a333a6f0a0c34bf92ff146716c192e34ccdaa9a4
[deb_dpdk.git] / drivers / event / sw / sw_evdev_scheduler.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Intel Corporation nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <rte_ring.h>
34 #include <rte_hash_crc.h>
35 #include "sw_evdev.h"
36 #include "iq_ring.h"
37 #include "event_ring.h"
38
39 #define SW_IQS_MASK (SW_IQS_MAX-1)
40
41 /* Retrieve the highest priority IQ or -1 if no pkts available. Doing the
42  * CLZ twice is faster than caching the value due to data dependencies
43  */
44 #define PKT_MASK_TO_IQ(pkts) \
45         (__builtin_ctz(pkts | (1 << SW_IQS_MAX)))
46
47 #if SW_IQS_MAX != 4
48 #error Misconfigured PRIO_TO_IQ caused by SW_IQS_MAX value change
49 #endif
50 #define PRIO_TO_IQ(prio) (prio >> 6)
51
52 #define MAX_PER_IQ_DEQUEUE 48
53 #define FLOWID_MASK (SW_QID_NUM_FIDS-1)
54 /* use cheap bit mixing, we only need to lose a few bits */
55 #define SW_HASH_FLOWID(f) (((f) ^ (f >> 10)) & FLOWID_MASK)
56
57 static inline uint32_t
58 sw_schedule_atomic_to_cq(struct sw_evdev *sw, struct sw_qid * const qid,
59                 uint32_t iq_num, unsigned int count)
60 {
61         struct rte_event qes[MAX_PER_IQ_DEQUEUE]; /* count <= MAX */
62         struct rte_event blocked_qes[MAX_PER_IQ_DEQUEUE];
63         uint32_t nb_blocked = 0;
64         uint32_t i;
65
66         if (count > MAX_PER_IQ_DEQUEUE)
67                 count = MAX_PER_IQ_DEQUEUE;
68
69         /* This is the QID ID. The QID ID is static, hence it can be
70          * used to identify the stage of processing in history lists etc
71          */
72         uint32_t qid_id = qid->id;
73
74         iq_ring_dequeue_burst(qid->iq[iq_num], qes, count);
75         for (i = 0; i < count; i++) {
76                 const struct rte_event *qe = &qes[i];
77                 const uint16_t flow_id = SW_HASH_FLOWID(qes[i].flow_id);
78                 struct sw_fid_t *fid = &qid->fids[flow_id];
79                 int cq = fid->cq;
80
81                 if (cq < 0) {
82                         uint32_t cq_idx = qid->cq_next_tx++;
83                         if (qid->cq_next_tx == qid->cq_num_mapped_cqs)
84                                 qid->cq_next_tx = 0;
85                         cq = qid->cq_map[cq_idx];
86
87                         /* find least used */
88                         int cq_free_cnt = sw->cq_ring_space[cq];
89                         for (cq_idx = 0; cq_idx < qid->cq_num_mapped_cqs;
90                                         cq_idx++) {
91                                 int test_cq = qid->cq_map[cq_idx];
92                                 int test_cq_free = sw->cq_ring_space[test_cq];
93                                 if (test_cq_free > cq_free_cnt) {
94                                         cq = test_cq;
95                                         cq_free_cnt = test_cq_free;
96                                 }
97                         }
98
99                         fid->cq = cq; /* this pins early */
100                 }
101
102                 if (sw->cq_ring_space[cq] == 0 ||
103                                 sw->ports[cq].inflights == SW_PORT_HIST_LIST) {
104                         blocked_qes[nb_blocked++] = *qe;
105                         continue;
106                 }
107
108                 struct sw_port *p = &sw->ports[cq];
109
110                 /* at this point we can queue up the packet on the cq_buf */
111                 fid->pcount++;
112                 p->cq_buf[p->cq_buf_count++] = *qe;
113                 p->inflights++;
114                 sw->cq_ring_space[cq]--;
115
116                 int head = (p->hist_head++ & (SW_PORT_HIST_LIST-1));
117                 p->hist_list[head].fid = flow_id;
118                 p->hist_list[head].qid = qid_id;
119
120                 p->stats.tx_pkts++;
121                 qid->stats.tx_pkts++;
122
123                 /* if we just filled in the last slot, flush the buffer */
124                 if (sw->cq_ring_space[cq] == 0) {
125                         struct qe_ring *worker = p->cq_worker_ring;
126                         qe_ring_enqueue_burst(worker, p->cq_buf,
127                                         p->cq_buf_count,
128                                         &sw->cq_ring_space[cq]);
129                         p->cq_buf_count = 0;
130                 }
131         }
132         iq_ring_put_back(qid->iq[iq_num], blocked_qes, nb_blocked);
133
134         return count - nb_blocked;
135 }
136
137 static inline uint32_t
138 sw_schedule_parallel_to_cq(struct sw_evdev *sw, struct sw_qid * const qid,
139                 uint32_t iq_num, unsigned int count, int keep_order)
140 {
141         uint32_t i;
142         uint32_t cq_idx = qid->cq_next_tx;
143
144         /* This is the QID ID. The QID ID is static, hence it can be
145          * used to identify the stage of processing in history lists etc
146          */
147         uint32_t qid_id = qid->id;
148
149         if (count > MAX_PER_IQ_DEQUEUE)
150                 count = MAX_PER_IQ_DEQUEUE;
151
152         if (keep_order)
153                 /* only schedule as many as we have reorder buffer entries */
154                 count = RTE_MIN(count,
155                                 rte_ring_count(qid->reorder_buffer_freelist));
156
157         for (i = 0; i < count; i++) {
158                 const struct rte_event *qe = iq_ring_peek(qid->iq[iq_num]);
159                 uint32_t cq_check_count = 0;
160                 uint32_t cq;
161
162                 /*
163                  *  for parallel, just send to next available CQ in round-robin
164                  * fashion. So scan for an available CQ. If all CQs are full
165                  * just return and move on to next QID
166                  */
167                 do {
168                         if (++cq_check_count > qid->cq_num_mapped_cqs)
169                                 goto exit;
170                         cq = qid->cq_map[cq_idx];
171                         if (++cq_idx == qid->cq_num_mapped_cqs)
172                                 cq_idx = 0;
173                 } while (qe_ring_free_count(sw->ports[cq].cq_worker_ring) == 0 ||
174                                 sw->ports[cq].inflights == SW_PORT_HIST_LIST);
175
176                 struct sw_port *p = &sw->ports[cq];
177                 if (sw->cq_ring_space[cq] == 0 ||
178                                 p->inflights == SW_PORT_HIST_LIST)
179                         break;
180
181                 sw->cq_ring_space[cq]--;
182
183                 qid->stats.tx_pkts++;
184
185                 const int head = (p->hist_head & (SW_PORT_HIST_LIST-1));
186                 p->hist_list[head].fid = SW_HASH_FLOWID(qe->flow_id);
187                 p->hist_list[head].qid = qid_id;
188
189                 if (keep_order)
190                         rte_ring_sc_dequeue(qid->reorder_buffer_freelist,
191                                         (void *)&p->hist_list[head].rob_entry);
192
193                 sw->ports[cq].cq_buf[sw->ports[cq].cq_buf_count++] = *qe;
194                 iq_ring_pop(qid->iq[iq_num]);
195
196                 rte_compiler_barrier();
197                 p->inflights++;
198                 p->stats.tx_pkts++;
199                 p->hist_head++;
200         }
201 exit:
202         qid->cq_next_tx = cq_idx;
203         return i;
204 }
205
206 static uint32_t
207 sw_schedule_dir_to_cq(struct sw_evdev *sw, struct sw_qid * const qid,
208                 uint32_t iq_num, unsigned int count __rte_unused)
209 {
210         uint32_t cq_id = qid->cq_map[0];
211         struct sw_port *port = &sw->ports[cq_id];
212
213         /* get max burst enq size for cq_ring */
214         uint32_t count_free = sw->cq_ring_space[cq_id];
215         if (count_free == 0)
216                 return 0;
217
218         /* burst dequeue from the QID IQ ring */
219         struct iq_ring *ring = qid->iq[iq_num];
220         uint32_t ret = iq_ring_dequeue_burst(ring,
221                         &port->cq_buf[port->cq_buf_count], count_free);
222         port->cq_buf_count += ret;
223
224         /* Update QID, Port and Total TX stats */
225         qid->stats.tx_pkts += ret;
226         port->stats.tx_pkts += ret;
227
228         /* Subtract credits from cached value */
229         sw->cq_ring_space[cq_id] -= ret;
230
231         return ret;
232 }
233
234 static uint32_t
235 sw_schedule_qid_to_cq(struct sw_evdev *sw)
236 {
237         uint32_t pkts = 0;
238         uint32_t qid_idx;
239
240         sw->sched_cq_qid_called++;
241
242         for (qid_idx = 0; qid_idx < sw->qid_count; qid_idx++) {
243                 struct sw_qid *qid = sw->qids_prioritized[qid_idx];
244
245                 int type = qid->type;
246                 int iq_num = PKT_MASK_TO_IQ(qid->iq_pkt_mask);
247
248                 /* zero mapped CQs indicates directed */
249                 if (iq_num >= SW_IQS_MAX)
250                         continue;
251
252                 uint32_t pkts_done = 0;
253                 uint32_t count = iq_ring_count(qid->iq[iq_num]);
254
255                 if (count > 0) {
256                         if (type == SW_SCHED_TYPE_DIRECT)
257                                 pkts_done += sw_schedule_dir_to_cq(sw, qid,
258                                                 iq_num, count);
259                         else if (type == RTE_SCHED_TYPE_ATOMIC)
260                                 pkts_done += sw_schedule_atomic_to_cq(sw, qid,
261                                                 iq_num, count);
262                         else
263                                 pkts_done += sw_schedule_parallel_to_cq(sw, qid,
264                                                 iq_num, count,
265                                                 type == RTE_SCHED_TYPE_ORDERED);
266                 }
267
268                 /* Check if the IQ that was polled is now empty, and unset it
269                  * in the IQ mask if its empty.
270                  */
271                 int all_done = (pkts_done == count);
272
273                 qid->iq_pkt_mask &= ~(all_done << (iq_num));
274                 pkts += pkts_done;
275         }
276
277         return pkts;
278 }
279
280 /* This function will perform re-ordering of packets, and injecting into
281  * the appropriate QID IQ. As LB and DIR QIDs are in the same array, but *NOT*
282  * contiguous in that array, this function accepts a "range" of QIDs to scan.
283  */
284 static uint16_t
285 sw_schedule_reorder(struct sw_evdev *sw, int qid_start, int qid_end)
286 {
287         /* Perform egress reordering */
288         struct rte_event *qe;
289         uint32_t pkts_iter = 0;
290
291         for (; qid_start < qid_end; qid_start++) {
292                 struct sw_qid *qid = &sw->qids[qid_start];
293                 int i, num_entries_in_use;
294
295                 if (qid->type != RTE_SCHED_TYPE_ORDERED)
296                         continue;
297
298                 num_entries_in_use = rte_ring_free_count(
299                                         qid->reorder_buffer_freelist);
300
301                 for (i = 0; i < num_entries_in_use; i++) {
302                         struct reorder_buffer_entry *entry;
303                         int j;
304
305                         entry = &qid->reorder_buffer[qid->reorder_buffer_index];
306
307                         if (!entry->ready)
308                                 break;
309
310                         for (j = 0; j < entry->num_fragments; j++) {
311                                 uint16_t dest_qid;
312                                 uint16_t dest_iq;
313
314                                 int idx = entry->fragment_index + j;
315                                 qe = &entry->fragments[idx];
316
317                                 dest_qid = qe->queue_id;
318                                 dest_iq  = PRIO_TO_IQ(qe->priority);
319
320                                 if (dest_qid >= sw->qid_count) {
321                                         sw->stats.rx_dropped++;
322                                         continue;
323                                 }
324
325                                 struct sw_qid *dest_qid_ptr =
326                                         &sw->qids[dest_qid];
327                                 const struct iq_ring *dest_iq_ptr =
328                                         dest_qid_ptr->iq[dest_iq];
329                                 if (iq_ring_free_count(dest_iq_ptr) == 0)
330                                         break;
331
332                                 pkts_iter++;
333
334                                 struct sw_qid *q = &sw->qids[dest_qid];
335                                 struct iq_ring *r = q->iq[dest_iq];
336
337                                 /* we checked for space above, so enqueue must
338                                  * succeed
339                                  */
340                                 iq_ring_enqueue(r, qe);
341                                 q->iq_pkt_mask |= (1 << (dest_iq));
342                                 q->iq_pkt_count[dest_iq]++;
343                                 q->stats.rx_pkts++;
344                         }
345
346                         entry->ready = (j != entry->num_fragments);
347                         entry->num_fragments -= j;
348                         entry->fragment_index += j;
349
350                         if (!entry->ready) {
351                                 entry->fragment_index = 0;
352
353                                 rte_ring_sp_enqueue(
354                                                 qid->reorder_buffer_freelist,
355                                                 entry);
356
357                                 qid->reorder_buffer_index++;
358                                 qid->reorder_buffer_index %= qid->window_size;
359                         }
360                 }
361         }
362         return pkts_iter;
363 }
364
365 static inline void __attribute__((always_inline))
366 sw_refill_pp_buf(struct sw_evdev *sw, struct sw_port *port)
367 {
368         RTE_SET_USED(sw);
369         struct qe_ring *worker = port->rx_worker_ring;
370         port->pp_buf_start = 0;
371         port->pp_buf_count = qe_ring_dequeue_burst(worker, port->pp_buf,
372                         RTE_DIM(port->pp_buf));
373 }
374
375 static inline uint32_t __attribute__((always_inline))
376 __pull_port_lb(struct sw_evdev *sw, uint32_t port_id, int allow_reorder)
377 {
378         static struct reorder_buffer_entry dummy_rob;
379         uint32_t pkts_iter = 0;
380         struct sw_port *port = &sw->ports[port_id];
381
382         /* If shadow ring has 0 pkts, pull from worker ring */
383         if (port->pp_buf_count == 0)
384                 sw_refill_pp_buf(sw, port);
385
386         while (port->pp_buf_count) {
387                 const struct rte_event *qe = &port->pp_buf[port->pp_buf_start];
388                 struct sw_hist_list_entry *hist_entry = NULL;
389                 uint8_t flags = qe->op;
390                 const uint16_t eop = !(flags & QE_FLAG_NOT_EOP);
391                 int needs_reorder = 0;
392                 /* if no-reordering, having PARTIAL == NEW */
393                 if (!allow_reorder && !eop)
394                         flags = QE_FLAG_VALID;
395
396                 /*
397                  * if we don't have space for this packet in an IQ,
398                  * then move on to next queue. Technically, for a
399                  * packet that needs reordering, we don't need to check
400                  * here, but it simplifies things not to special-case
401                  */
402                 uint32_t iq_num = PRIO_TO_IQ(qe->priority);
403                 struct sw_qid *qid = &sw->qids[qe->queue_id];
404
405                 if ((flags & QE_FLAG_VALID) &&
406                                 iq_ring_free_count(qid->iq[iq_num]) == 0)
407                         break;
408
409                 /* now process based on flags. Note that for directed
410                  * queues, the enqueue_flush masks off all but the
411                  * valid flag. This makes FWD and PARTIAL enqueues just
412                  * NEW type, and makes DROPS no-op calls.
413                  */
414                 if ((flags & QE_FLAG_COMPLETE) && port->inflights > 0) {
415                         const uint32_t hist_tail = port->hist_tail &
416                                         (SW_PORT_HIST_LIST - 1);
417
418                         hist_entry = &port->hist_list[hist_tail];
419                         const uint32_t hist_qid = hist_entry->qid;
420                         const uint32_t hist_fid = hist_entry->fid;
421
422                         struct sw_fid_t *fid =
423                                 &sw->qids[hist_qid].fids[hist_fid];
424                         fid->pcount -= eop;
425                         if (fid->pcount == 0)
426                                 fid->cq = -1;
427
428                         if (allow_reorder) {
429                                 /* set reorder ready if an ordered QID */
430                                 uintptr_t rob_ptr =
431                                         (uintptr_t)hist_entry->rob_entry;
432                                 const uintptr_t valid = (rob_ptr != 0);
433                                 needs_reorder = valid;
434                                 rob_ptr |=
435                                         ((valid - 1) & (uintptr_t)&dummy_rob);
436                                 struct reorder_buffer_entry *tmp_rob_ptr =
437                                         (struct reorder_buffer_entry *)rob_ptr;
438                                 tmp_rob_ptr->ready = eop * needs_reorder;
439                         }
440
441                         port->inflights -= eop;
442                         port->hist_tail += eop;
443                 }
444                 if (flags & QE_FLAG_VALID) {
445                         port->stats.rx_pkts++;
446
447                         if (allow_reorder && needs_reorder) {
448                                 struct reorder_buffer_entry *rob_entry =
449                                                 hist_entry->rob_entry;
450
451                                 hist_entry->rob_entry = NULL;
452                                 /* Although fragmentation not currently
453                                  * supported by eventdev API, we support it
454                                  * here. Open: How do we alert the user that
455                                  * they've exceeded max frags?
456                                  */
457                                 int num_frag = rob_entry->num_fragments;
458                                 if (num_frag == SW_FRAGMENTS_MAX)
459                                         sw->stats.rx_dropped++;
460                                 else {
461                                         int idx = rob_entry->num_fragments++;
462                                         rob_entry->fragments[idx] = *qe;
463                                 }
464                                 goto end_qe;
465                         }
466
467                         /* Use the iq_num from above to push the QE
468                          * into the qid at the right priority
469                          */
470
471                         qid->iq_pkt_mask |= (1 << (iq_num));
472                         iq_ring_enqueue(qid->iq[iq_num], qe);
473                         qid->iq_pkt_count[iq_num]++;
474                         qid->stats.rx_pkts++;
475                         pkts_iter++;
476                 }
477
478 end_qe:
479                 port->pp_buf_start++;
480                 port->pp_buf_count--;
481         } /* while (avail_qes) */
482
483         return pkts_iter;
484 }
485
486 static uint32_t
487 sw_schedule_pull_port_lb(struct sw_evdev *sw, uint32_t port_id)
488 {
489         return __pull_port_lb(sw, port_id, 1);
490 }
491
492 static uint32_t
493 sw_schedule_pull_port_no_reorder(struct sw_evdev *sw, uint32_t port_id)
494 {
495         return __pull_port_lb(sw, port_id, 0);
496 }
497
498 static uint32_t
499 sw_schedule_pull_port_dir(struct sw_evdev *sw, uint32_t port_id)
500 {
501         uint32_t pkts_iter = 0;
502         struct sw_port *port = &sw->ports[port_id];
503
504         /* If shadow ring has 0 pkts, pull from worker ring */
505         if (port->pp_buf_count == 0)
506                 sw_refill_pp_buf(sw, port);
507
508         while (port->pp_buf_count) {
509                 const struct rte_event *qe = &port->pp_buf[port->pp_buf_start];
510                 uint8_t flags = qe->op;
511
512                 if ((flags & QE_FLAG_VALID) == 0)
513                         goto end_qe;
514
515                 uint32_t iq_num = PRIO_TO_IQ(qe->priority);
516                 struct sw_qid *qid = &sw->qids[qe->queue_id];
517                 struct iq_ring *iq_ring = qid->iq[iq_num];
518
519                 if (iq_ring_free_count(iq_ring) == 0)
520                         break; /* move to next port */
521
522                 port->stats.rx_pkts++;
523
524                 /* Use the iq_num from above to push the QE
525                  * into the qid at the right priority
526                  */
527                 qid->iq_pkt_mask |= (1 << (iq_num));
528                 iq_ring_enqueue(iq_ring, qe);
529                 qid->iq_pkt_count[iq_num]++;
530                 qid->stats.rx_pkts++;
531                 pkts_iter++;
532
533 end_qe:
534                 port->pp_buf_start++;
535                 port->pp_buf_count--;
536         } /* while port->pp_buf_count */
537
538         return pkts_iter;
539 }
540
541 void
542 sw_event_schedule(struct rte_eventdev *dev)
543 {
544         struct sw_evdev *sw = sw_pmd_priv(dev);
545         uint32_t in_pkts, out_pkts;
546         uint32_t out_pkts_total = 0, in_pkts_total = 0;
547         int32_t sched_quanta = sw->sched_quanta;
548         uint32_t i;
549
550         sw->sched_called++;
551         if (!sw->started)
552                 return;
553
554         do {
555                 uint32_t in_pkts_this_iteration = 0;
556
557                 /* Pull from rx_ring for ports */
558                 do {
559                         in_pkts = 0;
560                         for (i = 0; i < sw->port_count; i++)
561                                 if (sw->ports[i].is_directed)
562                                         in_pkts += sw_schedule_pull_port_dir(sw, i);
563                                 else if (sw->ports[i].num_ordered_qids > 0)
564                                         in_pkts += sw_schedule_pull_port_lb(sw, i);
565                                 else
566                                         in_pkts += sw_schedule_pull_port_no_reorder(sw, i);
567
568                         /* QID scan for re-ordered */
569                         in_pkts += sw_schedule_reorder(sw, 0,
570                                         sw->qid_count);
571                         in_pkts_this_iteration += in_pkts;
572                 } while (in_pkts > 4 &&
573                                 (int)in_pkts_this_iteration < sched_quanta);
574
575                 out_pkts = 0;
576                 out_pkts += sw_schedule_qid_to_cq(sw);
577                 out_pkts_total += out_pkts;
578                 in_pkts_total += in_pkts_this_iteration;
579
580                 if (in_pkts == 0 && out_pkts == 0)
581                         break;
582         } while ((int)out_pkts_total < sched_quanta);
583
584         /* push all the internal buffered QEs in port->cq_ring to the
585          * worker cores: aka, do the ring transfers batched.
586          */
587         for (i = 0; i < sw->port_count; i++) {
588                 struct qe_ring *worker = sw->ports[i].cq_worker_ring;
589                 qe_ring_enqueue_burst(worker, sw->ports[i].cq_buf,
590                                 sw->ports[i].cq_buf_count,
591                                 &sw->cq_ring_space[i]);
592                 sw->ports[i].cq_buf_count = 0;
593         }
594
595         sw->stats.tx_pkts += out_pkts_total;
596         sw->stats.rx_pkts += in_pkts_total;
597
598         sw->sched_no_iq_enqueues += (in_pkts_total == 0);
599         sw->sched_no_cq_enqueues += (out_pkts_total == 0);
600
601 }