New upstream version 18.08
[deb_dpdk.git] / drivers / net / avf / avf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <rte_ethdev_driver.h>
23 #include <rte_ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "avf_log.h"
29 #include "base/avf_prototype.h"
30 #include "base/avf_adminq_cmd.h"
31 #include "base/avf_type.h"
32
33 #include "avf.h"
34 #include "avf_rxtx.h"
35
36 static int avf_dev_configure(struct rte_eth_dev *dev);
37 static int avf_dev_start(struct rte_eth_dev *dev);
38 static void avf_dev_stop(struct rte_eth_dev *dev);
39 static void avf_dev_close(struct rte_eth_dev *dev);
40 static void avf_dev_info_get(struct rte_eth_dev *dev,
41                              struct rte_eth_dev_info *dev_info);
42 static const uint32_t *avf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
43 static int avf_dev_stats_get(struct rte_eth_dev *dev,
44                              struct rte_eth_stats *stats);
45 static void avf_dev_promiscuous_enable(struct rte_eth_dev *dev);
46 static void avf_dev_promiscuous_disable(struct rte_eth_dev *dev);
47 static void avf_dev_allmulticast_enable(struct rte_eth_dev *dev);
48 static void avf_dev_allmulticast_disable(struct rte_eth_dev *dev);
49 static int avf_dev_add_mac_addr(struct rte_eth_dev *dev,
50                                 struct ether_addr *addr,
51                                 uint32_t index,
52                                 uint32_t pool);
53 static void avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
54 static int avf_dev_vlan_filter_set(struct rte_eth_dev *dev,
55                                    uint16_t vlan_id, int on);
56 static int avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
57 static int avf_dev_rss_reta_update(struct rte_eth_dev *dev,
58                                    struct rte_eth_rss_reta_entry64 *reta_conf,
59                                    uint16_t reta_size);
60 static int avf_dev_rss_reta_query(struct rte_eth_dev *dev,
61                                   struct rte_eth_rss_reta_entry64 *reta_conf,
62                                   uint16_t reta_size);
63 static int avf_dev_rss_hash_update(struct rte_eth_dev *dev,
64                                    struct rte_eth_rss_conf *rss_conf);
65 static int avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
66                                      struct rte_eth_rss_conf *rss_conf);
67 static int avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
68 static int avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
69                                          struct ether_addr *mac_addr);
70 static int avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
71                                         uint16_t queue_id);
72 static int avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
73                                          uint16_t queue_id);
74
75 int avf_logtype_init;
76 int avf_logtype_driver;
77
78 static const struct rte_pci_id pci_id_avf_map[] = {
79         { RTE_PCI_DEVICE(AVF_INTEL_VENDOR_ID, AVF_DEV_ID_ADAPTIVE_VF) },
80         { .vendor_id = 0, /* sentinel */ },
81 };
82
83 static const struct eth_dev_ops avf_eth_dev_ops = {
84         .dev_configure              = avf_dev_configure,
85         .dev_start                  = avf_dev_start,
86         .dev_stop                   = avf_dev_stop,
87         .dev_close                  = avf_dev_close,
88         .dev_infos_get              = avf_dev_info_get,
89         .dev_supported_ptypes_get   = avf_dev_supported_ptypes_get,
90         .link_update                = avf_dev_link_update,
91         .stats_get                  = avf_dev_stats_get,
92         .promiscuous_enable         = avf_dev_promiscuous_enable,
93         .promiscuous_disable        = avf_dev_promiscuous_disable,
94         .allmulticast_enable        = avf_dev_allmulticast_enable,
95         .allmulticast_disable       = avf_dev_allmulticast_disable,
96         .mac_addr_add               = avf_dev_add_mac_addr,
97         .mac_addr_remove            = avf_dev_del_mac_addr,
98         .vlan_filter_set            = avf_dev_vlan_filter_set,
99         .vlan_offload_set           = avf_dev_vlan_offload_set,
100         .rx_queue_start             = avf_dev_rx_queue_start,
101         .rx_queue_stop              = avf_dev_rx_queue_stop,
102         .tx_queue_start             = avf_dev_tx_queue_start,
103         .tx_queue_stop              = avf_dev_tx_queue_stop,
104         .rx_queue_setup             = avf_dev_rx_queue_setup,
105         .rx_queue_release           = avf_dev_rx_queue_release,
106         .tx_queue_setup             = avf_dev_tx_queue_setup,
107         .tx_queue_release           = avf_dev_tx_queue_release,
108         .mac_addr_set               = avf_dev_set_default_mac_addr,
109         .reta_update                = avf_dev_rss_reta_update,
110         .reta_query                 = avf_dev_rss_reta_query,
111         .rss_hash_update            = avf_dev_rss_hash_update,
112         .rss_hash_conf_get          = avf_dev_rss_hash_conf_get,
113         .rxq_info_get               = avf_dev_rxq_info_get,
114         .txq_info_get               = avf_dev_txq_info_get,
115         .rx_queue_count             = avf_dev_rxq_count,
116         .rx_descriptor_status       = avf_dev_rx_desc_status,
117         .tx_descriptor_status       = avf_dev_tx_desc_status,
118         .mtu_set                    = avf_dev_mtu_set,
119         .rx_queue_intr_enable       = avf_dev_rx_queue_intr_enable,
120         .rx_queue_intr_disable      = avf_dev_rx_queue_intr_disable,
121 };
122
123 static int
124 avf_dev_configure(struct rte_eth_dev *dev)
125 {
126         struct avf_adapter *ad =
127                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
128         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(ad);
129         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
130
131         ad->rx_bulk_alloc_allowed = true;
132 #ifdef RTE_LIBRTE_AVF_INC_VECTOR
133         /* Initialize to TRUE. If any of Rx queues doesn't meet the
134          * vector Rx/Tx preconditions, it will be reset.
135          */
136         ad->rx_vec_allowed = true;
137         ad->tx_vec_allowed = true;
138 #else
139         ad->rx_vec_allowed = false;
140         ad->tx_vec_allowed = false;
141 #endif
142
143         /* Vlan stripping setting */
144         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
145                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
146                         avf_enable_vlan_strip(ad);
147                 else
148                         avf_disable_vlan_strip(ad);
149         }
150         return 0;
151 }
152
153 static int
154 avf_init_rss(struct avf_adapter *adapter)
155 {
156         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(adapter);
157         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
158         struct rte_eth_rss_conf *rss_conf;
159         uint8_t i, j, nb_q;
160         int ret;
161
162         rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
163         nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
164                        AVF_MAX_NUM_QUEUES);
165
166         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
167                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
168                 return -ENOTSUP;
169         }
170         if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
171                 PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
172                 /* set all lut items to default queue */
173                 for (i = 0; i < vf->vf_res->rss_lut_size; i++)
174                         vf->rss_lut[i] = 0;
175                 ret = avf_configure_rss_lut(adapter);
176                 return ret;
177         }
178
179         /* In AVF, RSS enablement is set by PF driver. It is not supported
180          * to set based on rss_conf->rss_hf.
181          */
182
183         /* configure RSS key */
184         if (!rss_conf->rss_key) {
185                 /* Calculate the default hash key */
186                 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
187                         vf->rss_key[i] = (uint8_t)rte_rand();
188         } else
189                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
190                            RTE_MIN(rss_conf->rss_key_len,
191                                    vf->vf_res->rss_key_size));
192
193         /* init RSS LUT table */
194         for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
195                 if (j >= nb_q)
196                         j = 0;
197                 vf->rss_lut[i] = j;
198         }
199         /* send virtchnnl ops to configure rss*/
200         ret = avf_configure_rss_lut(adapter);
201         if (ret)
202                 return ret;
203         ret = avf_configure_rss_key(adapter);
204         if (ret)
205                 return ret;
206
207         return 0;
208 }
209
210 static int
211 avf_init_rxq(struct rte_eth_dev *dev, struct avf_rx_queue *rxq)
212 {
213         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
214         struct rte_eth_dev_data *dev_data = dev->data;
215         uint16_t buf_size, max_pkt_len, len;
216
217         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
218
219         /* Calculate the maximum packet length allowed */
220         len = rxq->rx_buf_len * AVF_MAX_CHAINED_RX_BUFFERS;
221         max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
222
223         /* Check if the jumbo frame and maximum packet length are set
224          * correctly.
225          */
226         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
227                 if (max_pkt_len <= ETHER_MAX_LEN ||
228                     max_pkt_len > AVF_FRAME_SIZE_MAX) {
229                         PMD_DRV_LOG(ERR, "maximum packet length must be "
230                                     "larger than %u and smaller than %u, "
231                                     "as jumbo frame is enabled",
232                                     (uint32_t)ETHER_MAX_LEN,
233                                     (uint32_t)AVF_FRAME_SIZE_MAX);
234                         return -EINVAL;
235                 }
236         } else {
237                 if (max_pkt_len < ETHER_MIN_LEN ||
238                     max_pkt_len > ETHER_MAX_LEN) {
239                         PMD_DRV_LOG(ERR, "maximum packet length must be "
240                                     "larger than %u and smaller than %u, "
241                                     "as jumbo frame is disabled",
242                                     (uint32_t)ETHER_MIN_LEN,
243                                     (uint32_t)ETHER_MAX_LEN);
244                         return -EINVAL;
245                 }
246         }
247
248         rxq->max_pkt_len = max_pkt_len;
249         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
250             (rxq->max_pkt_len + 2 * AVF_VLAN_TAG_SIZE) > buf_size) {
251                 dev_data->scattered_rx = 1;
252         }
253         AVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
254         AVF_WRITE_FLUSH(hw);
255
256         return 0;
257 }
258
259 static int
260 avf_init_queues(struct rte_eth_dev *dev)
261 {
262         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
263         struct avf_rx_queue **rxq =
264                 (struct avf_rx_queue **)dev->data->rx_queues;
265         struct avf_tx_queue **txq =
266                 (struct avf_tx_queue **)dev->data->tx_queues;
267         int i, ret = AVF_SUCCESS;
268
269         for (i = 0; i < dev->data->nb_rx_queues; i++) {
270                 if (!rxq[i] || !rxq[i]->q_set)
271                         continue;
272                 ret = avf_init_rxq(dev, rxq[i]);
273                 if (ret != AVF_SUCCESS)
274                         break;
275         }
276         /* set rx/tx function to vector/scatter/single-segment
277          * according to parameters
278          */
279         avf_set_rx_function(dev);
280         avf_set_tx_function(dev);
281
282         return ret;
283 }
284
285 static int avf_config_rx_queues_irqs(struct rte_eth_dev *dev,
286                                      struct rte_intr_handle *intr_handle)
287 {
288         struct avf_adapter *adapter =
289                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
290         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
291         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
292         uint16_t interval, i;
293         int vec;
294
295         if (rte_intr_cap_multiple(intr_handle) &&
296             dev->data->dev_conf.intr_conf.rxq) {
297                 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
298                         return -1;
299         }
300
301         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
302                 intr_handle->intr_vec =
303                         rte_zmalloc("intr_vec",
304                                     dev->data->nb_rx_queues * sizeof(int), 0);
305                 if (!intr_handle->intr_vec) {
306                         PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
307                                     dev->data->nb_rx_queues);
308                         return -1;
309                 }
310         }
311
312         if (!dev->data->dev_conf.intr_conf.rxq ||
313             !rte_intr_dp_is_en(intr_handle)) {
314                 /* Rx interrupt disabled, Map interrupt only for writeback */
315                 vf->nb_msix = 1;
316                 if (vf->vf_res->vf_cap_flags &
317                     VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
318                         /* If WB_ON_ITR supports, enable it */
319                         vf->msix_base = AVF_RX_VEC_START;
320                         AVF_WRITE_REG(hw, AVFINT_DYN_CTLN1(vf->msix_base - 1),
321                                       AVFINT_DYN_CTLN1_ITR_INDX_MASK |
322                                       AVFINT_DYN_CTLN1_WB_ON_ITR_MASK);
323                 } else {
324                         /* If no WB_ON_ITR offload flags, need to set
325                          * interrupt for descriptor write back.
326                          */
327                         vf->msix_base = AVF_MISC_VEC_ID;
328
329                         /* set ITR to max */
330                         interval = avf_calc_itr_interval(
331                                         AVF_QUEUE_ITR_INTERVAL_MAX);
332                         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
333                                       AVFINT_DYN_CTL01_INTENA_MASK |
334                                       (AVF_ITR_INDEX_DEFAULT <<
335                                        AVFINT_DYN_CTL01_ITR_INDX_SHIFT) |
336                                       (interval <<
337                                        AVFINT_DYN_CTL01_INTERVAL_SHIFT));
338                 }
339                 AVF_WRITE_FLUSH(hw);
340                 /* map all queues to the same interrupt */
341                 for (i = 0; i < dev->data->nb_rx_queues; i++)
342                         vf->rxq_map[vf->msix_base] |= 1 << i;
343         } else {
344                 if (!rte_intr_allow_others(intr_handle)) {
345                         vf->nb_msix = 1;
346                         vf->msix_base = AVF_MISC_VEC_ID;
347                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
348                                 vf->rxq_map[vf->msix_base] |= 1 << i;
349                                 intr_handle->intr_vec[i] = AVF_MISC_VEC_ID;
350                         }
351                         PMD_DRV_LOG(DEBUG,
352                                     "vector %u are mapping to all Rx queues",
353                                     vf->msix_base);
354                 } else {
355                         /* If Rx interrupt is reuquired, and we can use
356                          * multi interrupts, then the vec is from 1
357                          */
358                         vf->nb_msix = RTE_MIN(vf->vf_res->max_vectors,
359                                               intr_handle->nb_efd);
360                         vf->msix_base = AVF_RX_VEC_START;
361                         vec = AVF_RX_VEC_START;
362                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
363                                 vf->rxq_map[vec] |= 1 << i;
364                                 intr_handle->intr_vec[i] = vec++;
365                                 if (vec >= vf->nb_msix)
366                                         vec = AVF_RX_VEC_START;
367                         }
368                         PMD_DRV_LOG(DEBUG,
369                                     "%u vectors are mapping to %u Rx queues",
370                                     vf->nb_msix, dev->data->nb_rx_queues);
371                 }
372         }
373
374         if (avf_config_irq_map(adapter)) {
375                 PMD_DRV_LOG(ERR, "config interrupt mapping failed");
376                 return -1;
377         }
378         return 0;
379 }
380
381 static int
382 avf_start_queues(struct rte_eth_dev *dev)
383 {
384         struct avf_rx_queue *rxq;
385         struct avf_tx_queue *txq;
386         int i;
387
388         for (i = 0; i < dev->data->nb_tx_queues; i++) {
389                 txq = dev->data->tx_queues[i];
390                 if (txq->tx_deferred_start)
391                         continue;
392                 if (avf_dev_tx_queue_start(dev, i) != 0) {
393                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
394                         return -1;
395                 }
396         }
397
398         for (i = 0; i < dev->data->nb_rx_queues; i++) {
399                 rxq = dev->data->rx_queues[i];
400                 if (rxq->rx_deferred_start)
401                         continue;
402                 if (avf_dev_rx_queue_start(dev, i) != 0) {
403                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
404                         return -1;
405                 }
406         }
407
408         return 0;
409 }
410
411 static int
412 avf_dev_start(struct rte_eth_dev *dev)
413 {
414         struct avf_adapter *adapter =
415                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
416         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
417         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
418         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
419         struct rte_intr_handle *intr_handle = dev->intr_handle;
420
421         PMD_INIT_FUNC_TRACE();
422
423         hw->adapter_stopped = 0;
424
425         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
426         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
427                                       dev->data->nb_tx_queues);
428
429         if (avf_init_queues(dev) != 0) {
430                 PMD_DRV_LOG(ERR, "failed to do Queue init");
431                 return -1;
432         }
433
434         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
435                 if (avf_init_rss(adapter) != 0) {
436                         PMD_DRV_LOG(ERR, "configure rss failed");
437                         goto err_rss;
438                 }
439         }
440
441         if (avf_configure_queues(adapter) != 0) {
442                 PMD_DRV_LOG(ERR, "configure queues failed");
443                 goto err_queue;
444         }
445
446         if (avf_config_rx_queues_irqs(dev, intr_handle) != 0) {
447                 PMD_DRV_LOG(ERR, "configure irq failed");
448                 goto err_queue;
449         }
450         /* re-enable intr again, because efd assign may change */
451         if (dev->data->dev_conf.intr_conf.rxq != 0) {
452                 rte_intr_disable(intr_handle);
453                 rte_intr_enable(intr_handle);
454         }
455
456         /* Set all mac addrs */
457         avf_add_del_all_mac_addr(adapter, TRUE);
458
459         if (avf_start_queues(dev) != 0) {
460                 PMD_DRV_LOG(ERR, "enable queues failed");
461                 goto err_mac;
462         }
463
464         return 0;
465
466 err_mac:
467         avf_add_del_all_mac_addr(adapter, FALSE);
468 err_queue:
469 err_rss:
470         return -1;
471 }
472
473 static void
474 avf_dev_stop(struct rte_eth_dev *dev)
475 {
476         struct avf_adapter *adapter =
477                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
478         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
479         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
480         struct rte_intr_handle *intr_handle = dev->intr_handle;
481         int ret, i;
482
483         PMD_INIT_FUNC_TRACE();
484
485         if (hw->adapter_stopped == 1)
486                 return;
487
488         avf_stop_queues(dev);
489
490         /* Disable the interrupt for Rx */
491         rte_intr_efd_disable(intr_handle);
492         /* Rx interrupt vector mapping free */
493         if (intr_handle->intr_vec) {
494                 rte_free(intr_handle->intr_vec);
495                 intr_handle->intr_vec = NULL;
496         }
497
498         /* remove all mac addrs */
499         avf_add_del_all_mac_addr(adapter, FALSE);
500         hw->adapter_stopped = 1;
501 }
502
503 static void
504 avf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
505 {
506         struct avf_adapter *adapter =
507                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
508         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
509
510         memset(dev_info, 0, sizeof(*dev_info));
511         dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
512         dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
513         dev_info->min_rx_bufsize = AVF_BUF_SIZE_MIN;
514         dev_info->max_rx_pktlen = AVF_FRAME_SIZE_MAX;
515         dev_info->hash_key_size = vf->vf_res->rss_key_size;
516         dev_info->reta_size = vf->vf_res->rss_lut_size;
517         dev_info->flow_type_rss_offloads = AVF_RSS_OFFLOAD_ALL;
518         dev_info->max_mac_addrs = AVF_NUM_MACADDR_MAX;
519         dev_info->rx_offload_capa =
520                 DEV_RX_OFFLOAD_VLAN_STRIP |
521                 DEV_RX_OFFLOAD_QINQ_STRIP |
522                 DEV_RX_OFFLOAD_IPV4_CKSUM |
523                 DEV_RX_OFFLOAD_UDP_CKSUM |
524                 DEV_RX_OFFLOAD_TCP_CKSUM |
525                 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
526                 DEV_RX_OFFLOAD_CRC_STRIP |
527                 DEV_RX_OFFLOAD_KEEP_CRC |
528                 DEV_RX_OFFLOAD_SCATTER |
529                 DEV_RX_OFFLOAD_JUMBO_FRAME |
530                 DEV_RX_OFFLOAD_VLAN_FILTER;
531         dev_info->tx_offload_capa =
532                 DEV_TX_OFFLOAD_VLAN_INSERT |
533                 DEV_TX_OFFLOAD_QINQ_INSERT |
534                 DEV_TX_OFFLOAD_IPV4_CKSUM |
535                 DEV_TX_OFFLOAD_UDP_CKSUM |
536                 DEV_TX_OFFLOAD_TCP_CKSUM |
537                 DEV_TX_OFFLOAD_SCTP_CKSUM |
538                 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
539                 DEV_TX_OFFLOAD_TCP_TSO |
540                 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
541                 DEV_TX_OFFLOAD_GRE_TNL_TSO |
542                 DEV_TX_OFFLOAD_IPIP_TNL_TSO |
543                 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
544                 DEV_TX_OFFLOAD_MULTI_SEGS;
545
546         dev_info->default_rxconf = (struct rte_eth_rxconf) {
547                 .rx_free_thresh = AVF_DEFAULT_RX_FREE_THRESH,
548                 .rx_drop_en = 0,
549                 .offloads = 0,
550         };
551
552         dev_info->default_txconf = (struct rte_eth_txconf) {
553                 .tx_free_thresh = AVF_DEFAULT_TX_FREE_THRESH,
554                 .tx_rs_thresh = AVF_DEFAULT_TX_RS_THRESH,
555                 .offloads = 0,
556         };
557
558         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
559                 .nb_max = AVF_MAX_RING_DESC,
560                 .nb_min = AVF_MIN_RING_DESC,
561                 .nb_align = AVF_ALIGN_RING_DESC,
562         };
563
564         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
565                 .nb_max = AVF_MAX_RING_DESC,
566                 .nb_min = AVF_MIN_RING_DESC,
567                 .nb_align = AVF_ALIGN_RING_DESC,
568         };
569 }
570
571 static const uint32_t *
572 avf_dev_supported_ptypes_get(struct rte_eth_dev *dev)
573 {
574         static const uint32_t ptypes[] = {
575                 RTE_PTYPE_L2_ETHER,
576                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
577                 RTE_PTYPE_L4_FRAG,
578                 RTE_PTYPE_L4_ICMP,
579                 RTE_PTYPE_L4_NONFRAG,
580                 RTE_PTYPE_L4_SCTP,
581                 RTE_PTYPE_L4_TCP,
582                 RTE_PTYPE_L4_UDP,
583                 RTE_PTYPE_UNKNOWN
584         };
585         return ptypes;
586 }
587
588 int
589 avf_dev_link_update(struct rte_eth_dev *dev,
590                     __rte_unused int wait_to_complete)
591 {
592         struct rte_eth_link new_link;
593         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
594
595         /* Only read status info stored in VF, and the info is updated
596          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
597          */
598         switch (vf->link_speed) {
599         case VIRTCHNL_LINK_SPEED_100MB:
600                 new_link.link_speed = ETH_SPEED_NUM_100M;
601                 break;
602         case VIRTCHNL_LINK_SPEED_1GB:
603                 new_link.link_speed = ETH_SPEED_NUM_1G;
604                 break;
605         case VIRTCHNL_LINK_SPEED_10GB:
606                 new_link.link_speed = ETH_SPEED_NUM_10G;
607                 break;
608         case VIRTCHNL_LINK_SPEED_20GB:
609                 new_link.link_speed = ETH_SPEED_NUM_20G;
610                 break;
611         case VIRTCHNL_LINK_SPEED_25GB:
612                 new_link.link_speed = ETH_SPEED_NUM_25G;
613                 break;
614         case VIRTCHNL_LINK_SPEED_40GB:
615                 new_link.link_speed = ETH_SPEED_NUM_40G;
616                 break;
617         default:
618                 new_link.link_speed = ETH_SPEED_NUM_NONE;
619                 break;
620         }
621
622         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
623         new_link.link_status = vf->link_up ? ETH_LINK_UP :
624                                              ETH_LINK_DOWN;
625         new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
626                                 ETH_LINK_SPEED_FIXED);
627
628         if (rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link,
629                                 *(uint64_t *)&dev->data->dev_link,
630                                 *(uint64_t *)&new_link) == 0)
631                 return -1;
632
633         return 0;
634 }
635
636 static void
637 avf_dev_promiscuous_enable(struct rte_eth_dev *dev)
638 {
639         struct avf_adapter *adapter =
640                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
641         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
642         int ret;
643
644         if (vf->promisc_unicast_enabled)
645                 return;
646
647         ret = avf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled);
648         if (!ret)
649                 vf->promisc_unicast_enabled = TRUE;
650 }
651
652 static void
653 avf_dev_promiscuous_disable(struct rte_eth_dev *dev)
654 {
655         struct avf_adapter *adapter =
656                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
657         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
658         int ret;
659
660         if (!vf->promisc_unicast_enabled)
661                 return;
662
663         ret = avf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled);
664         if (!ret)
665                 vf->promisc_unicast_enabled = FALSE;
666 }
667
668 static void
669 avf_dev_allmulticast_enable(struct rte_eth_dev *dev)
670 {
671         struct avf_adapter *adapter =
672                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
673         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
674         int ret;
675
676         if (vf->promisc_multicast_enabled)
677                 return;
678
679         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE);
680         if (!ret)
681                 vf->promisc_multicast_enabled = TRUE;
682 }
683
684 static void
685 avf_dev_allmulticast_disable(struct rte_eth_dev *dev)
686 {
687         struct avf_adapter *adapter =
688                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
689         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
690         int ret;
691
692         if (!vf->promisc_multicast_enabled)
693                 return;
694
695         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE);
696         if (!ret)
697                 vf->promisc_multicast_enabled = FALSE;
698 }
699
700 static int
701 avf_dev_add_mac_addr(struct rte_eth_dev *dev, struct ether_addr *addr,
702                      __rte_unused uint32_t index,
703                      __rte_unused uint32_t pool)
704 {
705         struct avf_adapter *adapter =
706                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
707         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
708         int err;
709
710         if (is_zero_ether_addr(addr)) {
711                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
712                 return -EINVAL;
713         }
714
715         err = avf_add_del_eth_addr(adapter, addr, TRUE);
716         if (err) {
717                 PMD_DRV_LOG(ERR, "fail to add MAC address");
718                 return -EIO;
719         }
720
721         vf->mac_num++;
722
723         return 0;
724 }
725
726 static void
727 avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
728 {
729         struct avf_adapter *adapter =
730                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
731         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
732         struct ether_addr *addr;
733         int err;
734
735         addr = &dev->data->mac_addrs[index];
736
737         err = avf_add_del_eth_addr(adapter, addr, FALSE);
738         if (err)
739                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
740
741         vf->mac_num--;
742 }
743
744 static int
745 avf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
746 {
747         struct avf_adapter *adapter =
748                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
749         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
750         int err;
751
752         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
753                 return -ENOTSUP;
754
755         err = avf_add_del_vlan(adapter, vlan_id, on);
756         if (err)
757                 return -EIO;
758         return 0;
759 }
760
761 static int
762 avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
763 {
764         struct avf_adapter *adapter =
765                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
766         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
767         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
768         int err;
769
770         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
771                 return -ENOTSUP;
772
773         /* Vlan stripping setting */
774         if (mask & ETH_VLAN_STRIP_MASK) {
775                 /* Enable or disable VLAN stripping */
776                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
777                         err = avf_enable_vlan_strip(adapter);
778                 else
779                         err = avf_disable_vlan_strip(adapter);
780
781                 if (err)
782                         return -EIO;
783         }
784         return 0;
785 }
786
787 static int
788 avf_dev_rss_reta_update(struct rte_eth_dev *dev,
789                         struct rte_eth_rss_reta_entry64 *reta_conf,
790                         uint16_t reta_size)
791 {
792         struct avf_adapter *adapter =
793                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
794         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
795         uint8_t *lut;
796         uint16_t i, idx, shift;
797         int ret;
798
799         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
800                 return -ENOTSUP;
801
802         if (reta_size != vf->vf_res->rss_lut_size) {
803                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
804                         "(%d) doesn't match the number of hardware can "
805                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
806                 return -EINVAL;
807         }
808
809         lut = rte_zmalloc("rss_lut", reta_size, 0);
810         if (!lut) {
811                 PMD_DRV_LOG(ERR, "No memory can be allocated");
812                 return -ENOMEM;
813         }
814         /* store the old lut table temporarily */
815         rte_memcpy(lut, vf->rss_lut, reta_size);
816
817         for (i = 0; i < reta_size; i++) {
818                 idx = i / RTE_RETA_GROUP_SIZE;
819                 shift = i % RTE_RETA_GROUP_SIZE;
820                 if (reta_conf[idx].mask & (1ULL << shift))
821                         lut[i] = reta_conf[idx].reta[shift];
822         }
823
824         rte_memcpy(vf->rss_lut, lut, reta_size);
825         /* send virtchnnl ops to configure rss*/
826         ret = avf_configure_rss_lut(adapter);
827         if (ret) /* revert back */
828                 rte_memcpy(vf->rss_lut, lut, reta_size);
829         rte_free(lut);
830
831         return ret;
832 }
833
834 static int
835 avf_dev_rss_reta_query(struct rte_eth_dev *dev,
836                        struct rte_eth_rss_reta_entry64 *reta_conf,
837                        uint16_t reta_size)
838 {
839         struct avf_adapter *adapter =
840                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
841         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
842         uint16_t i, idx, shift;
843
844         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
845                 return -ENOTSUP;
846
847         if (reta_size != vf->vf_res->rss_lut_size) {
848                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
849                         "(%d) doesn't match the number of hardware can "
850                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
851                 return -EINVAL;
852         }
853
854         for (i = 0; i < reta_size; i++) {
855                 idx = i / RTE_RETA_GROUP_SIZE;
856                 shift = i % RTE_RETA_GROUP_SIZE;
857                 if (reta_conf[idx].mask & (1ULL << shift))
858                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
859         }
860
861         return 0;
862 }
863
864 static int
865 avf_dev_rss_hash_update(struct rte_eth_dev *dev,
866                         struct rte_eth_rss_conf *rss_conf)
867 {
868         struct avf_adapter *adapter =
869                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
870         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
871
872         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
873                 return -ENOTSUP;
874
875         /* HENA setting, it is enabled by default, no change */
876         if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
877                 PMD_DRV_LOG(DEBUG, "No key to be configured");
878                 return 0;
879         } else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
880                 PMD_DRV_LOG(ERR, "The size of hash key configured "
881                         "(%d) doesn't match the size of hardware can "
882                         "support (%d)", rss_conf->rss_key_len,
883                         vf->vf_res->rss_key_size);
884                 return -EINVAL;
885         }
886
887         rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
888
889         return avf_configure_rss_key(adapter);
890 }
891
892 static int
893 avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
894                           struct rte_eth_rss_conf *rss_conf)
895 {
896         struct avf_adapter *adapter =
897                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
898         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
899
900         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
901                 return -ENOTSUP;
902
903          /* Just set it to default value now. */
904         rss_conf->rss_hf = AVF_RSS_OFFLOAD_ALL;
905
906         if (!rss_conf->rss_key)
907                 return 0;
908
909         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
910         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
911
912         return 0;
913 }
914
915 static int
916 avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
917 {
918         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
919         uint32_t frame_size = mtu + AVF_ETH_OVERHEAD;
920         int ret = 0;
921
922         if (mtu < ETHER_MIN_MTU || frame_size > AVF_FRAME_SIZE_MAX)
923                 return -EINVAL;
924
925         /* mtu setting is forbidden if port is start */
926         if (dev->data->dev_started) {
927                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
928                 return -EBUSY;
929         }
930
931         if (frame_size > ETHER_MAX_LEN)
932                 dev->data->dev_conf.rxmode.offloads |=
933                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
934         else
935                 dev->data->dev_conf.rxmode.offloads &=
936                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
937
938         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
939
940         return ret;
941 }
942
943 static int
944 avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
945                              struct ether_addr *mac_addr)
946 {
947         struct avf_adapter *adapter =
948                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
949         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
950         struct ether_addr *perm_addr, *old_addr;
951         int ret;
952
953         old_addr = (struct ether_addr *)hw->mac.addr;
954         perm_addr = (struct ether_addr *)hw->mac.perm_addr;
955
956         if (is_same_ether_addr(mac_addr, old_addr))
957                 return 0;
958
959         /* If the MAC address is configured by host, skip the setting */
960         if (is_valid_assigned_ether_addr(perm_addr))
961                 return -EPERM;
962
963         ret = avf_add_del_eth_addr(adapter, old_addr, FALSE);
964         if (ret)
965                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
966                             " %02X:%02X:%02X:%02X:%02X:%02X",
967                             old_addr->addr_bytes[0],
968                             old_addr->addr_bytes[1],
969                             old_addr->addr_bytes[2],
970                             old_addr->addr_bytes[3],
971                             old_addr->addr_bytes[4],
972                             old_addr->addr_bytes[5]);
973
974         ret = avf_add_del_eth_addr(adapter, mac_addr, TRUE);
975         if (ret)
976                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
977                             " %02X:%02X:%02X:%02X:%02X:%02X",
978                             mac_addr->addr_bytes[0],
979                             mac_addr->addr_bytes[1],
980                             mac_addr->addr_bytes[2],
981                             mac_addr->addr_bytes[3],
982                             mac_addr->addr_bytes[4],
983                             mac_addr->addr_bytes[5]);
984
985         if (ret)
986                 return -EIO;
987
988         ether_addr_copy(mac_addr, (struct ether_addr *)hw->mac.addr);
989         return 0;
990 }
991
992 static int
993 avf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
994 {
995         struct avf_adapter *adapter =
996                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
997         struct virtchnl_eth_stats *pstats = NULL;
998         int ret;
999
1000         ret = avf_query_stats(adapter, &pstats);
1001         if (ret == 0) {
1002                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
1003                                                 pstats->rx_broadcast;
1004                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
1005                                                 pstats->tx_unicast;
1006                 stats->imissed = pstats->rx_discards;
1007                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
1008                 stats->ibytes = pstats->rx_bytes;
1009                 stats->obytes = pstats->tx_bytes;
1010         } else {
1011                 PMD_DRV_LOG(ERR, "Get statistics failed");
1012         }
1013         return -EIO;
1014 }
1015
1016 static int
1017 avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1018 {
1019         struct avf_adapter *adapter =
1020                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1021         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1022         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1023         uint16_t msix_intr;
1024
1025         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1026         if (msix_intr == AVF_MISC_VEC_ID) {
1027                 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1028                 AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
1029                               AVFINT_DYN_CTL01_INTENA_MASK |
1030                               AVFINT_DYN_CTL01_ITR_INDX_MASK);
1031         } else {
1032                 AVF_WRITE_REG(hw,
1033                               AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
1034                               AVFINT_DYN_CTLN1_INTENA_MASK |
1035                               AVFINT_DYN_CTLN1_ITR_INDX_MASK);
1036         }
1037
1038         AVF_WRITE_FLUSH(hw);
1039
1040         rte_intr_enable(&pci_dev->intr_handle);
1041
1042         return 0;
1043 }
1044
1045 static int
1046 avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1047 {
1048         struct avf_adapter *adapter =
1049                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1050         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1051         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1052         uint16_t msix_intr;
1053
1054         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1055         if (msix_intr == AVF_MISC_VEC_ID) {
1056                 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1057                 return -EIO;
1058         }
1059
1060         AVF_WRITE_REG(hw,
1061                       AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
1062                       0);
1063
1064         AVF_WRITE_FLUSH(hw);
1065         return 0;
1066 }
1067
1068 static int
1069 avf_check_vf_reset_done(struct avf_hw *hw)
1070 {
1071         int i, reset;
1072
1073         for (i = 0; i < AVF_RESET_WAIT_CNT; i++) {
1074                 reset = AVF_READ_REG(hw, AVFGEN_RSTAT) &
1075                         AVFGEN_RSTAT_VFR_STATE_MASK;
1076                 reset = reset >> AVFGEN_RSTAT_VFR_STATE_SHIFT;
1077                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1078                     reset == VIRTCHNL_VFR_COMPLETED)
1079                         break;
1080                 rte_delay_ms(20);
1081         }
1082
1083         if (i >= AVF_RESET_WAIT_CNT)
1084                 return -1;
1085
1086         return 0;
1087 }
1088
1089 static int
1090 avf_init_vf(struct rte_eth_dev *dev)
1091 {
1092         int i, err, bufsz;
1093         struct avf_adapter *adapter =
1094                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1095         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1096         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1097
1098         err = avf_set_mac_type(hw);
1099         if (err) {
1100                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
1101                 goto err;
1102         }
1103
1104         err = avf_check_vf_reset_done(hw);
1105         if (err) {
1106                 PMD_INIT_LOG(ERR, "VF is still resetting");
1107                 goto err;
1108         }
1109
1110         avf_init_adminq_parameter(hw);
1111         err = avf_init_adminq(hw);
1112         if (err) {
1113                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
1114                 goto err;
1115         }
1116
1117         vf->aq_resp = rte_zmalloc("vf_aq_resp", AVF_AQ_BUF_SZ, 0);
1118         if (!vf->aq_resp) {
1119                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
1120                 goto err_aq;
1121         }
1122         if (avf_check_api_version(adapter) != 0) {
1123                 PMD_INIT_LOG(ERR, "check_api version failed");
1124                 goto err_api;
1125         }
1126
1127         bufsz = sizeof(struct virtchnl_vf_resource) +
1128                 (AVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
1129         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
1130         if (!vf->vf_res) {
1131                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
1132                 goto err_api;
1133         }
1134         if (avf_get_vf_resource(adapter) != 0) {
1135                 PMD_INIT_LOG(ERR, "avf_get_vf_config failed");
1136                 goto err_alloc;
1137         }
1138         /* Allocate memort for RSS info */
1139         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
1140                 vf->rss_key = rte_zmalloc("rss_key",
1141                                           vf->vf_res->rss_key_size, 0);
1142                 if (!vf->rss_key) {
1143                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
1144                         goto err_rss;
1145                 }
1146                 vf->rss_lut = rte_zmalloc("rss_lut",
1147                                           vf->vf_res->rss_lut_size, 0);
1148                 if (!vf->rss_lut) {
1149                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
1150                         goto err_rss;
1151                 }
1152         }
1153         return 0;
1154 err_rss:
1155         rte_free(vf->rss_key);
1156         rte_free(vf->rss_lut);
1157 err_alloc:
1158         rte_free(vf->vf_res);
1159         vf->vsi_res = NULL;
1160 err_api:
1161         rte_free(vf->aq_resp);
1162 err_aq:
1163         avf_shutdown_adminq(hw);
1164 err:
1165         return -1;
1166 }
1167
1168 /* Enable default admin queue interrupt setting */
1169 static inline void
1170 avf_enable_irq0(struct avf_hw *hw)
1171 {
1172         /* Enable admin queue interrupt trigger */
1173         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, AVFINT_ICR0_ENA1_ADMINQ_MASK);
1174
1175         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01, AVFINT_DYN_CTL01_INTENA_MASK |
1176                                             AVFINT_DYN_CTL01_ITR_INDX_MASK);
1177
1178         AVF_WRITE_FLUSH(hw);
1179 }
1180
1181 static inline void
1182 avf_disable_irq0(struct avf_hw *hw)
1183 {
1184         /* Disable all interrupt types */
1185         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, 0);
1186         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
1187                       AVFINT_DYN_CTL01_ITR_INDX_MASK);
1188         AVF_WRITE_FLUSH(hw);
1189 }
1190
1191 static void
1192 avf_dev_interrupt_handler(void *param)
1193 {
1194         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1195         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1196
1197         avf_disable_irq0(hw);
1198
1199         avf_handle_virtchnl_msg(dev);
1200
1201 done:
1202         avf_enable_irq0(hw);
1203 }
1204
1205 static int
1206 avf_dev_init(struct rte_eth_dev *eth_dev)
1207 {
1208         struct avf_adapter *adapter =
1209                 AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1210         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1211         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1212
1213         PMD_INIT_FUNC_TRACE();
1214
1215         /* assign ops func pointer */
1216         eth_dev->dev_ops = &avf_eth_dev_ops;
1217         eth_dev->rx_pkt_burst = &avf_recv_pkts;
1218         eth_dev->tx_pkt_burst = &avf_xmit_pkts;
1219         eth_dev->tx_pkt_prepare = &avf_prep_pkts;
1220
1221         /* For secondary processes, we don't initialise any further as primary
1222          * has already done this work. Only check if we need a different RX
1223          * and TX function.
1224          */
1225         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1226                 avf_set_rx_function(eth_dev);
1227                 avf_set_tx_function(eth_dev);
1228                 return 0;
1229         }
1230         rte_eth_copy_pci_info(eth_dev, pci_dev);
1231
1232         hw->vendor_id = pci_dev->id.vendor_id;
1233         hw->device_id = pci_dev->id.device_id;
1234         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
1235         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
1236         hw->bus.bus_id = pci_dev->addr.bus;
1237         hw->bus.device = pci_dev->addr.devid;
1238         hw->bus.func = pci_dev->addr.function;
1239         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1240         hw->back = AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1241         adapter->eth_dev = eth_dev;
1242
1243         if (avf_init_vf(eth_dev) != 0) {
1244                 PMD_INIT_LOG(ERR, "Init vf failed");
1245                 return -1;
1246         }
1247
1248         /* copy mac addr */
1249         eth_dev->data->mac_addrs = rte_zmalloc(
1250                                         "avf_mac",
1251                                         ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX,
1252                                         0);
1253         if (!eth_dev->data->mac_addrs) {
1254                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
1255                              " store MAC addresses",
1256                              ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX);
1257                 return -ENOMEM;
1258         }
1259         /* If the MAC address is not configured by host,
1260          * generate a random one.
1261          */
1262         if (!is_valid_assigned_ether_addr((struct ether_addr *)hw->mac.addr))
1263                 eth_random_addr(hw->mac.addr);
1264         ether_addr_copy((struct ether_addr *)hw->mac.addr,
1265                         &eth_dev->data->mac_addrs[0]);
1266
1267         /* register callback func to eal lib */
1268         rte_intr_callback_register(&pci_dev->intr_handle,
1269                                    avf_dev_interrupt_handler,
1270                                    (void *)eth_dev);
1271
1272         /* enable uio intr after callback register */
1273         rte_intr_enable(&pci_dev->intr_handle);
1274
1275         /* configure and enable device interrupt */
1276         avf_enable_irq0(hw);
1277
1278         return 0;
1279 }
1280
1281 static void
1282 avf_dev_close(struct rte_eth_dev *dev)
1283 {
1284         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1285         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1286         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1287
1288         avf_dev_stop(dev);
1289         avf_shutdown_adminq(hw);
1290         /* disable uio intr before callback unregister */
1291         rte_intr_disable(intr_handle);
1292
1293         /* unregister callback func from eal lib */
1294         rte_intr_callback_unregister(intr_handle,
1295                                      avf_dev_interrupt_handler, dev);
1296         avf_disable_irq0(hw);
1297 }
1298
1299 static int
1300 avf_dev_uninit(struct rte_eth_dev *dev)
1301 {
1302         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1303         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1304
1305         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1306                 return -EPERM;
1307
1308         dev->dev_ops = NULL;
1309         dev->rx_pkt_burst = NULL;
1310         dev->tx_pkt_burst = NULL;
1311         if (hw->adapter_stopped == 0)
1312                 avf_dev_close(dev);
1313
1314         rte_free(vf->vf_res);
1315         vf->vsi_res = NULL;
1316         vf->vf_res = NULL;
1317
1318         rte_free(vf->aq_resp);
1319         vf->aq_resp = NULL;
1320
1321         rte_free(dev->data->mac_addrs);
1322         dev->data->mac_addrs = NULL;
1323
1324         if (vf->rss_lut) {
1325                 rte_free(vf->rss_lut);
1326                 vf->rss_lut = NULL;
1327         }
1328         if (vf->rss_key) {
1329                 rte_free(vf->rss_key);
1330                 vf->rss_key = NULL;
1331         }
1332
1333         return 0;
1334 }
1335
1336 static int eth_avf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1337                              struct rte_pci_device *pci_dev)
1338 {
1339         return rte_eth_dev_pci_generic_probe(pci_dev,
1340                 sizeof(struct avf_adapter), avf_dev_init);
1341 }
1342
1343 static int eth_avf_pci_remove(struct rte_pci_device *pci_dev)
1344 {
1345         return rte_eth_dev_pci_generic_remove(pci_dev, avf_dev_uninit);
1346 }
1347
1348 /* Adaptive virtual function driver struct */
1349 static struct rte_pci_driver rte_avf_pmd = {
1350         .id_table = pci_id_avf_map,
1351         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1352                      RTE_PCI_DRV_IOVA_AS_VA,
1353         .probe = eth_avf_pci_probe,
1354         .remove = eth_avf_pci_remove,
1355 };
1356
1357 RTE_PMD_REGISTER_PCI(net_avf, rte_avf_pmd);
1358 RTE_PMD_REGISTER_PCI_TABLE(net_avf, pci_id_avf_map);
1359 RTE_PMD_REGISTER_KMOD_DEP(net_avf, "* igb_uio | vfio-pci");
1360 RTE_INIT(avf_init_log)
1361 {
1362         avf_logtype_init = rte_log_register("pmd.net.avf.init");
1363         if (avf_logtype_init >= 0)
1364                 rte_log_set_level(avf_logtype_init, RTE_LOG_NOTICE);
1365         avf_logtype_driver = rte_log_register("pmd.net.avf.driver");
1366         if (avf_logtype_driver >= 0)
1367                 rte_log_set_level(avf_logtype_driver, RTE_LOG_NOTICE);
1368 }
1369
1370 /* memory func for base code */
1371 enum avf_status_code
1372 avf_allocate_dma_mem_d(__rte_unused struct avf_hw *hw,
1373                        struct avf_dma_mem *mem,
1374                        u64 size,
1375                        u32 alignment)
1376 {
1377         const struct rte_memzone *mz = NULL;
1378         char z_name[RTE_MEMZONE_NAMESIZE];
1379
1380         if (!mem)
1381                 return AVF_ERR_PARAM;
1382
1383         snprintf(z_name, sizeof(z_name), "avf_dma_%"PRIu64, rte_rand());
1384         mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY,
1385                         RTE_MEMZONE_IOVA_CONTIG, alignment, RTE_PGSIZE_2M);
1386         if (!mz)
1387                 return AVF_ERR_NO_MEMORY;
1388
1389         mem->size = size;
1390         mem->va = mz->addr;
1391         mem->pa = mz->phys_addr;
1392         mem->zone = (const void *)mz;
1393         PMD_DRV_LOG(DEBUG,
1394                     "memzone %s allocated with physical address: %"PRIu64,
1395                     mz->name, mem->pa);
1396
1397         return AVF_SUCCESS;
1398 }
1399
1400 enum avf_status_code
1401 avf_free_dma_mem_d(__rte_unused struct avf_hw *hw,
1402                    struct avf_dma_mem *mem)
1403 {
1404         if (!mem)
1405                 return AVF_ERR_PARAM;
1406
1407         PMD_DRV_LOG(DEBUG,
1408                     "memzone %s to be freed with physical address: %"PRIu64,
1409                     ((const struct rte_memzone *)mem->zone)->name, mem->pa);
1410         rte_memzone_free((const struct rte_memzone *)mem->zone);
1411         mem->zone = NULL;
1412         mem->va = NULL;
1413         mem->pa = (u64)0;
1414
1415         return AVF_SUCCESS;
1416 }
1417
1418 enum avf_status_code
1419 avf_allocate_virt_mem_d(__rte_unused struct avf_hw *hw,
1420                         struct avf_virt_mem *mem,
1421                         u32 size)
1422 {
1423         if (!mem)
1424                 return AVF_ERR_PARAM;
1425
1426         mem->size = size;
1427         mem->va = rte_zmalloc("avf", size, 0);
1428
1429         if (mem->va)
1430                 return AVF_SUCCESS;
1431         else
1432                 return AVF_ERR_NO_MEMORY;
1433 }
1434
1435 enum avf_status_code
1436 avf_free_virt_mem_d(__rte_unused struct avf_hw *hw,
1437                     struct avf_virt_mem *mem)
1438 {
1439         if (!mem)
1440                 return AVF_ERR_PARAM;
1441
1442         rte_free(mem->va);
1443         mem->va = NULL;
1444
1445         return AVF_SUCCESS;
1446 }