /** Process standard openssl auth algorithms */
1174 static int
1175 process_openssl_auth(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset,
1176                 __rte_unused uint8_t *iv, __rte_unused EVP_PKEY * pkey,
1177                 int srclen, EVP_MD_CTX *ctx, const EVP_MD *algo)
1178 {
1179         size_t dstlen;
1180         struct rte_mbuf *m;
1181         int l, n = srclen;
1182         uint8_t *src;
1183
1184         for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
1185                         m = m->next)
1186                 offset -= rte_pktmbuf_data_len(m);
1187
1188         if (m == 0)
1189                 goto process_auth_err;
1190
1191         if (EVP_DigestInit_ex(ctx, algo, NULL) <= 0)
1192                 goto process_auth_err;
1193
1194         src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
1195
1196         l = rte_pktmbuf_data_len(m) - offset;
1197         if (srclen <= l) {
1198                 if (EVP_DigestUpdate(ctx, (char *)src, srclen) <= 0)
1199                         goto process_auth_err;
1200                 goto process_auth_final;
1201         }
1202
1203         if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0)
1204                 goto process_auth_err;
1205
1206         n -= l;
1207
1208         for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
1209                 src = rte_pktmbuf_mtod(m, uint8_t *);
1210                 l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
1211                 if (EVP_DigestUpdate(ctx, (char *)src, l) <= 0)
1212                         goto process_auth_err;
1213                 n -= l;
1214         }
1215
1216 process_auth_final:
1217         if (EVP_DigestFinal_ex(ctx, dst, (unsigned int *)&dstlen) <= 0)
1218                 goto process_auth_err;
1219         return 0;
1220
1221 process_auth_err:
1222         OPENSSL_LOG(ERR, "Process openssl auth failed");
1223         return -EINVAL;
1224 }
1225
1226 /** Process standard openssl auth algorithms with hmac */
1227 static int
1228 process_openssl_auth_hmac(struct rte_mbuf *mbuf_src, uint8_t *dst, int offset,
1229                 int srclen, HMAC_CTX *ctx)
1230 {
1231         unsigned int dstlen;
1232         struct rte_mbuf *m;
1233         int l, n = srclen;
1234         uint8_t *src;
1235
1236         for (m = mbuf_src; m != NULL && offset > rte_pktmbuf_data_len(m);
1237                         m = m->next)
1238                 offset -= rte_pktmbuf_data_len(m);
1239
1240         if (m == 0)
1241                 goto process_auth_err;
1242
1243         src = rte_pktmbuf_mtod_offset(m, uint8_t *, offset);
1244
1245         l = rte_pktmbuf_data_len(m) - offset;
1246         if (srclen <= l) {
1247                 if (HMAC_Update(ctx, (unsigned char *)src, srclen) != 1)
1248                         goto process_auth_err;
1249                 goto process_auth_final;
1250         }
1251
1252         if (HMAC_Update(ctx, (unsigned char *)src, l) != 1)
1253                 goto process_auth_err;
1254
1255         n -= l;
1256
1257         for (m = m->next; (m != NULL) && (n > 0); m = m->next) {
1258                 src = rte_pktmbuf_mtod(m, uint8_t *);
1259                 l = rte_pktmbuf_data_len(m) < n ? rte_pktmbuf_data_len(m) : n;
1260                 if (HMAC_Update(ctx, (unsigned char *)src, l) != 1)
1261                         goto process_auth_err;
1262                 n -= l;
1263         }
1264
1265 process_auth_final:
1266         if (HMAC_Final(ctx, dst, &dstlen) != 1)
1267                 goto process_auth_err;
1268
1269         if (unlikely(HMAC_Init_ex(ctx, NULL, 0, NULL, NULL) != 1))
1270                 goto process_auth_err;
1271
1272         return 0;
1273
1274 process_auth_err:
1275         OPENSSL_LOG(ERR, "Process openssl auth failed");
1276         return -EINVAL;
1277 }
1278
1279 /*----------------------------------------------------------------------------*/
1280
1281 /** Process auth/cipher combined operation */
1282 static void
1283 process_openssl_combined_op
1284                 (struct rte_crypto_op *op, struct openssl_session *sess,
1285                 struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst)
1286 {
1287         /* cipher */
1288         uint8_t *dst = NULL, *iv, *tag, *aad;
1289         int srclen, aadlen, status = -1;
1290         uint32_t offset;
1291         uint8_t taglen;
1292
1293         /*
1294          * Segmented destination buffer is not supported for
1295          * encryption/decryption
1296          */
1297         if (!rte_pktmbuf_is_contiguous(mbuf_dst)) {
1298                 op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1299                 return;
1300         }
1301
1302         iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1303                         sess->iv.offset);
1304         if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC) {
1305                 srclen = 0;
1306                 offset = op->sym->auth.data.offset;
1307                 aadlen = op->sym->auth.data.length;
1308                 aad = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *,
1309                                 op->sym->auth.data.offset);
1310                 tag = op->sym->auth.digest.data;
1311                 if (tag == NULL)
1312                         tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1313                                 offset + aadlen);
1314         } else {
1315                 srclen = op->sym->aead.data.length;
1316                 dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1317                                 op->sym->aead.data.offset);
1318                 offset = op->sym->aead.data.offset;
1319                 aad = op->sym->aead.aad.data;
1320                 aadlen = sess->auth.aad_length;
1321                 tag = op->sym->aead.digest.data;
1322                 if (tag == NULL)
1323                         tag = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1324                                 offset + srclen);
1325         }
1326
1327         taglen = sess->auth.digest_length;
1328
1329         if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
1330                 if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC ||
1331                                 sess->aead_algo == RTE_CRYPTO_AEAD_AES_GCM)
1332                         status = process_openssl_auth_encryption_gcm(
1333                                         mbuf_src, offset, srclen,
1334                                         aad, aadlen, iv,
1335                                         dst, tag, sess->cipher.ctx);
1336                 else
1337                         status = process_openssl_auth_encryption_ccm(
1338                                         mbuf_src, offset, srclen,
1339                                         aad, aadlen, iv,
1340                                         dst, tag, taglen, sess->cipher.ctx);
1341
1342         } else {
1343                 if (sess->auth.algo == RTE_CRYPTO_AUTH_AES_GMAC ||
1344                                 sess->aead_algo == RTE_CRYPTO_AEAD_AES_GCM)
1345                         status = process_openssl_auth_decryption_gcm(
1346                                         mbuf_src, offset, srclen,
1347                                         aad, aadlen, iv,
1348                                         dst, tag, sess->cipher.ctx);
1349                 else
1350                         status = process_openssl_auth_decryption_ccm(
1351                                         mbuf_src, offset, srclen,
1352                                         aad, aadlen, iv,
1353                                         dst, tag, taglen, sess->cipher.ctx);
1354         }
1355
1356         if (status != 0) {
1357                 if (status == (-EFAULT) &&
1358                                 sess->auth.operation ==
1359                                                 RTE_CRYPTO_AUTH_OP_VERIFY)
1360                         op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
1361                 else
1362                         op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1363         }
1364 }
1365
1366 /** Process cipher operation */
1367 static void
1368 process_openssl_cipher_op
1369                 (struct rte_crypto_op *op, struct openssl_session *sess,
1370                 struct rte_mbuf *mbuf_src, struct rte_mbuf *mbuf_dst)
1371 {
1372         uint8_t *dst, *iv;
1373         int srclen, status;
1374
1375         /*
1376          * Segmented destination buffer is not supported for
1377          * encryption/decryption
1378          */
1379         if (!rte_pktmbuf_is_contiguous(mbuf_dst)) {
1380                 op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1381                 return;
1382         }
1383
1384         srclen = op->sym->cipher.data.length;
1385         dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1386                         op->sym->cipher.data.offset);
1387
1388         iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1389                         sess->iv.offset);
1390
1391         if (sess->cipher.mode == OPENSSL_CIPHER_LIB)
1392                 if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
1393                         status = process_openssl_cipher_encrypt(mbuf_src, dst,
1394                                         op->sym->cipher.data.offset, iv,
1395                                         srclen, sess->cipher.ctx);
1396                 else
1397                         status = process_openssl_cipher_decrypt(mbuf_src, dst,
1398                                         op->sym->cipher.data.offset, iv,
1399                                         srclen, sess->cipher.ctx);
1400         else
1401                 status = process_openssl_cipher_des3ctr(mbuf_src, dst,
1402                                 op->sym->cipher.data.offset, iv,
1403                                 sess->cipher.key.data, srclen,
1404                                 sess->cipher.ctx);
1405
1406         if (status != 0)
1407                 op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1408 }
1409
1410 /** Process cipher operation */
1411 static void
1412 process_openssl_docsis_bpi_op(struct rte_crypto_op *op,
1413                 struct openssl_session *sess, struct rte_mbuf *mbuf_src,
1414                 struct rte_mbuf *mbuf_dst)
1415 {
1416         uint8_t *src, *dst, *iv;
1417         uint8_t block_size, last_block_len;
1418         int srclen, status = 0;
1419
1420         srclen = op->sym->cipher.data.length;
1421         src = rte_pktmbuf_mtod_offset(mbuf_src, uint8_t *,
1422                         op->sym->cipher.data.offset);
1423         dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1424                         op->sym->cipher.data.offset);
1425
1426         iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1427                         sess->iv.offset);
1428
1429         block_size = DES_BLOCK_SIZE;
1430
1431         last_block_len = srclen % block_size;
1432         if (sess->cipher.direction == RTE_CRYPTO_CIPHER_OP_ENCRYPT) {
1433                 /* Encrypt only with ECB mode XOR IV */
1434                 if (srclen < block_size) {
1435                         status = process_openssl_cipher_bpi_encrypt(src, dst,
1436                                         iv, srclen,
1437                                         sess->cipher.bpi_ctx);
1438                 } else {
1439                         srclen -= last_block_len;
1440                         /* Encrypt with the block aligned stream with CBC mode */
1441                         status = process_openssl_cipher_encrypt(mbuf_src, dst,
1442                                         op->sym->cipher.data.offset, iv,
1443                                         srclen, sess->cipher.ctx);
1444                         if (last_block_len) {
1445                                 /* Point at last block */
1446                                 dst += srclen;
1447                                 /*
1448                                  * IV is the last encrypted block from
1449                                  * the previous operation
1450                                  */
1451                                 iv = dst - block_size;
1452                                 src += srclen;
1453                                 srclen = last_block_len;
1454                                 /* Encrypt the last frame with ECB mode */
1455                                 status |= process_openssl_cipher_bpi_encrypt(src,
1456                                                 dst, iv,
1457                                                 srclen, sess->cipher.bpi_ctx);
1458                         }
1459                 }
1460         } else {
1461                 /* Decrypt only with ECB mode (encrypt, as it is same operation) */
1462                 if (srclen < block_size) {
1463                         status = process_openssl_cipher_bpi_encrypt(src, dst,
1464                                         iv,
1465                                         srclen,
1466                                         sess->cipher.bpi_ctx);
1467                 } else {
1468                         if (last_block_len) {
1469                                 /* Point at last block */
1470                                 dst += srclen - last_block_len;
1471                                 src += srclen - last_block_len;
1472                                 /*
1473                                  * IV is the last full block
1474                                  */
1475                                 iv = src - block_size;
1476                                 /*
1477                                  * Decrypt the last frame with ECB mode
1478                                  * (encrypt, as it is the same operation)
1479                                  */
1480                                 status = process_openssl_cipher_bpi_encrypt(src,
1481                                                 dst, iv,
1482                                                 last_block_len, sess->cipher.bpi_ctx);
1483                                 /* Prepare parameters for CBC mode op */
1484                                 iv = rte_crypto_op_ctod_offset(op, uint8_t *,
1485                                                 sess->iv.offset);
1486                                 dst += last_block_len - srclen;
1487                                 srclen -= last_block_len;
1488                         }
1489
1490                         /* Decrypt with CBC mode */
1491                         status |= process_openssl_cipher_decrypt(mbuf_src, dst,
1492                                         op->sym->cipher.data.offset, iv,
1493                                         srclen, sess->cipher.ctx);
1494                 }
1495         }
1496
1497         if (status != 0)
1498                 op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1499 }
1500
1501 /** Process auth operation */
1502 static void
1503 process_openssl_auth_op(struct openssl_qp *qp, struct rte_crypto_op *op,
1504                 struct openssl_session *sess, struct rte_mbuf *mbuf_src,
1505                 struct rte_mbuf *mbuf_dst)
1506 {
1507         uint8_t *dst;
1508         int srclen, status;
1509
1510         srclen = op->sym->auth.data.length;
1511
1512         dst = qp->temp_digest;
1513
1514         switch (sess->auth.mode) {
1515         case OPENSSL_AUTH_AS_AUTH:
1516                 status = process_openssl_auth(mbuf_src, dst,
1517                                 op->sym->auth.data.offset, NULL, NULL, srclen,
1518                                 sess->auth.auth.ctx, sess->auth.auth.evp_algo);
1519                 break;
1520         case OPENSSL_AUTH_AS_HMAC:
1521                 status = process_openssl_auth_hmac(mbuf_src, dst,
1522                                 op->sym->auth.data.offset, srclen,
1523                                 sess->auth.hmac.ctx);
1524                 break;
1525         default:
1526                 status = -1;
1527                 break;
1528         }
1529
1530         if (sess->auth.operation == RTE_CRYPTO_AUTH_OP_VERIFY) {
1531                 if (memcmp(dst, op->sym->auth.digest.data,
1532                                 sess->auth.digest_length) != 0) {
1533                         op->status = RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
1534                 }
1535         } else {
1536                 uint8_t *auth_dst;
1537
1538                 auth_dst = op->sym->auth.digest.data;
1539                 if (auth_dst == NULL)
1540                         auth_dst = rte_pktmbuf_mtod_offset(mbuf_dst, uint8_t *,
1541                                         op->sym->auth.data.offset +
1542                                         op->sym->auth.data.length);
1543                 memcpy(auth_dst, dst, sess->auth.digest_length);
1544         }
1545
1546         if (status != 0)
1547                 op->status = RTE_CRYPTO_OP_STATUS_ERROR;
1548 }
1549
1550 /* process dsa sign operation */
1551 static int
1552 process_openssl_dsa_sign_op(struct rte_crypto_op *cop,
1553                 struct openssl_asym_session *sess)
1554 {
1555         struct rte_crypto_dsa_op_param *op = &cop->asym->dsa;
1556         DSA *dsa = sess->u.s.dsa;
1557         DSA_SIG *sign = NULL;
1558
1559         sign = DSA_do_sign(op->message.data,
1560                         op->message.length,
1561                         dsa);
1562
1563         if (sign == NULL) {
1564                 OPENSSL_LOG(ERR, "%s:%d\n", __func__, __LINE__);
1565                 cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1566         } else {
1567                 const BIGNUM *r = NULL, *s = NULL;
1568                 get_dsa_sign(sign, &r, &s);
1569
1570                 op->r.length = BN_bn2bin(r, op->r.data);
1571                 op->s.length = BN_bn2bin(s, op->s.data);
1572                 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1573         }
1574
1575         DSA_SIG_free(sign);
1576
1577         return 0;
1578 }
1579
1580 /* process dsa verify operation */
1581 static int
1582 process_openssl_dsa_verify_op(struct rte_crypto_op *cop,
1583                 struct openssl_asym_session *sess)
1584 {
1585         struct rte_crypto_dsa_op_param *op = &cop->asym->dsa;
1586         DSA *dsa = sess->u.s.dsa;
1587         int ret;
1588         DSA_SIG *sign = DSA_SIG_new();
1589         BIGNUM *r = NULL, *s = NULL;
1590         BIGNUM *pub_key = NULL;
1591
1592         if (sign == NULL) {
1593                 OPENSSL_LOG(ERR, " %s:%d\n", __func__, __LINE__);
1594                 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1595                 return -1;
1596         }
1597
1598         r = BN_bin2bn(op->r.data,
1599                         op->r.length,
1600                         r);
1601         s = BN_bin2bn(op->s.data,
1602                         op->s.length,
1603                         s);
1604         pub_key = BN_bin2bn(op->y.data,
1605                         op->y.length,
1606                         pub_key);
1607         if (!r || !s || !pub_key) {
1608                 if (r)
1609                         BN_free(r);
1610                 if (s)
1611                         BN_free(s);
1612                 if (pub_key)
1613                         BN_free(pub_key);
1614
1615                 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1616                 return -1;
1617         }
1618         set_dsa_sign(sign, r, s);
1619         set_dsa_pub_key(dsa, pub_key);
1620
1621         ret = DSA_do_verify(op->message.data,
1622                         op->message.length,
1623                         sign,
1624                         dsa);
1625
1626         if (ret != 1)
1627                 cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1628         else
1629                 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1630
1631         DSA_SIG_free(sign);
1632
1633         return 0;
1634 }
1635
1636 /* process dh operation */
1637 static int
1638 process_openssl_dh_op(struct rte_crypto_op *cop,
1639                 struct openssl_asym_session *sess)
1640 {
1641         struct rte_crypto_dh_op_param *op = &cop->asym->dh;
1642         DH *dh_key = sess->u.dh.dh_key;
1643         BIGNUM *priv_key = NULL;
1644         int ret = 0;
1645
1646         if (sess->u.dh.key_op &
1647                         (1 << RTE_CRYPTO_ASYM_OP_SHARED_SECRET_COMPUTE)) {
1648                 /* compute shared secret using peer public key
1649                  * and current private key
1650                  * shared secret = peer_key ^ priv_key mod p
1651                  */
1652                 BIGNUM *peer_key = NULL;
1653
1654                 /* copy private key and peer key and compute shared secret */
1655                 peer_key = BN_bin2bn(op->pub_key.data,
1656                                 op->pub_key.length,
1657                                 peer_key);
1658                 if (peer_key == NULL) {
1659                         cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1660                         return -1;
1661                 }
1662                 priv_key = BN_bin2bn(op->priv_key.data,
1663                                 op->priv_key.length,
1664                                 priv_key);
1665                 if (priv_key == NULL) {
1666                         BN_free(peer_key);
1667                         cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1668                         return -1;
1669                 }
1670                 ret = set_dh_priv_key(dh_key, priv_key);
1671                 if (ret) {
1672                         OPENSSL_LOG(ERR, "Failed to set private key\n");
1673                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1674                         BN_free(peer_key);
1675                         BN_free(priv_key);
1676                         return 0;
1677                 }
1678
1679                 ret = DH_compute_key(
1680                                 op->shared_secret.data,
1681                                 peer_key, dh_key);
1682                 if (ret < 0) {
1683                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1684                         BN_free(peer_key);
1685                         /* priv key is already loaded into dh,
1686                          * let's not free that directly here.
1687                          * DH_free() will auto free it later.
1688                          */
1689                         return 0;
1690                 }
1691                 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1692                 op->shared_secret.length = ret;
1693                 BN_free(peer_key);
1694                 return 0;
1695         }
1696
1697         /*
1698          * other options are public and private key generations.
1699          *
1700          * if user provides private key,
1701          * then first set DH with user provided private key
1702          */
1703         if ((sess->u.dh.key_op &
1704                         (1 << RTE_CRYPTO_ASYM_OP_PUBLIC_KEY_GENERATE)) &&
1705                         !(sess->u.dh.key_op &
1706                         (1 << RTE_CRYPTO_ASYM_OP_PRIVATE_KEY_GENERATE))) {
1707                 /* generate public key using user-provided private key
1708                  * pub_key = g ^ priv_key mod p
1709                  */
1710
1711                 /* load private key into DH */
1712                 priv_key = BN_bin2bn(op->priv_key.data,
1713                                 op->priv_key.length,
1714                                 priv_key);
1715                 if (priv_key == NULL) {
1716                         cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1717                         return -1;
1718                 }
1719                 ret = set_dh_priv_key(dh_key, priv_key);
1720                 if (ret) {
1721                         OPENSSL_LOG(ERR, "Failed to set private key\n");
1722                         cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1723                         BN_free(priv_key);
1724                         return 0;
1725                 }
1726         }
1727
1728         /* generate public and private key pair.
1729          *
1730          * if private key already set, generates only public key.
1731          *
1732          * if private key is not already set, then set it to random value
1733          * and update internal private key.
1734          */
1735         if (!DH_generate_key(dh_key)) {
1736                 cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1737                 return 0;
1738         }
1739
1740         if (sess->u.dh.key_op & (1 << RTE_CRYPTO_ASYM_OP_PUBLIC_KEY_GENERATE)) {
1741                 const BIGNUM *pub_key = NULL;
1742
1743                 OPENSSL_LOG(DEBUG, "%s:%d update public key\n",
1744                                 __func__, __LINE__);
1745
1746                 /* get the generated keys */
1747                 get_dh_pub_key(dh_key, &pub_key);
1748
1749                 /* output public key */
1750                 op->pub_key.length = BN_bn2bin(pub_key,
1751                                 op->pub_key.data);
1752         }
1753
1754         if (sess->u.dh.key_op &
1755                         (1 << RTE_CRYPTO_ASYM_OP_PRIVATE_KEY_GENERATE)) {
1756                 const BIGNUM *priv_key = NULL;
1757
1758                 OPENSSL_LOG(DEBUG, "%s:%d updated priv key\n",
1759                                 __func__, __LINE__);
1760
1761                 /* get the generated keys */
1762                 get_dh_priv_key(dh_key, &priv_key);
1763
1764                 /* provide generated private key back to user */
1765                 op->priv_key.length = BN_bn2bin(priv_key,
1766                                 op->priv_key.data);
1767         }
1768
1769         cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1770
1771         return 0;
1772 }
1773
1774 /* process modinv operation */
1775 static int
1776 process_openssl_modinv_op(struct rte_crypto_op *cop,
1777                 struct openssl_asym_session *sess)
1778 {
1779         struct rte_crypto_asym_op *op = cop->asym;
1780         BIGNUM *base = BN_CTX_get(sess->u.m.ctx);
1781         BIGNUM *res = BN_CTX_get(sess->u.m.ctx);
1782
1783         if (unlikely(base == NULL || res == NULL)) {
1784                 if (base)
1785                         BN_free(base);
1786                 if (res)
1787                         BN_free(res);
1788                 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1789                 return -1;
1790         }
1791
1792         base = BN_bin2bn((const unsigned char *)op->modinv.base.data,
1793                         op->modinv.base.length, base);
1794
1795         if (BN_mod_inverse(res, base, sess->u.m.modulus, sess->u.m.ctx)) {
1796                 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1797                 op->modinv.base.length = BN_bn2bin(res, op->modinv.base.data);
1798         } else {
1799                 cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1800         }
1801
1802         return 0;
1803 }
1804
1805 /* process modexp operation */
1806 static int
1807 process_openssl_modexp_op(struct rte_crypto_op *cop,
1808                 struct openssl_asym_session *sess)
1809 {
1810         struct rte_crypto_asym_op *op = cop->asym;
1811         BIGNUM *base = BN_CTX_get(sess->u.e.ctx);
1812         BIGNUM *res = BN_CTX_get(sess->u.e.ctx);
1813
1814         if (unlikely(base == NULL || res == NULL)) {
1815                 if (base)
1816                         BN_free(base);
1817                 if (res)
1818                         BN_free(res);
1819                 cop->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1820                 return -1;
1821         }
1822
1823         base = BN_bin2bn((const unsigned char *)op->modinv.base.data,
1824                         op->modinv.base.length, base);
1825
1826         if (BN_mod_exp(res, base, sess->u.e.exp,
1827                                 sess->u.e.mod, sess->u.e.ctx)) {
1828                 op->modinv.base.length = BN_bn2bin(res, op->modinv.base.data);
1829                 cop->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
1830         } else {
1831                 cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1832         }
1833
1834         return 0;
1835 }
1836
1837 /* process rsa operations */
1838 static int
1839 process_openssl_rsa_op(struct rte_crypto_op *cop,
1840                 struct openssl_asym_session *sess)
1841 {
1842         int ret = 0;
1843         struct rte_crypto_asym_op *op = cop->asym;
1844         RSA *rsa = sess->u.r.rsa;
1845         uint32_t pad = (op->rsa.pad);
1846
1847         switch (pad) {
1848         case RTE_CRYPTO_RSA_PKCS1_V1_5_BT0:
1849         case RTE_CRYPTO_RSA_PKCS1_V1_5_BT1:
1850         case RTE_CRYPTO_RSA_PKCS1_V1_5_BT2:
1851                 pad = RSA_PKCS1_PADDING;
1852                 break;
1853         case RTE_CRYPTO_RSA_PADDING_NONE:
1854                 pad = RSA_NO_PADDING;
1855                 break;
1856         default:
1857                 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1858                 OPENSSL_LOG(ERR,
1859                                 "rsa pad type not supported %d\n", pad);
1860                 return 0;
1861         }
1862
1863         switch (op->rsa.op_type) {
1864         case RTE_CRYPTO_ASYM_OP_ENCRYPT:
1865                 ret = RSA_public_encrypt(op->rsa.message.length,
1866                                 op->rsa.message.data,
1867                                 op->rsa.message.data,
1868                                 rsa,
1869                                 pad);
1870
1871                 if (ret > 0)
1872                         op->rsa.message.length = ret;
1873                 OPENSSL_LOG(DEBUG,
1874                                 "length of encrypted text %d\n", ret);
1875                 break;
1876
1877         case RTE_CRYPTO_ASYM_OP_DECRYPT:
1878                 ret = RSA_private_decrypt(op->rsa.message.length,
1879                                 op->rsa.message.data,
1880                                 op->rsa.message.data,
1881                                 rsa,
1882                                 pad);
1883                 if (ret > 0)
1884                         op->rsa.message.length = ret;
1885                 break;
1886
1887         case RTE_CRYPTO_ASYM_OP_SIGN:
1888                 ret = RSA_private_encrypt(op->rsa.message.length,
1889                                 op->rsa.message.data,
1890                                 op->rsa.sign.data,
1891                                 rsa,
1892                                 pad);
1893                 if (ret > 0)
1894                         op->rsa.sign.length = ret;
1895                 break;
1896
1897         case RTE_CRYPTO_ASYM_OP_VERIFY:
1898                 ret = RSA_public_decrypt(op->rsa.sign.length,
1899                                 op->rsa.sign.data,
1900                                 op->rsa.sign.data,
1901                                 rsa,
1902                                 pad);
1903
1904                 OPENSSL_LOG(DEBUG,
1905                                 "Length of public_decrypt %d "
1906                                 "length of message %zd\n",
1907                                 ret, op->rsa.message.length);
1908
1909                 if (memcmp(op->rsa.sign.data, op->rsa.message.data,
1910                                         op->rsa.message.length)) {
1911                         OPENSSL_LOG(ERR,
1912                                         "RSA sign Verification failed");
1913                         return -1;
1914                 }
1915                 break;
1916
1917         default:
1918                 /* allow ops with invalid args to be pushed to
1919                  * completion queue
1920                  */
1921                 cop->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1922                 break;
1923         }
1924
1925         if (ret < 0)
1926                 cop->status = RTE_CRYPTO_OP_STATUS_ERROR;
1927
1928         return 0;
1929 }
1930
1931 static int
1932 process_asym_op(struct openssl_qp *qp, struct rte_crypto_op *op,
1933                 struct openssl_asym_session *sess)
1934 {
1935         int retval = 0;
1936
1937         op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1938
1939         switch (sess->xfrm_type) {
1940         case RTE_CRYPTO_ASYM_XFORM_RSA:
1941                 retval = process_openssl_rsa_op(op, sess);
1942                 break;
1943         case RTE_CRYPTO_ASYM_XFORM_MODEX:
1944                 retval = process_openssl_modexp_op(op, sess);
1945                 break;
1946         case RTE_CRYPTO_ASYM_XFORM_MODINV:
1947                 retval = process_openssl_modinv_op(op, sess);
1948                 break;
1949         case RTE_CRYPTO_ASYM_XFORM_DH:
1950                 retval = process_openssl_dh_op(op, sess);
1951                 break;
1952         case RTE_CRYPTO_ASYM_XFORM_DSA:
1953                 if (op->asym->dsa.op_type == RTE_CRYPTO_ASYM_OP_SIGN)
1954                         retval = process_openssl_dsa_sign_op(op, sess);
1955                 else if (op->asym->dsa.op_type ==
1956                                 RTE_CRYPTO_ASYM_OP_VERIFY)
1957                         retval =
1958                                 process_openssl_dsa_verify_op(op, sess);
1959                 else
1960                         op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1961                 break;
1962         default:
1963                 op->status = RTE_CRYPTO_OP_STATUS_INVALID_ARGS;
1964                 break;
1965         }
1966         if (!retval) {
1967                 /* op processed so push to completion queue as processed */
1968                 retval = rte_ring_enqueue(qp->processed_ops, (void *)op);
1969                 if (retval)
1970                         /* return error if failed to put in completion queue */
1971                         retval = -1;
1972         }
1973
1974         return retval;
1975 }
1976
1977 /** Process crypto operation for mbuf */
1978 static int
1979 process_op(struct openssl_qp *qp, struct rte_crypto_op *op,
1980                 struct openssl_session *sess)
1981 {
1982         struct rte_mbuf *msrc, *mdst;
1983         int retval;
1984
1985         msrc = op->sym->m_src;
1986         mdst = op->sym->m_dst ? op->sym->m_dst : op->sym->m_src;
1987
1988         op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
1989
1990         switch (sess->chain_order) {
1991         case OPENSSL_CHAIN_ONLY_CIPHER:
1992                 process_openssl_cipher_op(op, sess, msrc, mdst);
1993                 break;
1994         case OPENSSL_CHAIN_ONLY_AUTH:
1995                 process_openssl_auth_op(qp, op, sess, msrc, mdst);
1996                 break;
1997         case OPENSSL_CHAIN_CIPHER_AUTH:
1998                 process_openssl_cipher_op(op, sess, msrc, mdst);
1999                 process_openssl_auth_op(qp, op, sess, mdst, mdst);
2000                 break;
2001         case OPENSSL_CHAIN_AUTH_CIPHER:
2002                 process_openssl_auth_op(qp, op, sess, msrc, mdst);
2003                 process_openssl_cipher_op(op, sess, msrc, mdst);
2004                 break;
2005         case OPENSSL_CHAIN_COMBINED:
2006                 process_openssl_combined_op(op, sess, msrc, mdst);
2007                 break;
2008         case OPENSSL_CHAIN_CIPHER_BPI:
2009                 process_openssl_docsis_bpi_op(op, sess, msrc, mdst);
2010                 break;
2011         default:
2012                 op->status = RTE_CRYPTO_OP_STATUS_ERROR;
2013                 break;
2014         }
2015
2016         /* Free session if a session-less crypto op */
2017         if (op->sess_type == RTE_CRYPTO_OP_SESSIONLESS) {
2018                 openssl_reset_session(sess);
2019                 memset(sess, 0, sizeof(struct openssl_session));
2020                 memset(op->sym->session, 0,
2021                                 rte_cryptodev_sym_get_header_session_size());
2022                 rte_mempool_put(qp->sess_mp, sess);
2023                 rte_mempool_put(qp->sess_mp, op->sym->session);
2024                 op->sym->session = NULL;
2025         }
2026
2027         if (op->status == RTE_CRYPTO_OP_STATUS_NOT_PROCESSED)
2028                 op->status = RTE_CRYPTO_OP_STATUS_SUCCESS;
2029
2030         if (op->status != RTE_CRYPTO_OP_STATUS_ERROR)
2031                 retval = rte_ring_enqueue(qp->processed_ops, (void *)op);
2032         else
2033                 retval = -1;
2034
2035         return retval;
2036 }
2037
2038 /*
2039  *------------------------------------------------------------------------------
2040  * PMD Framework
2041  *------------------------------------------------------------------------------
2042  */
2043
2044 /** Enqueue burst */
2045 static uint16_t
2046 openssl_pmd_enqueue_burst(void *queue_pair, struct rte_crypto_op **ops,
2047                 uint16_t nb_ops)
2048 {
2049         void *sess;
2050         struct openssl_qp *qp = queue_pair;
2051         int i, retval;
2052
2053         for (i = 0; i < nb_ops; i++) {
2054                 sess = get_session(qp, ops[i]);
2055                 if (unlikely(sess == NULL))
2056                         goto enqueue_err;
2057
2058                 if (ops[i]->type == RTE_CRYPTO_OP_TYPE_SYMMETRIC)
2059                         retval = process_op(qp, ops[i],
2060                                         (struct openssl_session *) sess);
2061                 else
2062                         retval = process_asym_op(qp, ops[i],
2063                                         (struct openssl_asym_session *) sess);
2064                 if (unlikely(retval < 0))
2065                         goto enqueue_err;
2066         }
2067
2068         qp->stats.enqueued_count += i;
2069         return i;
2070
2071 enqueue_err:
2072         qp->stats.enqueue_err_count++;
2073         return i;
2074 }
2075
2076 /** Dequeue burst */
2077 static uint16_t
2078 openssl_pmd_dequeue_burst(void *queue_pair, struct rte_crypto_op **ops,
2079                 uint16_t nb_ops)
2080 {
2081         struct openssl_qp *qp = queue_pair;
2082
2083         unsigned int nb_dequeued = 0;
2084
2085         nb_dequeued = rte_ring_dequeue_burst(qp->processed_ops,
2086                         (void **)ops, nb_ops, NULL);
2087         qp->stats.dequeued_count += nb_dequeued;
2088
2089         return nb_dequeued;
2090 }
2091
2092 /** Create OPENSSL crypto device */
2093 static int
2094 cryptodev_openssl_create(const char *name,
2095                         struct rte_vdev_device *vdev,
2096                         struct rte_cryptodev_pmd_init_params *init_params)
2097 {
2098         struct rte_cryptodev *dev;
2099         struct openssl_private *internals;
2100
2101         dev = rte_cryptodev_pmd_create(name, &vdev->device, init_params);
2102         if (dev == NULL) {
2103                 OPENSSL_LOG(ERR, "failed to create cryptodev vdev");
2104                 goto init_error;
2105         }
2106
2107         dev->driver_id = cryptodev_driver_id;
2108         dev->dev_ops = rte_openssl_pmd_ops;
2109
2110         /* register rx/tx burst functions for data path */
2111         dev->dequeue_burst = openssl_pmd_dequeue_burst;
2112         dev->enqueue_burst = openssl_pmd_enqueue_burst;
2113
2114         dev->feature_flags = RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO |
2115                         RTE_CRYPTODEV_FF_SYM_OPERATION_CHAINING |
2116                         RTE_CRYPTODEV_FF_CPU_AESNI |
2117                         RTE_CRYPTODEV_FF_OOP_SGL_IN_LB_OUT |
2118                         RTE_CRYPTODEV_FF_OOP_LB_IN_LB_OUT |
2119                         RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO;
2120
2121         /* Set vector instructions mode supported */
2122         internals = dev->data->dev_private;
2123
2124         internals->max_nb_qpairs = init_params->max_nb_queue_pairs;
2125
2126         return 0;
2127
2128 init_error:
2129         OPENSSL_LOG(ERR, "driver %s: create failed",
2130                         init_params->name);
2131
2132         cryptodev_openssl_remove(vdev);
2133         return -EFAULT;
2134 }
2135
2136 /** Initialise OPENSSL crypto device */
2137 static int
2138 cryptodev_openssl_probe(struct rte_vdev_device *vdev)
2139 {
2140         struct rte_cryptodev_pmd_init_params init_params = {
2141                 "",
2142                 sizeof(struct openssl_private),
2143                 rte_socket_id(),
2144                 RTE_CRYPTODEV_PMD_DEFAULT_MAX_NB_QUEUE_PAIRS
2145         };
2146         const char *name;
2147         const char *input_args;
2148
2149         name = rte_vdev_device_name(vdev);
2150         if (name == NULL)
2151                 return -EINVAL;
2152         input_args = rte_vdev_device_args(vdev);
2153
2154         rte_cryptodev_pmd_parse_input_args(&init_params, input_args);
2155
2156         return cryptodev_openssl_create(name, vdev, &init_params);
2157 }
2158
2159 /** Uninitialise OPENSSL crypto device */
2160 static int
2161 cryptodev_openssl_remove(struct rte_vdev_device *vdev)
2162 {
2163         struct rte_cryptodev *cryptodev;
2164         const char *name;
2165
2166         name = rte_vdev_device_name(vdev);
2167         if (name == NULL)
2168                 return -EINVAL;
2169
2170         cryptodev = rte_cryptodev_pmd_get_named_dev(name);
2171         if (cryptodev == NULL)
2172                 return -ENODEV;
2173
2174         return rte_cryptodev_pmd_destroy(cryptodev);
2175 }
2176
2177 static struct rte_vdev_driver cryptodev_openssl_pmd_drv = {
2178         .probe = cryptodev_openssl_probe,
2179         .remove = cryptodev_openssl_remove
2180 };
2181
2182 static struct cryptodev_driver openssl_crypto_drv;
2183
2184 RTE_PMD_REGISTER_VDEV(CRYPTODEV_NAME_OPENSSL_PMD,
2185         cryptodev_openssl_pmd_drv);
2186 RTE_PMD_REGISTER_PARAM_STRING(CRYPTODEV_NAME_OPENSSL_PMD,
2187         "max_nb_queue_pairs=<int> "
2188         "socket_id=<int>");
2189 RTE_PMD_REGISTER_CRYPTO_DRIVER(openssl_crypto_drv,
2190                 cryptodev_openssl_pmd_drv.driver, cryptodev_driver_id);
2191
2192 RTE_INIT(openssl_init_log)
2193 {
2194         openssl_logtype_driver = rte_log_register("pmd.crypto.openssl");
2195 }