New upstream version 18.02
[deb_dpdk.git] / drivers / net / avf / avf_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <rte_ethdev_driver.h>
23 #include <rte_ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "avf_log.h"
29 #include "base/avf_prototype.h"
30 #include "base/avf_adminq_cmd.h"
31 #include "base/avf_type.h"
32
33 #include "avf.h"
34 #include "avf_rxtx.h"
35
36 static int avf_dev_configure(struct rte_eth_dev *dev);
37 static int avf_dev_start(struct rte_eth_dev *dev);
38 static void avf_dev_stop(struct rte_eth_dev *dev);
39 static void avf_dev_close(struct rte_eth_dev *dev);
40 static void avf_dev_info_get(struct rte_eth_dev *dev,
41                              struct rte_eth_dev_info *dev_info);
42 static const uint32_t *avf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
43 static int avf_dev_stats_get(struct rte_eth_dev *dev,
44                              struct rte_eth_stats *stats);
45 static void avf_dev_promiscuous_enable(struct rte_eth_dev *dev);
46 static void avf_dev_promiscuous_disable(struct rte_eth_dev *dev);
47 static void avf_dev_allmulticast_enable(struct rte_eth_dev *dev);
48 static void avf_dev_allmulticast_disable(struct rte_eth_dev *dev);
49 static int avf_dev_add_mac_addr(struct rte_eth_dev *dev,
50                                 struct ether_addr *addr,
51                                 uint32_t index,
52                                 uint32_t pool);
53 static void avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
54 static int avf_dev_vlan_filter_set(struct rte_eth_dev *dev,
55                                    uint16_t vlan_id, int on);
56 static int avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
57 static int avf_dev_rss_reta_update(struct rte_eth_dev *dev,
58                                    struct rte_eth_rss_reta_entry64 *reta_conf,
59                                    uint16_t reta_size);
60 static int avf_dev_rss_reta_query(struct rte_eth_dev *dev,
61                                   struct rte_eth_rss_reta_entry64 *reta_conf,
62                                   uint16_t reta_size);
63 static int avf_dev_rss_hash_update(struct rte_eth_dev *dev,
64                                    struct rte_eth_rss_conf *rss_conf);
65 static int avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
66                                      struct rte_eth_rss_conf *rss_conf);
67 static int avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
68 static void avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
69                                          struct ether_addr *mac_addr);
70 static int avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
71                                         uint16_t queue_id);
72 static int avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
73                                          uint16_t queue_id);
74
75 int avf_logtype_init;
76 int avf_logtype_driver;
77
78 static const struct rte_pci_id pci_id_avf_map[] = {
79         { RTE_PCI_DEVICE(AVF_INTEL_VENDOR_ID, AVF_DEV_ID_ADAPTIVE_VF) },
80         { .vendor_id = 0, /* sentinel */ },
81 };
82
83 static const struct eth_dev_ops avf_eth_dev_ops = {
84         .dev_configure              = avf_dev_configure,
85         .dev_start                  = avf_dev_start,
86         .dev_stop                   = avf_dev_stop,
87         .dev_close                  = avf_dev_close,
88         .dev_infos_get              = avf_dev_info_get,
89         .dev_supported_ptypes_get   = avf_dev_supported_ptypes_get,
90         .link_update                = avf_dev_link_update,
91         .stats_get                  = avf_dev_stats_get,
92         .promiscuous_enable         = avf_dev_promiscuous_enable,
93         .promiscuous_disable        = avf_dev_promiscuous_disable,
94         .allmulticast_enable        = avf_dev_allmulticast_enable,
95         .allmulticast_disable       = avf_dev_allmulticast_disable,
96         .mac_addr_add               = avf_dev_add_mac_addr,
97         .mac_addr_remove            = avf_dev_del_mac_addr,
98         .vlan_filter_set            = avf_dev_vlan_filter_set,
99         .vlan_offload_set           = avf_dev_vlan_offload_set,
100         .rx_queue_start             = avf_dev_rx_queue_start,
101         .rx_queue_stop              = avf_dev_rx_queue_stop,
102         .tx_queue_start             = avf_dev_tx_queue_start,
103         .tx_queue_stop              = avf_dev_tx_queue_stop,
104         .rx_queue_setup             = avf_dev_rx_queue_setup,
105         .rx_queue_release           = avf_dev_rx_queue_release,
106         .tx_queue_setup             = avf_dev_tx_queue_setup,
107         .tx_queue_release           = avf_dev_tx_queue_release,
108         .mac_addr_set               = avf_dev_set_default_mac_addr,
109         .reta_update                = avf_dev_rss_reta_update,
110         .reta_query                 = avf_dev_rss_reta_query,
111         .rss_hash_update            = avf_dev_rss_hash_update,
112         .rss_hash_conf_get          = avf_dev_rss_hash_conf_get,
113         .rxq_info_get               = avf_dev_rxq_info_get,
114         .txq_info_get               = avf_dev_txq_info_get,
115         .rx_queue_count             = avf_dev_rxq_count,
116         .rx_descriptor_status       = avf_dev_rx_desc_status,
117         .tx_descriptor_status       = avf_dev_tx_desc_status,
118         .mtu_set                    = avf_dev_mtu_set,
119         .rx_queue_intr_enable       = avf_dev_rx_queue_intr_enable,
120         .rx_queue_intr_disable      = avf_dev_rx_queue_intr_disable,
121 };
122
123 static int
124 avf_dev_configure(struct rte_eth_dev *dev)
125 {
126         struct avf_adapter *ad =
127                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
128         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(ad);
129         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
130
131         ad->rx_bulk_alloc_allowed = true;
132 #ifdef RTE_LIBRTE_AVF_INC_VECTOR
133         /* Initialize to TRUE. If any of Rx queues doesn't meet the
134          * vector Rx/Tx preconditions, it will be reset.
135          */
136         ad->rx_vec_allowed = true;
137         ad->tx_vec_allowed = true;
138 #else
139         ad->rx_vec_allowed = false;
140         ad->tx_vec_allowed = false;
141 #endif
142
143         /* Vlan stripping setting */
144         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
145                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
146                         avf_enable_vlan_strip(ad);
147                 else
148                         avf_disable_vlan_strip(ad);
149         }
150         return 0;
151 }
152
153 static int
154 avf_init_rss(struct avf_adapter *adapter)
155 {
156         struct avf_info *vf =  AVF_DEV_PRIVATE_TO_VF(adapter);
157         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
158         struct rte_eth_rss_conf *rss_conf;
159         uint8_t i, j, nb_q;
160         int ret;
161
162         rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
163         nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
164                        AVF_MAX_NUM_QUEUES);
165
166         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
167                 PMD_DRV_LOG(DEBUG, "RSS is not supported");
168                 return -ENOTSUP;
169         }
170         if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
171                 PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
172                 /* set all lut items to default queue */
173                 for (i = 0; i < vf->vf_res->rss_lut_size; i++)
174                         vf->rss_lut[i] = 0;
175                 ret = avf_configure_rss_lut(adapter);
176                 return ret;
177         }
178
179         /* In AVF, RSS enablement is set by PF driver. It is not supported
180          * to set based on rss_conf->rss_hf.
181          */
182
183         /* configure RSS key */
184         if (!rss_conf->rss_key) {
185                 /* Calculate the default hash key */
186                 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
187                         vf->rss_key[i] = (uint8_t)rte_rand();
188         } else
189                 rte_memcpy(vf->rss_key, rss_conf->rss_key,
190                            RTE_MIN(rss_conf->rss_key_len,
191                                    vf->vf_res->rss_key_size));
192
193         /* init RSS LUT table */
194         for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
195                 if (j >= nb_q)
196                         j = 0;
197                 vf->rss_lut[i] = j;
198         }
199         /* send virtchnnl ops to configure rss*/
200         ret = avf_configure_rss_lut(adapter);
201         if (ret)
202                 return ret;
203         ret = avf_configure_rss_key(adapter);
204         if (ret)
205                 return ret;
206
207         return 0;
208 }
209
210 static int
211 avf_init_rxq(struct rte_eth_dev *dev, struct avf_rx_queue *rxq)
212 {
213         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
214         struct rte_eth_dev_data *dev_data = dev->data;
215         uint16_t buf_size, max_pkt_len, len;
216
217         buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
218
219         /* Calculate the maximum packet length allowed */
220         len = rxq->rx_buf_len * AVF_MAX_CHAINED_RX_BUFFERS;
221         max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
222
223         /* Check if the jumbo frame and maximum packet length are set
224          * correctly.
225          */
226         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
227                 if (max_pkt_len <= ETHER_MAX_LEN ||
228                     max_pkt_len > AVF_FRAME_SIZE_MAX) {
229                         PMD_DRV_LOG(ERR, "maximum packet length must be "
230                                     "larger than %u and smaller than %u, "
231                                     "as jumbo frame is enabled",
232                                     (uint32_t)ETHER_MAX_LEN,
233                                     (uint32_t)AVF_FRAME_SIZE_MAX);
234                         return -EINVAL;
235                 }
236         } else {
237                 if (max_pkt_len < ETHER_MIN_LEN ||
238                     max_pkt_len > ETHER_MAX_LEN) {
239                         PMD_DRV_LOG(ERR, "maximum packet length must be "
240                                     "larger than %u and smaller than %u, "
241                                     "as jumbo frame is disabled",
242                                     (uint32_t)ETHER_MIN_LEN,
243                                     (uint32_t)ETHER_MAX_LEN);
244                         return -EINVAL;
245                 }
246         }
247
248         rxq->max_pkt_len = max_pkt_len;
249         if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
250             (rxq->max_pkt_len + 2 * AVF_VLAN_TAG_SIZE) > buf_size) {
251                 dev_data->scattered_rx = 1;
252         }
253         AVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
254         AVF_WRITE_FLUSH(hw);
255
256         return 0;
257 }
258
259 static int
260 avf_init_queues(struct rte_eth_dev *dev)
261 {
262         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
263         struct avf_rx_queue **rxq =
264                 (struct avf_rx_queue **)dev->data->rx_queues;
265         struct avf_tx_queue **txq =
266                 (struct avf_tx_queue **)dev->data->tx_queues;
267         int i, ret = AVF_SUCCESS;
268
269         for (i = 0; i < dev->data->nb_rx_queues; i++) {
270                 if (!rxq[i] || !rxq[i]->q_set)
271                         continue;
272                 ret = avf_init_rxq(dev, rxq[i]);
273                 if (ret != AVF_SUCCESS)
274                         break;
275         }
276         /* set rx/tx function to vector/scatter/single-segment
277          * according to parameters
278          */
279         avf_set_rx_function(dev);
280         avf_set_tx_function(dev);
281
282         return ret;
283 }
284
285 static int avf_config_rx_queues_irqs(struct rte_eth_dev *dev,
286                                      struct rte_intr_handle *intr_handle)
287 {
288         struct avf_adapter *adapter =
289                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
290         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
291         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
292         uint16_t interval, i;
293         int vec;
294
295         if (rte_intr_cap_multiple(intr_handle) &&
296             dev->data->dev_conf.intr_conf.rxq) {
297                 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
298                         return -1;
299         }
300
301         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
302                 intr_handle->intr_vec =
303                         rte_zmalloc("intr_vec",
304                                     dev->data->nb_rx_queues * sizeof(int), 0);
305                 if (!intr_handle->intr_vec) {
306                         PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
307                                     dev->data->nb_rx_queues);
308                         return -1;
309                 }
310         }
311
312         if (!dev->data->dev_conf.intr_conf.rxq ||
313             !rte_intr_dp_is_en(intr_handle)) {
314                 /* Rx interrupt disabled, Map interrupt only for writeback */
315                 vf->nb_msix = 1;
316                 if (vf->vf_res->vf_cap_flags &
317                     VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
318                         /* If WB_ON_ITR supports, enable it */
319                         vf->msix_base = AVF_RX_VEC_START;
320                         AVF_WRITE_REG(hw, AVFINT_DYN_CTLN1(vf->msix_base - 1),
321                                       AVFINT_DYN_CTLN1_ITR_INDX_MASK |
322                                       AVFINT_DYN_CTLN1_WB_ON_ITR_MASK);
323                 } else {
324                         /* If no WB_ON_ITR offload flags, need to set
325                          * interrupt for descriptor write back.
326                          */
327                         vf->msix_base = AVF_MISC_VEC_ID;
328
329                         /* set ITR to max */
330                         interval = avf_calc_itr_interval(
331                                         AVF_QUEUE_ITR_INTERVAL_MAX);
332                         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
333                                       AVFINT_DYN_CTL01_INTENA_MASK |
334                                       (AVF_ITR_INDEX_DEFAULT <<
335                                        AVFINT_DYN_CTL01_ITR_INDX_SHIFT) |
336                                       (interval <<
337                                        AVFINT_DYN_CTL01_INTERVAL_SHIFT));
338                 }
339                 AVF_WRITE_FLUSH(hw);
340                 /* map all queues to the same interrupt */
341                 for (i = 0; i < dev->data->nb_rx_queues; i++)
342                         vf->rxq_map[0] |= 1 << i;
343         } else {
344                 if (!rte_intr_allow_others(intr_handle)) {
345                         vf->nb_msix = 1;
346                         vf->msix_base = AVF_MISC_VEC_ID;
347                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
348                                 vf->rxq_map[0] |= 1 << i;
349                                 intr_handle->intr_vec[i] = AVF_MISC_VEC_ID;
350                         }
351                         PMD_DRV_LOG(DEBUG,
352                                     "vector 0 are mapping to all Rx queues");
353                 } else {
354                         /* If Rx interrupt is reuquired, and we can use
355                          * multi interrupts, then the vec is from 1
356                          */
357                         vf->nb_msix = RTE_MIN(vf->vf_res->max_vectors,
358                                               intr_handle->nb_efd);
359                         vf->msix_base = AVF_RX_VEC_START;
360                         vec = AVF_RX_VEC_START;
361                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
362                                 vf->rxq_map[vec] |= 1 << i;
363                                 intr_handle->intr_vec[i] = vec++;
364                                 if (vec >= vf->nb_msix)
365                                         vec = AVF_RX_VEC_START;
366                         }
367                         PMD_DRV_LOG(DEBUG,
368                                     "%u vectors are mapping to %u Rx queues",
369                                     vf->nb_msix, dev->data->nb_rx_queues);
370                 }
371         }
372
373         if (avf_config_irq_map(adapter)) {
374                 PMD_DRV_LOG(ERR, "config interrupt mapping failed");
375                 return -1;
376         }
377         return 0;
378 }
379
380 static int
381 avf_start_queues(struct rte_eth_dev *dev)
382 {
383         struct avf_rx_queue *rxq;
384         struct avf_tx_queue *txq;
385         int i;
386
387         for (i = 0; i < dev->data->nb_tx_queues; i++) {
388                 txq = dev->data->tx_queues[i];
389                 if (txq->tx_deferred_start)
390                         continue;
391                 if (avf_dev_tx_queue_start(dev, i) != 0) {
392                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
393                         return -1;
394                 }
395         }
396
397         for (i = 0; i < dev->data->nb_rx_queues; i++) {
398                 rxq = dev->data->rx_queues[i];
399                 if (rxq->rx_deferred_start)
400                         continue;
401                 if (avf_dev_rx_queue_start(dev, i) != 0) {
402                         PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
403                         return -1;
404                 }
405         }
406
407         return 0;
408 }
409
410 static int
411 avf_dev_start(struct rte_eth_dev *dev)
412 {
413         struct avf_adapter *adapter =
414                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
415         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
416         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
417         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
418         struct rte_intr_handle *intr_handle = dev->intr_handle;
419
420         PMD_INIT_FUNC_TRACE();
421
422         hw->adapter_stopped = 0;
423
424         vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
425         vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
426                                       dev->data->nb_tx_queues);
427
428         if (avf_init_queues(dev) != 0) {
429                 PMD_DRV_LOG(ERR, "failed to do Queue init");
430                 return -1;
431         }
432
433         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
434                 if (avf_init_rss(adapter) != 0) {
435                         PMD_DRV_LOG(ERR, "configure rss failed");
436                         goto err_rss;
437                 }
438         }
439
440         if (avf_configure_queues(adapter) != 0) {
441                 PMD_DRV_LOG(ERR, "configure queues failed");
442                 goto err_queue;
443         }
444
445         if (avf_config_rx_queues_irqs(dev, intr_handle) != 0) {
446                 PMD_DRV_LOG(ERR, "configure irq failed");
447                 goto err_queue;
448         }
449         /* re-enable intr again, because efd assign may change */
450         if (dev->data->dev_conf.intr_conf.rxq != 0) {
451                 rte_intr_disable(intr_handle);
452                 rte_intr_enable(intr_handle);
453         }
454
455         /* Set all mac addrs */
456         avf_add_del_all_mac_addr(adapter, TRUE);
457
458         if (avf_start_queues(dev) != 0) {
459                 PMD_DRV_LOG(ERR, "enable queues failed");
460                 goto err_mac;
461         }
462
463         return 0;
464
465 err_mac:
466         avf_add_del_all_mac_addr(adapter, FALSE);
467 err_queue:
468 err_rss:
469         return -1;
470 }
471
472 static void
473 avf_dev_stop(struct rte_eth_dev *dev)
474 {
475         struct avf_adapter *adapter =
476                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
477         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev);
478         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
479         struct rte_intr_handle *intr_handle = dev->intr_handle;
480         int ret, i;
481
482         PMD_INIT_FUNC_TRACE();
483
484         if (hw->adapter_stopped == 1)
485                 return;
486
487         avf_stop_queues(dev);
488
489         /* Disable the interrupt for Rx */
490         rte_intr_efd_disable(intr_handle);
491         /* Rx interrupt vector mapping free */
492         if (intr_handle->intr_vec) {
493                 rte_free(intr_handle->intr_vec);
494                 intr_handle->intr_vec = NULL;
495         }
496
497         /* remove all mac addrs */
498         avf_add_del_all_mac_addr(adapter, FALSE);
499         hw->adapter_stopped = 1;
500 }
501
502 static void
503 avf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
504 {
505         struct avf_adapter *adapter =
506                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
507         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
508
509         memset(dev_info, 0, sizeof(*dev_info));
510         dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
511         dev_info->max_rx_queues = vf->vsi_res->num_queue_pairs;
512         dev_info->max_tx_queues = vf->vsi_res->num_queue_pairs;
513         dev_info->min_rx_bufsize = AVF_BUF_SIZE_MIN;
514         dev_info->max_rx_pktlen = AVF_FRAME_SIZE_MAX;
515         dev_info->hash_key_size = vf->vf_res->rss_key_size;
516         dev_info->reta_size = vf->vf_res->rss_lut_size;
517         dev_info->flow_type_rss_offloads = AVF_RSS_OFFLOAD_ALL;
518         dev_info->max_mac_addrs = AVF_NUM_MACADDR_MAX;
519         dev_info->rx_offload_capa =
520                 DEV_RX_OFFLOAD_VLAN_STRIP |
521                 DEV_RX_OFFLOAD_IPV4_CKSUM |
522                 DEV_RX_OFFLOAD_UDP_CKSUM |
523                 DEV_RX_OFFLOAD_TCP_CKSUM;
524         dev_info->tx_offload_capa =
525                 DEV_TX_OFFLOAD_VLAN_INSERT |
526                 DEV_TX_OFFLOAD_IPV4_CKSUM |
527                 DEV_TX_OFFLOAD_UDP_CKSUM |
528                 DEV_TX_OFFLOAD_TCP_CKSUM |
529                 DEV_TX_OFFLOAD_SCTP_CKSUM |
530                 DEV_TX_OFFLOAD_TCP_TSO;
531
532         dev_info->default_rxconf = (struct rte_eth_rxconf) {
533                 .rx_free_thresh = AVF_DEFAULT_RX_FREE_THRESH,
534                 .rx_drop_en = 0,
535         };
536
537         dev_info->default_txconf = (struct rte_eth_txconf) {
538                 .tx_free_thresh = AVF_DEFAULT_TX_FREE_THRESH,
539                 .tx_rs_thresh = AVF_DEFAULT_TX_RS_THRESH,
540                 .txq_flags = ETH_TXQ_FLAGS_NOMULTSEGS |
541                                 ETH_TXQ_FLAGS_NOOFFLOADS,
542         };
543
544         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
545                 .nb_max = AVF_MAX_RING_DESC,
546                 .nb_min = AVF_MIN_RING_DESC,
547                 .nb_align = AVF_ALIGN_RING_DESC,
548         };
549
550         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
551                 .nb_max = AVF_MAX_RING_DESC,
552                 .nb_min = AVF_MIN_RING_DESC,
553                 .nb_align = AVF_ALIGN_RING_DESC,
554         };
555 }
556
557 static const uint32_t *
558 avf_dev_supported_ptypes_get(struct rte_eth_dev *dev)
559 {
560         static const uint32_t ptypes[] = {
561                 RTE_PTYPE_L2_ETHER,
562                 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
563                 RTE_PTYPE_L4_FRAG,
564                 RTE_PTYPE_L4_ICMP,
565                 RTE_PTYPE_L4_NONFRAG,
566                 RTE_PTYPE_L4_SCTP,
567                 RTE_PTYPE_L4_TCP,
568                 RTE_PTYPE_L4_UDP,
569                 RTE_PTYPE_UNKNOWN
570         };
571         return ptypes;
572 }
573
574 int
575 avf_dev_link_update(struct rte_eth_dev *dev,
576                     __rte_unused int wait_to_complete)
577 {
578         struct rte_eth_link new_link;
579         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
580
581         /* Only read status info stored in VF, and the info is updated
582          *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
583          */
584         switch (vf->link_speed) {
585         case VIRTCHNL_LINK_SPEED_100MB:
586                 new_link.link_speed = ETH_SPEED_NUM_100M;
587                 break;
588         case VIRTCHNL_LINK_SPEED_1GB:
589                 new_link.link_speed = ETH_SPEED_NUM_1G;
590                 break;
591         case VIRTCHNL_LINK_SPEED_10GB:
592                 new_link.link_speed = ETH_SPEED_NUM_10G;
593                 break;
594         case VIRTCHNL_LINK_SPEED_20GB:
595                 new_link.link_speed = ETH_SPEED_NUM_20G;
596                 break;
597         case VIRTCHNL_LINK_SPEED_25GB:
598                 new_link.link_speed = ETH_SPEED_NUM_25G;
599                 break;
600         case VIRTCHNL_LINK_SPEED_40GB:
601                 new_link.link_speed = ETH_SPEED_NUM_40G;
602                 break;
603         default:
604                 new_link.link_speed = ETH_SPEED_NUM_NONE;
605                 break;
606         }
607
608         new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
609         new_link.link_status = vf->link_up ? ETH_LINK_UP :
610                                              ETH_LINK_DOWN;
611         new_link.link_autoneg = !!(dev->data->dev_conf.link_speeds &
612                                 ETH_LINK_SPEED_FIXED);
613
614         if (rte_atomic64_cmpset((uint64_t *)&dev->data->dev_link,
615                                 *(uint64_t *)&dev->data->dev_link,
616                                 *(uint64_t *)&new_link) == 0)
617                 return -1;
618
619         return 0;
620 }
621
622 static void
623 avf_dev_promiscuous_enable(struct rte_eth_dev *dev)
624 {
625         struct avf_adapter *adapter =
626                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
627         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
628         int ret;
629
630         if (vf->promisc_unicast_enabled)
631                 return;
632
633         ret = avf_config_promisc(adapter, TRUE, vf->promisc_multicast_enabled);
634         if (!ret)
635                 vf->promisc_unicast_enabled = TRUE;
636 }
637
638 static void
639 avf_dev_promiscuous_disable(struct rte_eth_dev *dev)
640 {
641         struct avf_adapter *adapter =
642                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
643         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
644         int ret;
645
646         if (!vf->promisc_unicast_enabled)
647                 return;
648
649         ret = avf_config_promisc(adapter, FALSE, vf->promisc_multicast_enabled);
650         if (!ret)
651                 vf->promisc_unicast_enabled = FALSE;
652 }
653
654 static void
655 avf_dev_allmulticast_enable(struct rte_eth_dev *dev)
656 {
657         struct avf_adapter *adapter =
658                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
659         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
660         int ret;
661
662         if (vf->promisc_multicast_enabled)
663                 return;
664
665         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, TRUE);
666         if (!ret)
667                 vf->promisc_multicast_enabled = TRUE;
668 }
669
670 static void
671 avf_dev_allmulticast_disable(struct rte_eth_dev *dev)
672 {
673         struct avf_adapter *adapter =
674                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
675         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
676         int ret;
677
678         if (!vf->promisc_multicast_enabled)
679                 return;
680
681         ret = avf_config_promisc(adapter, vf->promisc_unicast_enabled, FALSE);
682         if (!ret)
683                 vf->promisc_multicast_enabled = FALSE;
684 }
685
686 static int
687 avf_dev_add_mac_addr(struct rte_eth_dev *dev, struct ether_addr *addr,
688                      __rte_unused uint32_t index,
689                      __rte_unused uint32_t pool)
690 {
691         struct avf_adapter *adapter =
692                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
693         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
694         int err;
695
696         if (is_zero_ether_addr(addr)) {
697                 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
698                 return -EINVAL;
699         }
700
701         err = avf_add_del_eth_addr(adapter, addr, TRUE);
702         if (err) {
703                 PMD_DRV_LOG(ERR, "fail to add MAC address");
704                 return -EIO;
705         }
706
707         vf->mac_num++;
708
709         return 0;
710 }
711
712 static void
713 avf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
714 {
715         struct avf_adapter *adapter =
716                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
717         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
718         struct ether_addr *addr;
719         int err;
720
721         addr = &dev->data->mac_addrs[index];
722
723         err = avf_add_del_eth_addr(adapter, addr, FALSE);
724         if (err)
725                 PMD_DRV_LOG(ERR, "fail to delete MAC address");
726
727         vf->mac_num--;
728 }
729
730 static int
731 avf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
732 {
733         struct avf_adapter *adapter =
734                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
735         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
736         int err;
737
738         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
739                 return -ENOTSUP;
740
741         err = avf_add_del_vlan(adapter, vlan_id, on);
742         if (err)
743                 return -EIO;
744         return 0;
745 }
746
747 static int
748 avf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
749 {
750         struct avf_adapter *adapter =
751                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
752         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
753         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
754         int err;
755
756         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
757                 return -ENOTSUP;
758
759         /* Vlan stripping setting */
760         if (mask & ETH_VLAN_STRIP_MASK) {
761                 /* Enable or disable VLAN stripping */
762                 if (dev_conf->rxmode.hw_vlan_strip)
763                         err = avf_enable_vlan_strip(adapter);
764                 else
765                         err = avf_disable_vlan_strip(adapter);
766
767                 if (err)
768                         return -EIO;
769         }
770         return 0;
771 }
772
773 static int
774 avf_dev_rss_reta_update(struct rte_eth_dev *dev,
775                         struct rte_eth_rss_reta_entry64 *reta_conf,
776                         uint16_t reta_size)
777 {
778         struct avf_adapter *adapter =
779                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
780         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
781         uint8_t *lut;
782         uint16_t i, idx, shift;
783         int ret;
784
785         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
786                 return -ENOTSUP;
787
788         if (reta_size != vf->vf_res->rss_lut_size) {
789                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
790                         "(%d) doesn't match the number of hardware can "
791                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
792                 return -EINVAL;
793         }
794
795         lut = rte_zmalloc("rss_lut", reta_size, 0);
796         if (!lut) {
797                 PMD_DRV_LOG(ERR, "No memory can be allocated");
798                 return -ENOMEM;
799         }
800         /* store the old lut table temporarily */
801         rte_memcpy(lut, vf->rss_lut, reta_size);
802
803         for (i = 0; i < reta_size; i++) {
804                 idx = i / RTE_RETA_GROUP_SIZE;
805                 shift = i % RTE_RETA_GROUP_SIZE;
806                 if (reta_conf[idx].mask & (1ULL << shift))
807                         lut[i] = reta_conf[idx].reta[shift];
808         }
809
810         rte_memcpy(vf->rss_lut, lut, reta_size);
811         /* send virtchnnl ops to configure rss*/
812         ret = avf_configure_rss_lut(adapter);
813         if (ret) /* revert back */
814                 rte_memcpy(vf->rss_lut, lut, reta_size);
815         rte_free(lut);
816
817         return ret;
818 }
819
820 static int
821 avf_dev_rss_reta_query(struct rte_eth_dev *dev,
822                        struct rte_eth_rss_reta_entry64 *reta_conf,
823                        uint16_t reta_size)
824 {
825         struct avf_adapter *adapter =
826                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
827         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
828         uint16_t i, idx, shift;
829
830         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
831                 return -ENOTSUP;
832
833         if (reta_size != vf->vf_res->rss_lut_size) {
834                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
835                         "(%d) doesn't match the number of hardware can "
836                         "support (%d)", reta_size, vf->vf_res->rss_lut_size);
837                 return -EINVAL;
838         }
839
840         for (i = 0; i < reta_size; i++) {
841                 idx = i / RTE_RETA_GROUP_SIZE;
842                 shift = i % RTE_RETA_GROUP_SIZE;
843                 if (reta_conf[idx].mask & (1ULL << shift))
844                         reta_conf[idx].reta[shift] = vf->rss_lut[i];
845         }
846
847         return 0;
848 }
849
850 static int
851 avf_dev_rss_hash_update(struct rte_eth_dev *dev,
852                         struct rte_eth_rss_conf *rss_conf)
853 {
854         struct avf_adapter *adapter =
855                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
856         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
857
858         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
859                 return -ENOTSUP;
860
861         /* HENA setting, it is enabled by default, no change */
862         if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
863                 PMD_DRV_LOG(DEBUG, "No key to be configured");
864                 return 0;
865         } else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
866                 PMD_DRV_LOG(ERR, "The size of hash key configured "
867                         "(%d) doesn't match the size of hardware can "
868                         "support (%d)", rss_conf->rss_key_len,
869                         vf->vf_res->rss_key_size);
870                 return -EINVAL;
871         }
872
873         rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
874
875         return avf_configure_rss_key(adapter);
876 }
877
878 static int
879 avf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
880                           struct rte_eth_rss_conf *rss_conf)
881 {
882         struct avf_adapter *adapter =
883                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
884         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(adapter);
885
886         if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
887                 return -ENOTSUP;
888
889          /* Just set it to default value now. */
890         rss_conf->rss_hf = AVF_RSS_OFFLOAD_ALL;
891
892         if (!rss_conf->rss_key)
893                 return 0;
894
895         rss_conf->rss_key_len = vf->vf_res->rss_key_size;
896         rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
897
898         return 0;
899 }
900
901 static int
902 avf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
903 {
904         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
905         uint32_t frame_size = mtu + AVF_ETH_OVERHEAD;
906         int ret = 0;
907
908         if (mtu < ETHER_MIN_MTU || frame_size > AVF_FRAME_SIZE_MAX)
909                 return -EINVAL;
910
911         /* mtu setting is forbidden if port is start */
912         if (dev->data->dev_started) {
913                 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
914                 return -EBUSY;
915         }
916
917         if (frame_size > ETHER_MAX_LEN)
918                 dev->data->dev_conf.rxmode.offloads |=
919                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
920         else
921                 dev->data->dev_conf.rxmode.offloads &=
922                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
923
924         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
925
926         return ret;
927 }
928
929 static void
930 avf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
931                              struct ether_addr *mac_addr)
932 {
933         struct avf_adapter *adapter =
934                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
935         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
936         struct ether_addr *perm_addr, *old_addr;
937         int ret;
938
939         old_addr = (struct ether_addr *)hw->mac.addr;
940         perm_addr = (struct ether_addr *)hw->mac.perm_addr;
941
942         if (is_same_ether_addr(mac_addr, old_addr))
943                 return;
944
945         /* If the MAC address is configured by host, skip the setting */
946         if (is_valid_assigned_ether_addr(perm_addr))
947                 return;
948
949         ret = avf_add_del_eth_addr(adapter, old_addr, FALSE);
950         if (ret)
951                 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
952                             " %02X:%02X:%02X:%02X:%02X:%02X",
953                             old_addr->addr_bytes[0],
954                             old_addr->addr_bytes[1],
955                             old_addr->addr_bytes[2],
956                             old_addr->addr_bytes[3],
957                             old_addr->addr_bytes[4],
958                             old_addr->addr_bytes[5]);
959
960         ret = avf_add_del_eth_addr(adapter, mac_addr, TRUE);
961         if (ret)
962                 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
963                             " %02X:%02X:%02X:%02X:%02X:%02X",
964                             mac_addr->addr_bytes[0],
965                             mac_addr->addr_bytes[1],
966                             mac_addr->addr_bytes[2],
967                             mac_addr->addr_bytes[3],
968                             mac_addr->addr_bytes[4],
969                             mac_addr->addr_bytes[5]);
970
971         ether_addr_copy(mac_addr, (struct ether_addr *)hw->mac.addr);
972 }
973
974 static int
975 avf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
976 {
977         struct avf_adapter *adapter =
978                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
979         struct virtchnl_eth_stats *pstats = NULL;
980         int ret;
981
982         ret = avf_query_stats(adapter, &pstats);
983         if (ret == 0) {
984                 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
985                                                 pstats->rx_broadcast;
986                 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
987                                                 pstats->tx_unicast;
988                 stats->imissed = pstats->rx_discards;
989                 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
990                 stats->ibytes = pstats->rx_bytes;
991                 stats->obytes = pstats->tx_bytes;
992         } else {
993                 PMD_DRV_LOG(ERR, "Get statistics failed");
994         }
995         return -EIO;
996 }
997
998 static int
999 avf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1000 {
1001         struct avf_adapter *adapter =
1002                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1003         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1004         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1005         uint16_t msix_intr;
1006
1007         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1008         if (msix_intr == AVF_MISC_VEC_ID) {
1009                 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1010                 AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
1011                               AVFINT_DYN_CTL01_INTENA_MASK |
1012                               AVFINT_DYN_CTL01_ITR_INDX_MASK);
1013         } else {
1014                 AVF_WRITE_REG(hw,
1015                               AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
1016                               AVFINT_DYN_CTLN1_INTENA_MASK |
1017                               AVFINT_DYN_CTLN1_ITR_INDX_MASK);
1018         }
1019
1020         AVF_WRITE_FLUSH(hw);
1021
1022         rte_intr_enable(&pci_dev->intr_handle);
1023
1024         return 0;
1025 }
1026
1027 static int
1028 avf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1029 {
1030         struct avf_adapter *adapter =
1031                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1032         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1033         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1034         uint16_t msix_intr;
1035
1036         msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1037         if (msix_intr == AVF_MISC_VEC_ID) {
1038                 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1039                 return -EIO;
1040         }
1041
1042         AVF_WRITE_REG(hw,
1043                       AVFINT_DYN_CTLN1(msix_intr - AVF_RX_VEC_START),
1044                       0);
1045
1046         AVF_WRITE_FLUSH(hw);
1047         return 0;
1048 }
1049
1050 static int
1051 avf_check_vf_reset_done(struct avf_hw *hw)
1052 {
1053         int i, reset;
1054
1055         for (i = 0; i < AVF_RESET_WAIT_CNT; i++) {
1056                 reset = AVF_READ_REG(hw, AVFGEN_RSTAT) &
1057                         AVFGEN_RSTAT_VFR_STATE_MASK;
1058                 reset = reset >> AVFGEN_RSTAT_VFR_STATE_SHIFT;
1059                 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1060                     reset == VIRTCHNL_VFR_COMPLETED)
1061                         break;
1062                 rte_delay_ms(20);
1063         }
1064
1065         if (i >= AVF_RESET_WAIT_CNT)
1066                 return -1;
1067
1068         return 0;
1069 }
1070
1071 static int
1072 avf_init_vf(struct rte_eth_dev *dev)
1073 {
1074         int i, err, bufsz;
1075         struct avf_adapter *adapter =
1076                 AVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1077         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1078         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1079
1080         err = avf_set_mac_type(hw);
1081         if (err) {
1082                 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
1083                 goto err;
1084         }
1085
1086         err = avf_check_vf_reset_done(hw);
1087         if (err) {
1088                 PMD_INIT_LOG(ERR, "VF is still resetting");
1089                 goto err;
1090         }
1091
1092         avf_init_adminq_parameter(hw);
1093         err = avf_init_adminq(hw);
1094         if (err) {
1095                 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
1096                 goto err;
1097         }
1098
1099         vf->aq_resp = rte_zmalloc("vf_aq_resp", AVF_AQ_BUF_SZ, 0);
1100         if (!vf->aq_resp) {
1101                 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
1102                 goto err_aq;
1103         }
1104         if (avf_check_api_version(adapter) != 0) {
1105                 PMD_INIT_LOG(ERR, "check_api version failed");
1106                 goto err_api;
1107         }
1108
1109         bufsz = sizeof(struct virtchnl_vf_resource) +
1110                 (AVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
1111         vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
1112         if (!vf->vf_res) {
1113                 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
1114                 goto err_api;
1115         }
1116         if (avf_get_vf_resource(adapter) != 0) {
1117                 PMD_INIT_LOG(ERR, "avf_get_vf_config failed");
1118                 goto err_alloc;
1119         }
1120         /* Allocate memort for RSS info */
1121         if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
1122                 vf->rss_key = rte_zmalloc("rss_key",
1123                                           vf->vf_res->rss_key_size, 0);
1124                 if (!vf->rss_key) {
1125                         PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
1126                         goto err_rss;
1127                 }
1128                 vf->rss_lut = rte_zmalloc("rss_lut",
1129                                           vf->vf_res->rss_lut_size, 0);
1130                 if (!vf->rss_lut) {
1131                         PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
1132                         goto err_rss;
1133                 }
1134         }
1135         return 0;
1136 err_rss:
1137         rte_free(vf->rss_key);
1138         rte_free(vf->rss_lut);
1139 err_alloc:
1140         rte_free(vf->vf_res);
1141         vf->vsi_res = NULL;
1142 err_api:
1143         rte_free(vf->aq_resp);
1144 err_aq:
1145         avf_shutdown_adminq(hw);
1146 err:
1147         return -1;
1148 }
1149
1150 /* Enable default admin queue interrupt setting */
1151 static inline void
1152 avf_enable_irq0(struct avf_hw *hw)
1153 {
1154         /* Enable admin queue interrupt trigger */
1155         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, AVFINT_ICR0_ENA1_ADMINQ_MASK);
1156
1157         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01, AVFINT_DYN_CTL01_INTENA_MASK |
1158                                             AVFINT_DYN_CTL01_ITR_INDX_MASK);
1159
1160         AVF_WRITE_FLUSH(hw);
1161 }
1162
1163 static inline void
1164 avf_disable_irq0(struct avf_hw *hw)
1165 {
1166         /* Disable all interrupt types */
1167         AVF_WRITE_REG(hw, AVFINT_ICR0_ENA1, 0);
1168         AVF_WRITE_REG(hw, AVFINT_DYN_CTL01,
1169                       AVFINT_DYN_CTL01_ITR_INDX_MASK);
1170         AVF_WRITE_FLUSH(hw);
1171 }
1172
1173 static void
1174 avf_dev_interrupt_handler(void *param)
1175 {
1176         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1177         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1178
1179         avf_disable_irq0(hw);
1180
1181         avf_handle_virtchnl_msg(dev);
1182
1183 done:
1184         avf_enable_irq0(hw);
1185 }
1186
1187 static int
1188 avf_dev_init(struct rte_eth_dev *eth_dev)
1189 {
1190         struct avf_adapter *adapter =
1191                 AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1192         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(adapter);
1193         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1194
1195         PMD_INIT_FUNC_TRACE();
1196
1197         /* assign ops func pointer */
1198         eth_dev->dev_ops = &avf_eth_dev_ops;
1199         eth_dev->rx_pkt_burst = &avf_recv_pkts;
1200         eth_dev->tx_pkt_burst = &avf_xmit_pkts;
1201         eth_dev->tx_pkt_prepare = &avf_prep_pkts;
1202
1203         /* For secondary processes, we don't initialise any further as primary
1204          * has already done this work. Only check if we need a different RX
1205          * and TX function.
1206          */
1207         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1208                 avf_set_rx_function(eth_dev);
1209                 avf_set_tx_function(eth_dev);
1210                 return 0;
1211         }
1212         rte_eth_copy_pci_info(eth_dev, pci_dev);
1213
1214         hw->vendor_id = pci_dev->id.vendor_id;
1215         hw->device_id = pci_dev->id.device_id;
1216         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
1217         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
1218         hw->bus.bus_id = pci_dev->addr.bus;
1219         hw->bus.device = pci_dev->addr.devid;
1220         hw->bus.func = pci_dev->addr.function;
1221         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1222         hw->back = AVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1223         adapter->eth_dev = eth_dev;
1224
1225         if (avf_init_vf(eth_dev) != 0) {
1226                 PMD_INIT_LOG(ERR, "Init vf failed");
1227                 return -1;
1228         }
1229
1230         /* copy mac addr */
1231         eth_dev->data->mac_addrs = rte_zmalloc(
1232                                         "avf_mac",
1233                                         ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX,
1234                                         0);
1235         if (!eth_dev->data->mac_addrs) {
1236                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
1237                              " store MAC addresses",
1238                              ETHER_ADDR_LEN * AVF_NUM_MACADDR_MAX);
1239                 return -ENOMEM;
1240         }
1241         /* If the MAC address is not configured by host,
1242          * generate a random one.
1243          */
1244         if (!is_valid_assigned_ether_addr((struct ether_addr *)hw->mac.addr))
1245                 eth_random_addr(hw->mac.addr);
1246         ether_addr_copy((struct ether_addr *)hw->mac.addr,
1247                         &eth_dev->data->mac_addrs[0]);
1248
1249         /* register callback func to eal lib */
1250         rte_intr_callback_register(&pci_dev->intr_handle,
1251                                    avf_dev_interrupt_handler,
1252                                    (void *)eth_dev);
1253
1254         /* enable uio intr after callback register */
1255         rte_intr_enable(&pci_dev->intr_handle);
1256
1257         /* configure and enable device interrupt */
1258         avf_enable_irq0(hw);
1259
1260         return 0;
1261 }
1262
1263 static void
1264 avf_dev_close(struct rte_eth_dev *dev)
1265 {
1266         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1267         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1268         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1269
1270         avf_dev_stop(dev);
1271         avf_shutdown_adminq(hw);
1272         /* disable uio intr before callback unregister */
1273         rte_intr_disable(intr_handle);
1274
1275         /* unregister callback func from eal lib */
1276         rte_intr_callback_unregister(intr_handle,
1277                                      avf_dev_interrupt_handler, dev);
1278         avf_disable_irq0(hw);
1279 }
1280
1281 static int
1282 avf_dev_uninit(struct rte_eth_dev *dev)
1283 {
1284         struct avf_info *vf = AVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1285         struct avf_hw *hw = AVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1286
1287         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1288                 return -EPERM;
1289
1290         dev->dev_ops = NULL;
1291         dev->rx_pkt_burst = NULL;
1292         dev->tx_pkt_burst = NULL;
1293         if (hw->adapter_stopped == 0)
1294                 avf_dev_close(dev);
1295
1296         rte_free(vf->vf_res);
1297         vf->vsi_res = NULL;
1298         vf->vf_res = NULL;
1299
1300         rte_free(vf->aq_resp);
1301         vf->aq_resp = NULL;
1302
1303         rte_free(dev->data->mac_addrs);
1304         dev->data->mac_addrs = NULL;
1305
1306         if (vf->rss_lut) {
1307                 rte_free(vf->rss_lut);
1308                 vf->rss_lut = NULL;
1309         }
1310         if (vf->rss_key) {
1311                 rte_free(vf->rss_key);
1312                 vf->rss_key = NULL;
1313         }
1314
1315         return 0;
1316 }
1317
1318 static int eth_avf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1319                              struct rte_pci_device *pci_dev)
1320 {
1321         return rte_eth_dev_pci_generic_probe(pci_dev,
1322                 sizeof(struct avf_adapter), avf_dev_init);
1323 }
1324
1325 static int eth_avf_pci_remove(struct rte_pci_device *pci_dev)
1326 {
1327         return rte_eth_dev_pci_generic_remove(pci_dev, avf_dev_uninit);
1328 }
1329
1330 /* Adaptive virtual function driver struct */
1331 static struct rte_pci_driver rte_avf_pmd = {
1332         .id_table = pci_id_avf_map,
1333         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1334                      RTE_PCI_DRV_IOVA_AS_VA,
1335         .probe = eth_avf_pci_probe,
1336         .remove = eth_avf_pci_remove,
1337 };
1338
1339 RTE_PMD_REGISTER_PCI(net_avf, rte_avf_pmd);
1340 RTE_PMD_REGISTER_PCI_TABLE(net_avf, pci_id_avf_map);
1341 RTE_PMD_REGISTER_KMOD_DEP(net_avf, "* igb_uio | vfio-pci");
1342 RTE_INIT(avf_init_log);
1343 static void
1344 avf_init_log(void)
1345 {
1346         avf_logtype_init = rte_log_register("pmd.net.avf.init");
1347         if (avf_logtype_init >= 0)
1348                 rte_log_set_level(avf_logtype_init, RTE_LOG_NOTICE);
1349         avf_logtype_driver = rte_log_register("pmd.net.avf.driver");
1350         if (avf_logtype_driver >= 0)
1351                 rte_log_set_level(avf_logtype_driver, RTE_LOG_NOTICE);
1352 }
1353
1354 /* memory func for base code */
1355 enum avf_status_code
1356 avf_allocate_dma_mem_d(__rte_unused struct avf_hw *hw,
1357                        struct avf_dma_mem *mem,
1358                        u64 size,
1359                        u32 alignment)
1360 {
1361         const struct rte_memzone *mz = NULL;
1362         char z_name[RTE_MEMZONE_NAMESIZE];
1363
1364         if (!mem)
1365                 return AVF_ERR_PARAM;
1366
1367         snprintf(z_name, sizeof(z_name), "avf_dma_%"PRIu64, rte_rand());
1368         mz = rte_memzone_reserve_bounded(z_name, size, SOCKET_ID_ANY, 0,
1369                                          alignment, RTE_PGSIZE_2M);
1370         if (!mz)
1371                 return AVF_ERR_NO_MEMORY;
1372
1373         mem->size = size;
1374         mem->va = mz->addr;
1375         mem->pa = mz->phys_addr;
1376         mem->zone = (const void *)mz;
1377         PMD_DRV_LOG(DEBUG,
1378                     "memzone %s allocated with physical address: %"PRIu64,
1379                     mz->name, mem->pa);
1380
1381         return AVF_SUCCESS;
1382 }
1383
1384 enum avf_status_code
1385 avf_free_dma_mem_d(__rte_unused struct avf_hw *hw,
1386                    struct avf_dma_mem *mem)
1387 {
1388         if (!mem)
1389                 return AVF_ERR_PARAM;
1390
1391         PMD_DRV_LOG(DEBUG,
1392                     "memzone %s to be freed with physical address: %"PRIu64,
1393                     ((const struct rte_memzone *)mem->zone)->name, mem->pa);
1394         rte_memzone_free((const struct rte_memzone *)mem->zone);
1395         mem->zone = NULL;
1396         mem->va = NULL;
1397         mem->pa = (u64)0;
1398
1399         return AVF_SUCCESS;
1400 }
1401
1402 enum avf_status_code
1403 avf_allocate_virt_mem_d(__rte_unused struct avf_hw *hw,
1404                         struct avf_virt_mem *mem,
1405                         u32 size)
1406 {
1407         if (!mem)
1408                 return AVF_ERR_PARAM;
1409
1410         mem->size = size;
1411         mem->va = rte_zmalloc("avf", size, 0);
1412
1413         if (mem->va)
1414                 return AVF_SUCCESS;
1415         else
1416                 return AVF_ERR_NO_MEMORY;
1417 }
1418
1419 enum avf_status_code
1420 avf_free_virt_mem_d(__rte_unused struct avf_hw *hw,
1421                     struct avf_virt_mem *mem)
1422 {
1423         if (!mem)
1424                 return AVF_ERR_PARAM;
1425
1426         rte_free(mem->va);
1427         mem->va = NULL;
1428
1429         return AVF_SUCCESS;
1430 }