New upstream version 18.11-rc1
[deb_dpdk.git] / drivers / net / avf / avf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <rte_ethdev_driver.h>
23 #include <rte_ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "avf_log.h"
29 #include "base/avf_prototype.h"
30 #include "base/avf_adminq_cmd.h"
31 #include "base/avf_type.h"
32
33 #include "avf.h"
34 #include "avf_rxtx.h"
35
36 static int avf_dev_configure(struct rte_eth_dev *dev);
37 static int avf_dev_start(struct rte_eth_dev *dev);
38 static void avf_dev_stop(struct rte_eth_dev *dev);
39 static void avf_dev_close(struct rte_eth_dev *dev);
40 static void avf_dev_info_get(struct rte_eth_dev *dev,
41                              struct rte_eth_dev_info *dev_info);
42 static const uint32_t *avf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
43 static int avf_dev_stats_get(struct rte_eth_dev *dev,
44                              struct rte_eth_stats *stats);
45 static void avf_dev_promiscuous_enable(struct rte_eth_dev *dev);
46 static void avf_dev_promiscuous_disable(struct rte_eth_dev *dev);
47 static void avf_dev_allmulticast_enable(struct rte_eth_dev *dev);
48 static void avf_dev_allmulticast_disable(struct rte_eth_dev *dev);
49 static int avf_dev_add_mac_addr(struct rte_eth_dev *dev,
50                                 struct ether_addr *addr,
51                                 uint32_t index,
52                                 uint32_t pool);
53 static void avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
54 static int avf_dev_vlan_filter_set(struct rte_eth_dev *dev,
55                                    uint16_t vlan_id, int on);
56 static int avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
57 static int avf_dev_rss_reta_update(struct rte_eth_dev *dev,
58                                    struct rte_eth_rss_reta_entry64 *reta_conf,
59                                    uint16_t reta_size);
60 static int avf_dev_rss_reta_query(struct rte_eth_dev *dev,
61                                   struct rte_eth_rss_reta_entry64 *reta_conf,
62                                   uint16_t reta_size);
63 static int avf_dev_rss_hash_update(struct rte_eth_dev *dev,
64                                    struct rte_eth_rss_conf *rss_conf);
65 static int avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
66                                      struct rte_eth_rss_conf *rss_conf);
67 static int avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
68 static int avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
69                                          struct ether_addr *mac_addr);
70 static int avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
71                                         uint16_t queue_id);
72 static int avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
73                                          uint16_t queue_id);
74
75 int avf_logtype_init;
76 int avf_logtype_driver;
77
78 static const struct rte_pci_id pci_id_avf_map[] = {
79         { RTE_PCI_DEVICE(AVF_INTEL_VENDOR_ID, AVF_DEV_ID_ADAPTIVE_VF) },
80         { .vendor_id = 0, /* sentinel */ },
81 };
82
83 static const struct eth_dev_ops avf_eth_dev_ops = {
84         .dev_configure              = avf_dev_configure,
85         .dev_start                  = avf_dev_start,
86         .dev_stop                   = avf_dev_stop,
87         .dev_close                  = avf_dev_close,
88         .dev_infos_get              = avf_dev_info_get,
89         .dev_supported_ptypes_get   = avf_dev_supported_ptypes_get,
90         .link_update                = avf_dev_link_update,
91         .stats_get                  = avf_dev_stats_get,
92         .promiscuous_enable         = avf_dev_promiscuous_enable,
93         .promiscuous_disable        = avf_dev_promiscuous_disable,
94         .allmulticast_enable        = avf_dev_allmulticast_enable,
95         .allmulticast_disable       = avf_dev_allmulticast_disable,
96         .mac_addr_add               = avf_dev_add_mac_addr,
97         .mac_addr_remove            = avf_dev_del_mac_addr,
98         .vlan_filter_set            = avf_dev_vlan_filter_set,
99         .vlan_offload_set           = avf_dev_vlan_offload_set,
100         .rx_queue_start             = avf_dev_rx_queue_start,
101         .rx_queue_stop              = avf_dev_rx_queue_stop,
102         .tx_queue_start             = avf_dev_tx_queue_start,
103         .tx_queue_stop              = avf_dev_tx_queue_stop,
104         .rx_queue_setup             = avf_dev_rx_queue_setup,
105         .rx_queue_release           = avf_dev_rx_queue_release,
106         .tx_queue_setup             = avf_dev_tx_queue_setup,
107         .tx_queue_release           = avf_dev_tx_queue_release,
108         .mac_addr_set               = avf_dev_set_default_mac_addr,
109         .reta_update                = avf_dev_rss_reta_update,
110         .reta_query                 = avf_dev_rss_reta_query,
111         .rss_hash_update            = avf_dev_rss_hash_update,
112         .rss_hash_conf_get          = avf_dev_rss_hash_conf_get,
113         .rxq_info_get               = avf_dev_rxq_info_get,
114         .txq_info_get               = avf_dev_txq_info_get,
115         .rx_queue_count             = avf_dev_rxq_count,
116         .rx_descriptor_status       = avf_dev_rx_desc_status,
117         .tx_descriptor_status       = avf_dev_tx_desc_status,
118         .mtu_set                    = avf_dev_mtu_set,
119         .rx_queue_intr_enable       = avf_dev_rx_queue_intr_enable,
120         .rx_queue_intr_disable      = avf_dev_rx_queue_intr_disable,
121 };
122
123 static int
124 avf_dev_configure(struct rte_eth_dev *dev)
125 {
126         struct avf_adapter *ad =
127                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
128         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(ad);
129         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
130
131         ad->rx_bulk_alloc_allowed = true;
132 #ifdef RTE_LIBRTE_AVF_INC_VECTOR
133         /* Initialize to TRUE. If any of Rx queues doesn't meet the
134          * vector Rx/Tx preconditions, it will be reset.
135          */
136         ad->rx_vec_allowed = true;
137         ad->tx_vec_allowed = true;
138 #else
139         ad->rx_vec_allowed = false;
140         ad->tx_vec_allowed = false;
141 #endif
142
143         /* Vlan stripping setting */
144         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
145                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
146                         avf_enable_vlan_strip(ad);
147                 else
148                         avf_disable_vlan_strip(ad);
149         }
150         return 0;
151 }
152
153 static int
154 avf_init_rss(struct avf_adapter *adapter)
155 {
156         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(adapter);
157         struct rte_eth_rss_conf *rss_conf;
158         uint8_t i, j, nb_q;
159         int ret;
160
161         rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
162         nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
163                        AVF_MAX_NUM_QUEUES);
164
165         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
166                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
167                 return -ENOTSUP;
168         }
169         if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
170                 PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
171                 /* set all lut items to default queue */
172                 for (i = 0; i < vf->vf_res->rss_lut_size; i++)
173                         vf->rss_lut[i] = 0;
174                 ret = avf_configure_rss_lut(adapter);
175                 return ret;
176         }
177
178         /* In AVF, RSS enablement is set by PF driver. It is not supported
179          * to set based on rss_conf->rss_hf.
180          */
181
182         /* configure RSS key */
183         if (!rss_conf->rss_key) {
184                 /* Calculate the default hash key */
185                 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
186                         vf->rss_key[i] = (uint8_t)rte_rand();
187         } else
188                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
189                            RTE_MIN(rss_conf->rss_key_len,
190                                    vf->vf_res->rss_key_size));
191
192         /* init RSS LUT table */
193         for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
194                 if (j >= nb_q)
195                         j = 0;
196                 vf->rss_lut[i] = j;
197         }
198         /* send virtchnnl ops to configure rss*/
199         ret = avf_configure_rss_lut(adapter);
200         if (ret)
201                 return ret;
202         ret = avf_configure_rss_key(adapter);
203         if (ret)
204                 return ret;
205
206         return 0;
207 }
208
209 static int
210 avf_init_rxq(struct rte_eth_dev *dev, struct avf_rx_queue *rxq)
211 {
212         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
213         struct rte_eth_dev_data *dev_data = dev->data;
214         uint16_t buf_size, max_pkt_len, len;
215
216         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
217
218         /* Calculate the maximum packet length allowed */
219         len = rxq->rx_buf_len * AVF_MAX_CHAINED_RX_BUFFERS;
220         max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
221
222         /* Check if the jumbo frame and maximum packet length are set
223          * correctly.
224          */
225         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
226                 if (max_pkt_len <= ETHER_MAX_LEN ||
227                     max_pkt_len > AVF_FRAME_SIZE_MAX) {
228                         PMD_DRV_LOG(ERR, "maximum packet length must be "
229                                     "larger than %u and smaller than %u, "
230                                     "as jumbo frame is enabled",
231                                     (uint32_t)ETHER_MAX_LEN,
232                                     (uint32_t)AVF_FRAME_SIZE_MAX);
233                         return -EINVAL;
234                 }
235         } else {
236                 if (max_pkt_len < ETHER_MIN_LEN ||
237                     max_pkt_len > ETHER_MAX_LEN) {
238                         PMD_DRV_LOG(ERR, "maximum packet length must be "
239                                     "larger than %u and smaller than %u, "
240                                     "as jumbo frame is disabled",
241                                     (uint32_t)ETHER_MIN_LEN,
242                                     (uint32_t)ETHER_MAX_LEN);
243                         return -EINVAL;
244                 }
245         }
246
247         rxq->max_pkt_len = max_pkt_len;
248         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
249             (rxq->max_pkt_len + 2 * AVF_VLAN_TAG_SIZE) > buf_size) {
250                 dev_data->scattered_rx = 1;
251         }
252         AVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
253         AVF_WRITE_FLUSH(hw);
254
255         return 0;
256 }
257
258 static int
259 avf_init_queues(struct rte_eth_dev *dev)
260 {
261         struct avf_rx_queue **rxq =
262                 (struct avf_rx_queue **)dev->data->rx_queues;
263         int i, ret = AVF_SUCCESS;
264
265         for (i = 0; i < dev->data->nb_rx_queues; i++) {
266                 if (!rxq[i] || !rxq[i]->q_set)
267                         continue;
268                 ret = avf_init_rxq(dev, rxq[i]);
269                 if (ret != AVF_SUCCESS)
270                         break;
271         }
272         /* set rx/tx function to vector/scatter/single-segment
273          * according to parameters
274          */
275         avf_set_rx_function(dev);
276         avf_set_tx_function(dev);
277
278         return ret;
279 }
280
281 static int avf_config_rx_queues_irqs(struct rte_eth_dev *dev,
282                                      struct rte_intr_handle *intr_handle)
283 {
284         struct avf_adapter *adapter =
285                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
286         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
287         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
288         uint16_t interval, i;
289         int vec;
290
291         if (rte_intr_cap_multiple(intr_handle) &&
292             dev->data->dev_conf.intr_conf.rxq) {
293                 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
294                         return -1;
295         }
296
297         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
298                 intr_handle->intr_vec =
299                         rte_zmalloc("intr_vec",
300                                     dev->data->nb_rx_queues * sizeof(int), 0);
301                 if (!intr_handle->intr_vec) {
302                         PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
303                                     dev->data->nb_rx_queues);
304                         return -1;
305                 }
306         }
307
308         if (!dev->data->dev_conf.intr_conf.rxq ||
309             !rte_intr_dp_is_en(intr_handle)) {
310                 /* Rx interrupt disabled, Map interrupt only for writeback */
311                 vf->nb_msix = 1;
312                 if (vf->vf_res->vf_cap_flags &
313                     VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
314                         /* If WB_ON_ITR supports, enable it */
315                         vf->msix_base = AVF_RX_VEC_START;
316                         AVF_WRITE_REG(hw, AVFINT_DYN_CTLN1(vf->msix_base - 1),
317                                       AVFINT_DYN_CTLN1_ITR_INDX_MASK |
318                                       AVFINT_DYN_CTLN1_WB_ON_ITR_MASK);
319                 } else {
320                         /* If no WB_ON_ITR offload flags, need to set
321                          * interrupt for descriptor write back.
322                          */
323                         vf->msix_base = AVF_MISC_VEC_ID;
324
325                         /* set ITR to max */
326                         interval = avf_calc_itr_interval(
327                                         AVF_QUEUE_ITR_INTERVAL_MAX);
328                         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
329                                       AVFINT_DYN_CTL01_INTENA_MASK |
330                                       (AVF_ITR_INDEX_DEFAULT <<
331                                        AVFINT_DYN_CTL01_ITR_INDX_SHIFT) |
332                                       (interval <<
333                                        AVFINT_DYN_CTL01_INTERVAL_SHIFT));
334                 }
335                 AVF_WRITE_FLUSH(hw);
336                 /* map all queues to the same interrupt */
337                 for (i = 0; i < dev->data->nb_rx_queues; i++)
338                         vf->rxq_map[vf->msix_base] |= 1 << i;
339         } else {
340                 if (!rte_intr_allow_others(intr_handle)) {
341                         vf->nb_msix = 1;
342                         vf->msix_base = AVF_MISC_VEC_ID;
343                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
344                                 vf->rxq_map[vf->msix_base] |= 1 << i;
345                                 intr_handle->intr_vec[i] = AVF_MISC_VEC_ID;
346                         }
347                         PMD_DRV_LOG(DEBUG,
348                                     "vector %u are mapping to all Rx queues",
349                                     vf->msix_base);
350                 } else {
351                         /* If Rx interrupt is reuquired, and we can use
352                          * multi interrupts, then the vec is from 1
353                          */
354                         vf->nb_msix = RTE_MIN(vf->vf_res->max_vectors,
355                                               intr_handle->nb_efd);
356                         vf->msix_base = AVF_RX_VEC_START;
357                         vec = AVF_RX_VEC_START;
358                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
359                                 vf->rxq_map[vec] |= 1 << i;
360                                 intr_handle->intr_vec[i] = vec++;
361                                 if (vec >= vf->nb_msix)
362                                         vec = AVF_RX_VEC_START;
363                         }
364                         PMD_DRV_LOG(DEBUG,
365                                     "%u vectors are mapping to %u Rx queues",
366                                     vf->nb_msix, dev->data->nb_rx_queues);
367                 }
368         }
369
370         if (avf_config_irq_map(adapter)) {
371                 PMD_DRV_LOG(ERR, "config interrupt mapping failed");
372                 return -1;
373         }
374         return 0;
375 }
376
377 static int
378 avf_start_queues(struct rte_eth_dev *dev)
379 {
380         struct avf_rx_queue *rxq;
381         struct avf_tx_queue *txq;
382         int i;
383
384         for (i = 0; i < dev->data->nb_tx_queues; i++) {
385                 txq = dev->data->tx_queues[i];
386                 if (txq->tx_deferred_start)
387                         continue;
388                 if (avf_dev_tx_queue_start(dev, i) != 0) {
389                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
390                         return -1;
391                 }
392         }
393
394         for (i = 0; i < dev->data->nb_rx_queues; i++) {
395                 rxq = dev->data->rx_queues[i];
396                 if (rxq->rx_deferred_start)
397                         continue;
398                 if (avf_dev_rx_queue_start(dev, i) != 0) {
399                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
400                         return -1;
401                 }
402         }
403
404         return 0;
405 }
406
407 static int
408 avf_dev_start(struct rte_eth_dev *dev)
409 {
410         struct avf_adapter *adapter =
411                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
412         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
413         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
414         struct rte_intr_handle *intr_handle = dev->intr_handle;
415
416         PMD_INIT_FUNC_TRACE();
417
418         hw->adapter_stopped = 0;
419
420         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
421         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
422                                       dev->data->nb_tx_queues);
423
424         if (avf_init_queues(dev) != 0) {
425                 PMD_DRV_LOG(ERR, "failed to do Queue init");
426                 return -1;
427         }
428
429         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
430                 if (avf_init_rss(adapter) != 0) {
431                         PMD_DRV_LOG(ERR, "configure rss failed");
432                         goto err_rss;
433                 }
434         }
435
436         if (avf_configure_queues(adapter) != 0) {
437                 PMD_DRV_LOG(ERR, "configure queues failed");
438                 goto err_queue;
439         }
440
441         if (avf_config_rx_queues_irqs(dev, intr_handle) != 0) {
442                 PMD_DRV_LOG(ERR, "configure irq failed");
443                 goto err_queue;
444         }
445         /* re-enable intr again, because efd assign may change */
446         if (dev->data->dev_conf.intr_conf.rxq != 0) {
447                 rte_intr_disable(intr_handle);
448                 rte_intr_enable(intr_handle);
449         }
450
451         /* Set all mac addrs */
452         avf_add_del_all_mac_addr(adapter, TRUE);
453
454         if (avf_start_queues(dev) != 0) {
455                 PMD_DRV_LOG(ERR, "enable queues failed");
456                 goto err_mac;
457         }
458
459         return 0;
460
461 err_mac:
462         avf_add_del_all_mac_addr(adapter, FALSE);
463 err_queue:
464 err_rss:
465         return -1;
466 }
467
468 static void
469 avf_dev_stop(struct rte_eth_dev *dev)
470 {
471         struct avf_adapter *adapter =
472                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
473         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
474         struct rte_intr_handle *intr_handle = dev->intr_handle;
475
476         PMD_INIT_FUNC_TRACE();
477
478         if (hw->adapter_stopped == 1)
479                 return;
480
481         avf_stop_queues(dev);
482
483         /* Disable the interrupt for Rx */
484         rte_intr_efd_disable(intr_handle);
485         /* Rx interrupt vector mapping free */
486         if (intr_handle->intr_vec) {
487                 rte_free(intr_handle->intr_vec);
488                 intr_handle->intr_vec = NULL;
489         }
490
491         /* remove all mac addrs */
492         avf_add_del_all_mac_addr(adapter, FALSE);
493         hw->adapter_stopped = 1;
494 }
495
496 static void
497 avf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
498 {
499         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
500
501         memset(dev_info, 0, sizeof(*dev_info));
502         dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
503         dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
504         dev_info->min_rx_bufsize = AVF_BUF_SIZE_MIN;
505         dev_info->max_rx_pktlen = AVF_FRAME_SIZE_MAX;
506         dev_info->hash_key_size = vf->vf_res->rss_key_size;
507         dev_info->reta_size = vf->vf_res->rss_lut_size;
508         dev_info->flow_type_rss_offloads = AVF_RSS_OFFLOAD_ALL;
509         dev_info->max_mac_addrs = AVF_NUM_MACADDR_MAX;
510         dev_info->rx_offload_capa =
511                 DEV_RX_OFFLOAD_VLAN_STRIP |
512                 DEV_RX_OFFLOAD_QINQ_STRIP |
513                 DEV_RX_OFFLOAD_IPV4_CKSUM |
514                 DEV_RX_OFFLOAD_UDP_CKSUM |
515                 DEV_RX_OFFLOAD_TCP_CKSUM |
516                 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
517                 DEV_RX_OFFLOAD_SCATTER |
518                 DEV_RX_OFFLOAD_JUMBO_FRAME |
519                 DEV_RX_OFFLOAD_VLAN_FILTER;
520         dev_info->tx_offload_capa =
521                 DEV_TX_OFFLOAD_VLAN_INSERT |
522                 DEV_TX_OFFLOAD_QINQ_INSERT |
523                 DEV_TX_OFFLOAD_IPV4_CKSUM |
524                 DEV_TX_OFFLOAD_UDP_CKSUM |
525                 DEV_TX_OFFLOAD_TCP_CKSUM |
526                 DEV_TX_OFFLOAD_SCTP_CKSUM |
527                 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
528                 DEV_TX_OFFLOAD_TCP_TSO |
529                 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
530                 DEV_TX_OFFLOAD_GRE_TNL_TSO |
531                 DEV_TX_OFFLOAD_IPIP_TNL_TSO |
532                 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
533                 DEV_TX_OFFLOAD_MULTI_SEGS;
534
535         dev_info->default_rxconf = (struct rte_eth_rxconf) {
536                 .rx_free_thresh = AVF_DEFAULT_RX_FREE_THRESH,
537                 .rx_drop_en = 0,
538                 .offloads = 0,
539         };
540
541         dev_info->default_txconf = (struct rte_eth_txconf) {
542                 .tx_free_thresh = AVF_DEFAULT_TX_FREE_THRESH,
543                 .tx_rs_thresh = AVF_DEFAULT_TX_RS_THRESH,
544                 .offloads = 0,
545         };
546
547         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
548                 .nb_max = AVF_MAX_RING_DESC,
549                 .nb_min = AVF_MIN_RING_DESC,
550                 .nb_align = AVF_ALIGN_RING_DESC,
551         };
552
553         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
554                 .nb_max = AVF_MAX_RING_DESC,
555                 .nb_min = AVF_MIN_RING_DESC,
556                 .nb_align = AVF_ALIGN_RING_DESC,
557         };
558 }
559
560 static const uint32_t *
561 avf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
562 {
563         static const uint32_t ptypes[] = {
564                 RTE_PTYPE_L2_ETHER,
565                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
566                 RTE_PTYPE_L4_FRAG,
567                 RTE_PTYPE_L4_ICMP,
568                 RTE_PTYPE_L4_NONFRAG,
569                 RTE_PTYPE_L4_SCTP,
570                 RTE_PTYPE_L4_TCP,
571                 RTE_PTYPE_L4_UDP,
572                 RTE_PTYPE_UNKNOWN
573         };
574         return ptypes;
575 }
576
577 int
578 avf_dev_link_update(struct rte_eth_dev *dev,
579                     __rte_unused int wait_to_complete)
580 {
581         struct rte_eth_link new_link;
582         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
583
584         /* Only read status info stored in VF, and the info is updated
585          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
586          */
587         switch (vf->link_speed) {
588         case VIRTCHNL_LINK_SPEED_100MB:
589                 new_link.link_speed = ETH_SPEED_NUM_100M;
590                 break;
591         case VIRTCHNL_LINK_SPEED_1GB:
592                 new_link.link_speed = ETH_SPEED_NUM_1G;
593                 break;
594         case VIRTCHNL_LINK_SPEED_10GB:
595                 new_link.link_speed = ETH_SPEED_NUM_10G;
596                 break;
597         case VIRTCHNL_LINK_SPEED_20GB:
598                 new_link.link_speed = ETH_SPEED_NUM_20G;
599                 break;
600         case VIRTCHNL_LINK_SPEED_25GB:
601                 new_link.link_speed = ETH_SPEED_NUM_25G;
602                 break;
603         case VIRTCHNL_LINK_SPEED_40GB:
604                 new_link.link_speed = ETH_SPEED_NUM_40G;
605                 break;
606         default:
607                 new_link.link_speed = ETH_SPEED_NUM_NONE;
608                 break;
609         }
610
611         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
612         new_link.link_status = vf->link_up ? ETH_LINK_UP :
613                                              ETH_LINK_DOWN;
614         new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
615                                 ETH_LINK_SPEED_FIXED);
616
617         if (rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link,
618                                 *(uint64_t *)&dev->data->dev_link,
619                                 *(uint64_t *)&new_link) == 0)
620                 return -1;
621
622         return 0;
623 }
624
625 static void
626 avf_dev_promiscuous_enable(struct rte_eth_dev *dev)
627 {
628         struct avf_adapter *adapter =
629                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
630         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
631         int ret;
632
633         if (vf->promisc_unicast_enabled)
634                 return;
635
636         ret = avf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled);
637         if (!ret)
638                 vf->promisc_unicast_enabled = TRUE;
639 }
640
641 static void
642 avf_dev_promiscuous_disable(struct rte_eth_dev *dev)
643 {
644         struct avf_adapter *adapter =
645                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
646         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
647         int ret;
648
649         if (!vf->promisc_unicast_enabled)
650                 return;
651
652         ret = avf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled);
653         if (!ret)
654                 vf->promisc_unicast_enabled = FALSE;
655 }
656
657 static void
658 avf_dev_allmulticast_enable(struct rte_eth_dev *dev)
659 {
660         struct avf_adapter *adapter =
661                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
662         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
663         int ret;
664
665         if (vf->promisc_multicast_enabled)
666                 return;
667
668         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE);
669         if (!ret)
670                 vf->promisc_multicast_enabled = TRUE;
671 }
672
673 static void
674 avf_dev_allmulticast_disable(struct rte_eth_dev *dev)
675 {
676         struct avf_adapter *adapter =
677                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
678         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
679         int ret;
680
681         if (!vf->promisc_multicast_enabled)
682                 return;
683
684         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE);
685         if (!ret)
686                 vf->promisc_multicast_enabled = FALSE;
687 }
688
689 static int
690 avf_dev_add_mac_addr(struct rte_eth_dev *dev, struct ether_addr *addr,
691                      __rte_unused uint32_t index,
692                      __rte_unused uint32_t pool)
693 {
694         struct avf_adapter *adapter =
695                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
696         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
697         int err;
698
699         if (is_zero_ether_addr(addr)) {
700                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
701                 return -EINVAL;
702         }
703
704         err = avf_add_del_eth_addr(adapter, addr, TRUE);
705         if (err) {
706                 PMD_DRV_LOG(ERR, "fail to add MAC address");
707                 return -EIO;
708         }
709
710         vf->mac_num++;
711
712         return 0;
713 }
714
715 static void
716 avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
717 {
718         struct avf_adapter *adapter =
719                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
720         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
721         struct ether_addr *addr;
722         int err;
723
724         addr = &dev->data->mac_addrs[index];
725
726         err = avf_add_del_eth_addr(adapter, addr, FALSE);
727         if (err)
728                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
729
730         vf->mac_num--;
731 }
732
733 static int
734 avf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
735 {
736         struct avf_adapter *adapter =
737                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
738         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
739         int err;
740
741         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
742                 return -ENOTSUP;
743
744         err = avf_add_del_vlan(adapter, vlan_id, on);
745         if (err)
746                 return -EIO;
747         return 0;
748 }
749
750 static int
751 avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
752 {
753         struct avf_adapter *adapter =
754                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
755         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
756         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
757         int err;
758
759         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
760                 return -ENOTSUP;
761
762         /* Vlan stripping setting */
763         if (mask & ETH_VLAN_STRIP_MASK) {
764                 /* Enable or disable VLAN stripping */
765                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
766                         err = avf_enable_vlan_strip(adapter);
767                 else
768                         err = avf_disable_vlan_strip(adapter);
769
770                 if (err)
771                         return -EIO;
772         }
773         return 0;
774 }
775
776 static int
777 avf_dev_rss_reta_update(struct rte_eth_dev *dev,
778                         struct rte_eth_rss_reta_entry64 *reta_conf,
779                         uint16_t reta_size)
780 {
781         struct avf_adapter *adapter =
782                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
783         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
784         uint8_t *lut;
785         uint16_t i, idx, shift;
786         int ret;
787
788         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
789                 return -ENOTSUP;
790
791         if (reta_size != vf->vf_res->rss_lut_size) {
792                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
793                         "(%d) doesn't match the number of hardware can "
794                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
795                 return -EINVAL;
796         }
797
798         lut = rte_zmalloc("rss_lut", reta_size, 0);
799         if (!lut) {
800                 PMD_DRV_LOG(ERR, "No memory can be allocated");
801                 return -ENOMEM;
802         }
803         /* store the old lut table temporarily */
804         rte_memcpy(lut, vf->rss_lut, reta_size);
805
806         for (i = 0; i < reta_size; i++) {
807                 idx = i / RTE_RETA_GROUP_SIZE;
808                 shift = i % RTE_RETA_GROUP_SIZE;
809                 if (reta_conf[idx].mask & (1ULL << shift))
810                         lut[i] = reta_conf[idx].reta[shift];
811         }
812
813         rte_memcpy(vf->rss_lut, lut, reta_size);
814         /* send virtchnnl ops to configure rss*/
815         ret = avf_configure_rss_lut(adapter);
816         if (ret) /* revert back */
817                 rte_memcpy(vf->rss_lut, lut, reta_size);
818         rte_free(lut);
819
820         return ret;
821 }
822
823 static int
824 avf_dev_rss_reta_query(struct rte_eth_dev *dev,
825                        struct rte_eth_rss_reta_entry64 *reta_conf,
826                        uint16_t reta_size)
827 {
828         struct avf_adapter *adapter =
829                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
830         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
831         uint16_t i, idx, shift;
832
833         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
834                 return -ENOTSUP;
835
836         if (reta_size != vf->vf_res->rss_lut_size) {
837                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
838                         "(%d) doesn't match the number of hardware can "
839                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
840                 return -EINVAL;
841         }
842
843         for (i = 0; i < reta_size; i++) {
844                 idx = i / RTE_RETA_GROUP_SIZE;
845                 shift = i % RTE_RETA_GROUP_SIZE;
846                 if (reta_conf[idx].mask & (1ULL << shift))
847                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
848         }
849
850         return 0;
851 }
852
853 static int
854 avf_dev_rss_hash_update(struct rte_eth_dev *dev,
855                         struct rte_eth_rss_conf *rss_conf)
856 {
857         struct avf_adapter *adapter =
858                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
859         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
860
861         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
862                 return -ENOTSUP;
863
864         /* HENA setting, it is enabled by default, no change */
865         if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
866                 PMD_DRV_LOG(DEBUG, "No key to be configured");
867                 return 0;
868         } else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
869                 PMD_DRV_LOG(ERR, "The size of hash key configured "
870                         "(%d) doesn't match the size of hardware can "
871                         "support (%d)", rss_conf->rss_key_len,
872                         vf->vf_res->rss_key_size);
873                 return -EINVAL;
874         }
875
876         rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
877
878         return avf_configure_rss_key(adapter);
879 }
880
881 static int
882 avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
883                           struct rte_eth_rss_conf *rss_conf)
884 {
885         struct avf_adapter *adapter =
886                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
887         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
888
889         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
890                 return -ENOTSUP;
891
892          /* Just set it to default value now. */
893         rss_conf->rss_hf = AVF_RSS_OFFLOAD_ALL;
894
895         if (!rss_conf->rss_key)
896                 return 0;
897
898         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
899         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
900
901         return 0;
902 }
903
904 static int
905 avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
906 {
907         uint32_t frame_size = mtu + AVF_ETH_OVERHEAD;
908         int ret = 0;
909
910         if (mtu < ETHER_MIN_MTU || frame_size > AVF_FRAME_SIZE_MAX)
911                 return -EINVAL;
912
913         /* mtu setting is forbidden if port is start */
914         if (dev->data->dev_started) {
915                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
916                 return -EBUSY;
917         }
918
919         if (frame_size > ETHER_MAX_LEN)
920                 dev->data->dev_conf.rxmode.offloads |=
921                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
922         else
923                 dev->data->dev_conf.rxmode.offloads &=
924                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
925
926         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
927
928         return ret;
929 }
930
931 static int
932 avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
933                              struct ether_addr *mac_addr)
934 {
935         struct avf_adapter *adapter =
936                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
937         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
938         struct ether_addr *perm_addr, *old_addr;
939         int ret;
940
941         old_addr = (struct ether_addr *)hw->mac.addr;
942         perm_addr = (struct ether_addr *)hw->mac.perm_addr;
943
944         if (is_same_ether_addr(mac_addr, old_addr))
945                 return 0;
946
947         /* If the MAC address is configured by host, skip the setting */
948         if (is_valid_assigned_ether_addr(perm_addr))
949                 return -EPERM;
950
951         ret = avf_add_del_eth_addr(adapter, old_addr, FALSE);
952         if (ret)
953                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
954                             " %02X:%02X:%02X:%02X:%02X:%02X",
955                             old_addr->addr_bytes[0],
956                             old_addr->addr_bytes[1],
957                             old_addr->addr_bytes[2],
958                             old_addr->addr_bytes[3],
959                             old_addr->addr_bytes[4],
960                             old_addr->addr_bytes[5]);
961
962         ret = avf_add_del_eth_addr(adapter, mac_addr, TRUE);
963         if (ret)
964                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
965                             " %02X:%02X:%02X:%02X:%02X:%02X",
966                             mac_addr->addr_bytes[0],
967                             mac_addr->addr_bytes[1],
968                             mac_addr->addr_bytes[2],
969                             mac_addr->addr_bytes[3],
970                             mac_addr->addr_bytes[4],
971                             mac_addr->addr_bytes[5]);
972
973         if (ret)
974                 return -EIO;
975
976         ether_addr_copy(mac_addr, (struct ether_addr *)hw->mac.addr);
977         return 0;
978 }
979
980 static int
981 avf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
982 {
983         struct avf_adapter *adapter =
984                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
985         struct virtchnl_eth_stats *pstats = NULL;
986         int ret;
987
988         ret = avf_query_stats(adapter, &pstats);
989         if (ret == 0) {
990                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
991                                                 pstats->rx_broadcast;
992                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
993                                                 pstats->tx_unicast;
994                 stats->imissed = pstats->rx_discards;
995                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
996                 stats->ibytes = pstats->rx_bytes;
997                 stats->obytes = pstats->tx_bytes;
998         } else {
999                 PMD_DRV_LOG(ERR, "Get statistics failed");
1000         }
1001         return -EIO;
1002 }
1003
1004 static int
1005 avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1006 {
1007         struct avf_adapter *adapter =
1008                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1009         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1010         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1011         uint16_t msix_intr;
1012
1013         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1014         if (msix_intr == AVF_MISC_VEC_ID) {
1015                 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1016                 AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
1017                               AVFINT_DYN_CTL01_INTENA_MASK |
1018                               AVFINT_DYN_CTL01_ITR_INDX_MASK);
1019         } else {
1020                 AVF_WRITE_REG(hw,
1021                               AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
1022                               AVFINT_DYN_CTLN1_INTENA_MASK |
1023                               AVFINT_DYN_CTLN1_ITR_INDX_MASK);
1024         }
1025
1026         AVF_WRITE_FLUSH(hw);
1027
1028         rte_intr_enable(&pci_dev->intr_handle);
1029
1030         return 0;
1031 }
1032
1033 static int
1034 avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1035 {
1036         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1037         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1038         uint16_t msix_intr;
1039
1040         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1041         if (msix_intr == AVF_MISC_VEC_ID) {
1042                 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1043                 return -EIO;
1044         }
1045
1046         AVF_WRITE_REG(hw,
1047                       AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
1048                       0);
1049
1050         AVF_WRITE_FLUSH(hw);
1051         return 0;
1052 }
1053
1054 static int
1055 avf_check_vf_reset_done(struct avf_hw *hw)
1056 {
1057         int i, reset;
1058
1059         for (i = 0; i < AVF_RESET_WAIT_CNT; i++) {
1060                 reset = AVF_READ_REG(hw, AVFGEN_RSTAT) &
1061                         AVFGEN_RSTAT_VFR_STATE_MASK;
1062                 reset = reset >> AVFGEN_RSTAT_VFR_STATE_SHIFT;
1063                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1064                     reset == VIRTCHNL_VFR_COMPLETED)
1065                         break;
1066                 rte_delay_ms(20);
1067         }
1068
1069         if (i >= AVF_RESET_WAIT_CNT)
1070                 return -1;
1071
1072         return 0;
1073 }
1074
1075 static int
1076 avf_init_vf(struct rte_eth_dev *dev)
1077 {
1078         int err, bufsz;
1079         struct avf_adapter *adapter =
1080                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1081         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1082         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1083
1084         err = avf_set_mac_type(hw);
1085         if (err) {
1086                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
1087                 goto err;
1088         }
1089
1090         err = avf_check_vf_reset_done(hw);
1091         if (err) {
1092                 PMD_INIT_LOG(ERR, "VF is still resetting");
1093                 goto err;
1094         }
1095
1096         avf_init_adminq_parameter(hw);
1097         err = avf_init_adminq(hw);
1098         if (err) {
1099                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
1100                 goto err;
1101         }
1102
1103         vf->aq_resp = rte_zmalloc("vf_aq_resp", AVF_AQ_BUF_SZ, 0);
1104         if (!vf->aq_resp) {
1105                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
1106                 goto err_aq;
1107         }
1108         if (avf_check_api_version(adapter) != 0) {
1109                 PMD_INIT_LOG(ERR, "check_api version failed");
1110                 goto err_api;
1111         }
1112
1113         bufsz = sizeof(struct virtchnl_vf_resource) +
1114                 (AVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
1115         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
1116         if (!vf->vf_res) {
1117                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
1118                 goto err_api;
1119         }
1120         if (avf_get_vf_resource(adapter) != 0) {
1121                 PMD_INIT_LOG(ERR, "avf_get_vf_config failed");
1122                 goto err_alloc;
1123         }
1124         /* Allocate memort for RSS info */
1125         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
1126                 vf->rss_key = rte_zmalloc("rss_key",
1127                                           vf->vf_res->rss_key_size, 0);
1128                 if (!vf->rss_key) {
1129                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
1130                         goto err_rss;
1131                 }
1132                 vf->rss_lut = rte_zmalloc("rss_lut",
1133                                           vf->vf_res->rss_lut_size, 0);
1134                 if (!vf->rss_lut) {
1135                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
1136                         goto err_rss;
1137                 }
1138         }
1139         return 0;
1140 err_rss:
1141         rte_free(vf->rss_key);
1142         rte_free(vf->rss_lut);
1143 err_alloc:
1144         rte_free(vf->vf_res);
1145         vf->vsi_res = NULL;
1146 err_api:
1147         rte_free(vf->aq_resp);
1148 err_aq:
1149         avf_shutdown_adminq(hw);
1150 err:
1151         return -1;
1152 }
1153
1154 /* Enable default admin queue interrupt setting */
1155 static inline void
1156 avf_enable_irq0(struct avf_hw *hw)
1157 {
1158         /* Enable admin queue interrupt trigger */
1159         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, AVFINT_ICR0_ENA1_ADMINQ_MASK);
1160
1161         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01, AVFINT_DYN_CTL01_INTENA_MASK |
1162                                             AVFINT_DYN_CTL01_ITR_INDX_MASK);
1163
1164         AVF_WRITE_FLUSH(hw);
1165 }
1166
1167 static inline void
1168 avf_disable_irq0(struct avf_hw *hw)
1169 {
1170         /* Disable all interrupt types */
1171         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, 0);
1172         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
1173                       AVFINT_DYN_CTL01_ITR_INDX_MASK);
1174         AVF_WRITE_FLUSH(hw);
1175 }
1176
1177 static void
1178 avf_dev_interrupt_handler(void *param)
1179 {
1180         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1181         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1182
1183         avf_disable_irq0(hw);
1184
1185         avf_handle_virtchnl_msg(dev);
1186
1187         avf_enable_irq0(hw);
1188 }
1189
1190 static int
1191 avf_dev_init(struct rte_eth_dev *eth_dev)
1192 {
1193         struct avf_adapter *adapter =
1194                 AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1195         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1196         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1197
1198         PMD_INIT_FUNC_TRACE();
1199
1200         /* assign ops func pointer */
1201         eth_dev->dev_ops = &avf_eth_dev_ops;
1202         eth_dev->rx_pkt_burst = &avf_recv_pkts;
1203         eth_dev->tx_pkt_burst = &avf_xmit_pkts;
1204         eth_dev->tx_pkt_prepare = &avf_prep_pkts;
1205
1206         /* For secondary processes, we don't initialise any further as primary
1207          * has already done this work. Only check if we need a different RX
1208          * and TX function.
1209          */
1210         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1211                 avf_set_rx_function(eth_dev);
1212                 avf_set_tx_function(eth_dev);
1213                 return 0;
1214         }
1215         rte_eth_copy_pci_info(eth_dev, pci_dev);
1216
1217         hw->vendor_id = pci_dev->id.vendor_id;
1218         hw->device_id = pci_dev->id.device_id;
1219         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
1220         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
1221         hw->bus.bus_id = pci_dev->addr.bus;
1222         hw->bus.device = pci_dev->addr.devid;
1223         hw->bus.func = pci_dev->addr.function;
1224         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1225         hw->back = AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1226         adapter->eth_dev = eth_dev;
1227
1228         if (avf_init_vf(eth_dev) != 0) {
1229                 PMD_INIT_LOG(ERR, "Init vf failed");
1230                 return -1;
1231         }
1232
1233         /* copy mac addr */
1234         eth_dev->data->mac_addrs = rte_zmalloc(
1235                                         "avf_mac",
1236                                         ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX,
1237                                         0);
1238         if (!eth_dev->data->mac_addrs) {
1239                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
1240                              " store MAC addresses",
1241                              ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX);
1242                 return -ENOMEM;
1243         }
1244         /* If the MAC address is not configured by host,
1245          * generate a random one.
1246          */
1247         if (!is_valid_assigned_ether_addr((struct ether_addr *)hw->mac.addr))
1248                 eth_random_addr(hw->mac.addr);
1249         ether_addr_copy((struct ether_addr *)hw->mac.addr,
1250                         &eth_dev->data->mac_addrs[0]);
1251
1252         /* register callback func to eal lib */
1253         rte_intr_callback_register(&pci_dev->intr_handle,
1254                                    avf_dev_interrupt_handler,
1255                                    (void *)eth_dev);
1256
1257         /* enable uio intr after callback register */
1258         rte_intr_enable(&pci_dev->intr_handle);
1259
1260         /* configure and enable device interrupt */
1261         avf_enable_irq0(hw);
1262
1263         return 0;
1264 }
1265
1266 static void
1267 avf_dev_close(struct rte_eth_dev *dev)
1268 {
1269         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1270         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1271         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1272
1273         avf_dev_stop(dev);
1274         avf_shutdown_adminq(hw);
1275         /* disable uio intr before callback unregister */
1276         rte_intr_disable(intr_handle);
1277
1278         /* unregister callback func from eal lib */
1279         rte_intr_callback_unregister(intr_handle,
1280                                      avf_dev_interrupt_handler, dev);
1281         avf_disable_irq0(hw);
1282 }
1283
1284 static int
1285 avf_dev_uninit(struct rte_eth_dev *dev)
1286 {
1287         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1288         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1289
1290         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1291                 return -EPERM;
1292
1293         dev->dev_ops = NULL;
1294         dev->rx_pkt_burst = NULL;
1295         dev->tx_pkt_burst = NULL;
1296         if (hw->adapter_stopped == 0)
1297                 avf_dev_close(dev);
1298
1299         rte_free(vf->vf_res);
1300         vf->vsi_res = NULL;
1301         vf->vf_res = NULL;
1302
1303         rte_free(vf->aq_resp);
1304         vf->aq_resp = NULL;
1305
1306         if (vf->rss_lut) {
1307                 rte_free(vf->rss_lut);
1308                 vf->rss_lut = NULL;
1309         }
1310         if (vf->rss_key) {
1311                 rte_free(vf->rss_key);
1312                 vf->rss_key = NULL;
1313         }
1314
1315         return 0;
1316 }
1317
1318 static int eth_avf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1319                              struct rte_pci_device *pci_dev)
1320 {
1321         return rte_eth_dev_pci_generic_probe(pci_dev,
1322                 sizeof(struct avf_adapter), avf_dev_init);
1323 }
1324
1325 static int eth_avf_pci_remove(struct rte_pci_device *pci_dev)
1326 {
1327         return rte_eth_dev_pci_generic_remove(pci_dev, avf_dev_uninit);
1328 }
1329
1330 /* Adaptive virtual function driver struct */
1331 static struct rte_pci_driver rte_avf_pmd = {
1332         .id_table = pci_id_avf_map,
1333         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1334                      RTE_PCI_DRV_IOVA_AS_VA,
1335         .probe = eth_avf_pci_probe,
1336         .remove = eth_avf_pci_remove,
1337 };
1338
1339 RTE_PMD_REGISTER_PCI(net_avf, rte_avf_pmd);
1340 RTE_PMD_REGISTER_PCI_TABLE(net_avf, pci_id_avf_map);
1341 RTE_PMD_REGISTER_KMOD_DEP(net_avf, "* igb_uio | vfio-pci");
1342 RTE_INIT(avf_init_log)
1343 {
1344         avf_logtype_init = rte_log_register("pmd.net.avf.init");
1345         if (avf_logtype_init >= 0)
1346                 rte_log_set_level(avf_logtype_init, RTE_LOG_NOTICE);
1347         avf_logtype_driver = rte_log_register("pmd.net.avf.driver");
1348         if (avf_logtype_driver >= 0)
1349                 rte_log_set_level(avf_logtype_driver, RTE_LOG_NOTICE);
1350 }
1351
1352 /* memory func for base code */
1353 enum avf_status_code
1354 avf_allocate_dma_mem_d(__rte_unused struct avf_hw *hw,
1355                        struct avf_dma_mem *mem,
1356                        u64 size,
1357                        u32 alignment)
1358 {
1359         const struct rte_memzone *mz = NULL;
1360         char z_name[RTE_MEMZONE_NAMESIZE];
1361
1362         if (!mem)
1363                 return AVF_ERR_PARAM;
1364
1365         snprintf(z_name, sizeof(z_name), "avf_dma_%"PRIu64, rte_rand());
1366         mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY,
1367                         RTE_MEMZONE_IOVA_CONTIG, alignment, RTE_PGSIZE_2M);
1368         if (!mz)
1369                 return AVF_ERR_NO_MEMORY;
1370
1371         mem->size = size;
1372         mem->va = mz->addr;
1373         mem->pa = mz->phys_addr;
1374         mem->zone = (const void *)mz;
1375         PMD_DRV_LOG(DEBUG,
1376                     "memzone %s allocated with physical address: %"PRIu64,
1377                     mz->name, mem->pa);
1378
1379         return AVF_SUCCESS;
1380 }
1381
1382 enum avf_status_code
1383 avf_free_dma_mem_d(__rte_unused struct avf_hw *hw,
1384                    struct avf_dma_mem *mem)
1385 {
1386         if (!mem)
1387                 return AVF_ERR_PARAM;
1388
1389         PMD_DRV_LOG(DEBUG,
1390                     "memzone %s to be freed with physical address: %"PRIu64,
1391                     ((const struct rte_memzone *)mem->zone)->name, mem->pa);
1392         rte_memzone_free((const struct rte_memzone *)mem->zone);
1393         mem->zone = NULL;
1394         mem->va = NULL;
1395         mem->pa = (u64)0;
1396
1397         return AVF_SUCCESS;
1398 }
1399
1400 enum avf_status_code
1401 avf_allocate_virt_mem_d(__rte_unused struct avf_hw *hw,
1402                         struct avf_virt_mem *mem,
1403                         u32 size)
1404 {
1405         if (!mem)
1406                 return AVF_ERR_PARAM;
1407
1408         mem->size = size;
1409         mem->va = rte_zmalloc("avf", size, 0);
1410
1411         if (mem->va)
1412                 return AVF_SUCCESS;
1413         else
1414                 return AVF_ERR_NO_MEMORY;
1415 }
1416
1417 enum avf_status_code
1418 avf_free_virt_mem_d(__rte_unused struct avf_hw *hw,
1419                     struct avf_virt_mem *mem)
1420 {
1421         if (!mem)
1422                 return AVF_ERR_PARAM;
1423
1424         rte_free(mem->va);
1425         mem->va = NULL;
1426
1427         return AVF_SUCCESS;
1428 }