c746a0e2cca70d052fe03ae9c6e680435592909d
[deb_dpdk.git] / drivers / net / avp / avp_ethdev.c
1 /*
2  *   BSD LICENSE
3  *
4  * Copyright (c) 2013-2017, Wind River Systems, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions are met:
8  *
9  * 1) Redistributions of source code must retain the above copyright notice,
10  * this list of conditions and the following disclaimer.
11  *
12  * 2) Redistributions in binary form must reproduce the above copyright notice,
13  * this list of conditions and the following disclaimer in the documentation
14  * and/or other materials provided with the distribution.
15  *
16  * 3) Neither the name of Wind River Systems nor the names of its contributors
17  * may be used to endorse or promote products derived from this software
18  * without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
24  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32
33 #include <stdint.h>
34 #include <string.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <unistd.h>
38
39 #include <rte_ethdev.h>
40 #include <rte_ethdev_pci.h>
41 #include <rte_memcpy.h>
42 #include <rte_string_fns.h>
43 #include <rte_memzone.h>
44 #include <rte_malloc.h>
45 #include <rte_atomic.h>
46 #include <rte_branch_prediction.h>
47 #include <rte_pci.h>
48 #include <rte_ether.h>
49 #include <rte_common.h>
50 #include <rte_cycles.h>
51 #include <rte_spinlock.h>
52 #include <rte_byteorder.h>
53 #include <rte_dev.h>
54 #include <rte_memory.h>
55 #include <rte_eal.h>
56 #include <rte_io.h>
57
58 #include "rte_avp_common.h"
59 #include "rte_avp_fifo.h"
60
61 #include "avp_logs.h"
62
63
64 static int avp_dev_create(struct rte_pci_device *pci_dev,
65                           struct rte_eth_dev *eth_dev);
66
67 static int avp_dev_configure(struct rte_eth_dev *dev);
68 static int avp_dev_start(struct rte_eth_dev *dev);
69 static void avp_dev_stop(struct rte_eth_dev *dev);
70 static void avp_dev_close(struct rte_eth_dev *dev);
71 static void avp_dev_info_get(struct rte_eth_dev *dev,
72                              struct rte_eth_dev_info *dev_info);
73 static void avp_vlan_offload_set(struct rte_eth_dev *dev, int mask);
74 static int avp_dev_link_update(struct rte_eth_dev *dev, int wait_to_complete);
75 static void avp_dev_promiscuous_enable(struct rte_eth_dev *dev);
76 static void avp_dev_promiscuous_disable(struct rte_eth_dev *dev);
77
78 static int avp_dev_rx_queue_setup(struct rte_eth_dev *dev,
79                                   uint16_t rx_queue_id,
80                                   uint16_t nb_rx_desc,
81                                   unsigned int socket_id,
82                                   const struct rte_eth_rxconf *rx_conf,
83                                   struct rte_mempool *pool);
84
85 static int avp_dev_tx_queue_setup(struct rte_eth_dev *dev,
86                                   uint16_t tx_queue_id,
87                                   uint16_t nb_tx_desc,
88                                   unsigned int socket_id,
89                                   const struct rte_eth_txconf *tx_conf);
90
91 static uint16_t avp_recv_scattered_pkts(void *rx_queue,
92                                         struct rte_mbuf **rx_pkts,
93                                         uint16_t nb_pkts);
94
95 static uint16_t avp_recv_pkts(void *rx_queue,
96                               struct rte_mbuf **rx_pkts,
97                               uint16_t nb_pkts);
98
99 static uint16_t avp_xmit_scattered_pkts(void *tx_queue,
100                                         struct rte_mbuf **tx_pkts,
101                                         uint16_t nb_pkts);
102
103 static uint16_t avp_xmit_pkts(void *tx_queue,
104                               struct rte_mbuf **tx_pkts,
105                               uint16_t nb_pkts);
106
107 static void avp_dev_rx_queue_release(void *rxq);
108 static void avp_dev_tx_queue_release(void *txq);
109
110 static void avp_dev_stats_get(struct rte_eth_dev *dev,
111                               struct rte_eth_stats *stats);
112 static void avp_dev_stats_reset(struct rte_eth_dev *dev);
113
114
115 #define AVP_MAX_RX_BURST 64
116 #define AVP_MAX_TX_BURST 64
117 #define AVP_MAX_MAC_ADDRS 1
118 #define AVP_MIN_RX_BUFSIZE ETHER_MIN_LEN
119
120
121 /*
122  * Defines the number of microseconds to wait before checking the response
123  * queue for completion.
124  */
125 #define AVP_REQUEST_DELAY_USECS (5000)
126
127 /*
128  * Defines the number times to check the response queue for completion before
129  * declaring a timeout.
130  */
131 #define AVP_MAX_REQUEST_RETRY (100)
132
133 /* Defines the current PCI driver version number */
134 #define AVP_DPDK_DRIVER_VERSION RTE_AVP_CURRENT_GUEST_VERSION
135
136 /*
137  * The set of PCI devices this driver supports
138  */
139 static const struct rte_pci_id pci_id_avp_map[] = {
140         { .vendor_id = RTE_AVP_PCI_VENDOR_ID,
141           .device_id = RTE_AVP_PCI_DEVICE_ID,
142           .subsystem_vendor_id = RTE_AVP_PCI_SUB_VENDOR_ID,
143           .subsystem_device_id = RTE_AVP_PCI_SUB_DEVICE_ID,
144           .class_id = RTE_CLASS_ANY_ID,
145         },
146
147         { .vendor_id = 0, /* sentinel */
148         },
149 };
150
151 /*
152  * dev_ops for avp, bare necessities for basic operation
153  */
154 static const struct eth_dev_ops avp_eth_dev_ops = {
155         .dev_configure       = avp_dev_configure,
156         .dev_start           = avp_dev_start,
157         .dev_stop            = avp_dev_stop,
158         .dev_close           = avp_dev_close,
159         .dev_infos_get       = avp_dev_info_get,
160         .vlan_offload_set    = avp_vlan_offload_set,
161         .stats_get           = avp_dev_stats_get,
162         .stats_reset         = avp_dev_stats_reset,
163         .link_update         = avp_dev_link_update,
164         .promiscuous_enable  = avp_dev_promiscuous_enable,
165         .promiscuous_disable = avp_dev_promiscuous_disable,
166         .rx_queue_setup      = avp_dev_rx_queue_setup,
167         .rx_queue_release    = avp_dev_rx_queue_release,
168         .tx_queue_setup      = avp_dev_tx_queue_setup,
169         .tx_queue_release    = avp_dev_tx_queue_release,
170 };
171
172 /**@{ AVP device flags */
173 #define AVP_F_PROMISC (1 << 1)
174 #define AVP_F_CONFIGURED (1 << 2)
175 #define AVP_F_LINKUP (1 << 3)
176 #define AVP_F_DETACHED (1 << 4)
177 /**@} */
178
179 /* Ethernet device validation marker */
180 #define AVP_ETHDEV_MAGIC 0x92972862
181
182 /*
183  * Defines the AVP device attributes which are attached to an RTE ethernet
184  * device
185  */
186 struct avp_dev {
187         uint32_t magic; /**< Memory validation marker */
188         uint64_t device_id; /**< Unique system identifier */
189         struct ether_addr ethaddr; /**< Host specified MAC address */
190         struct rte_eth_dev_data *dev_data;
191         /**< Back pointer to ethernet device data */
192         volatile uint32_t flags; /**< Device operational flags */
193         uint8_t port_id; /**< Ethernet port identifier */
194         struct rte_mempool *pool; /**< pkt mbuf mempool */
195         unsigned int guest_mbuf_size; /**< local pool mbuf size */
196         unsigned int host_mbuf_size; /**< host mbuf size */
197         unsigned int max_rx_pkt_len; /**< maximum receive unit */
198         uint32_t host_features; /**< Supported feature bitmap */
199         uint32_t features; /**< Enabled feature bitmap */
200         unsigned int num_tx_queues; /**< Negotiated number of transmit queues */
201         unsigned int max_tx_queues; /**< Maximum number of transmit queues */
202         unsigned int num_rx_queues; /**< Negotiated number of receive queues */
203         unsigned int max_rx_queues; /**< Maximum number of receive queues */
204
205         struct rte_avp_fifo *tx_q[RTE_AVP_MAX_QUEUES]; /**< TX queue */
206         struct rte_avp_fifo *rx_q[RTE_AVP_MAX_QUEUES]; /**< RX queue */
207         struct rte_avp_fifo *alloc_q[RTE_AVP_MAX_QUEUES];
208         /**< Allocated mbufs queue */
209         struct rte_avp_fifo *free_q[RTE_AVP_MAX_QUEUES];
210         /**< To be freed mbufs queue */
211
212         /* mutual exclusion over the 'flag' and 'resp_q/req_q' fields */
213         rte_spinlock_t lock;
214
215         /* For request & response */
216         struct rte_avp_fifo *req_q; /**< Request queue */
217         struct rte_avp_fifo *resp_q; /**< Response queue */
218         void *host_sync_addr; /**< (host) Req/Resp Mem address */
219         void *sync_addr; /**< Req/Resp Mem address */
220         void *host_mbuf_addr; /**< (host) MBUF pool start address */
221         void *mbuf_addr; /**< MBUF pool start address */
222 } __rte_cache_aligned;
223
224 /* RTE ethernet private data */
225 struct avp_adapter {
226         struct avp_dev avp;
227 } __rte_cache_aligned;
228
229
230 /* 32-bit MMIO register write */
231 #define AVP_WRITE32(_value, _addr) rte_write32_relaxed((_value), (_addr))
232
233 /* 32-bit MMIO register read */
234 #define AVP_READ32(_addr) rte_read32_relaxed((_addr))
235
236 /* Macro to cast the ethernet device private data to a AVP object */
237 #define AVP_DEV_PRIVATE_TO_HW(adapter) \
238         (&((struct avp_adapter *)adapter)->avp)
239
240 /*
241  * Defines the structure of a AVP device queue for the purpose of handling the
242  * receive and transmit burst callback functions
243  */
244 struct avp_queue {
245         struct rte_eth_dev_data *dev_data;
246         /**< Backpointer to ethernet device data */
247         struct avp_dev *avp; /**< Backpointer to AVP device */
248         uint16_t queue_id;
249         /**< Queue identifier used for indexing current queue */
250         uint16_t queue_base;
251         /**< Base queue identifier for queue servicing */
252         uint16_t queue_limit;
253         /**< Maximum queue identifier for queue servicing */
254
255         uint64_t packets;
256         uint64_t bytes;
257         uint64_t errors;
258 };
259
260 /* send a request and wait for a response
261  *
262  * @warning must be called while holding the avp->lock spinlock.
263  */
264 static int
265 avp_dev_process_request(struct avp_dev *avp, struct rte_avp_request *request)
266 {
267         unsigned int retry = AVP_MAX_REQUEST_RETRY;
268         void *resp_addr = NULL;
269         unsigned int count;
270         int ret;
271
272         PMD_DRV_LOG(DEBUG, "Sending request %u to host\n", request->req_id);
273
274         request->result = -ENOTSUP;
275
276         /* Discard any stale responses before starting a new request */
277         while (avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1))
278                 PMD_DRV_LOG(DEBUG, "Discarding stale response\n");
279
280         rte_memcpy(avp->sync_addr, request, sizeof(*request));
281         count = avp_fifo_put(avp->req_q, &avp->host_sync_addr, 1);
282         if (count < 1) {
283                 PMD_DRV_LOG(ERR, "Cannot send request %u to host\n",
284                             request->req_id);
285                 ret = -EBUSY;
286                 goto done;
287         }
288
289         while (retry--) {
290                 /* wait for a response */
291                 usleep(AVP_REQUEST_DELAY_USECS);
292
293                 count = avp_fifo_count(avp->resp_q);
294                 if (count >= 1) {
295                         /* response received */
296                         break;
297                 }
298
299                 if ((count < 1) && (retry == 0)) {
300                         PMD_DRV_LOG(ERR, "Timeout while waiting for a response for %u\n",
301                                     request->req_id);
302                         ret = -ETIME;
303                         goto done;
304                 }
305         }
306
307         /* retrieve the response */
308         count = avp_fifo_get(avp->resp_q, (void **)&resp_addr, 1);
309         if ((count != 1) || (resp_addr != avp->host_sync_addr)) {
310                 PMD_DRV_LOG(ERR, "Invalid response from host, count=%u resp=%p host_sync_addr=%p\n",
311                             count, resp_addr, avp->host_sync_addr);
312                 ret = -ENODATA;
313                 goto done;
314         }
315
316         /* copy to user buffer */
317         rte_memcpy(request, avp->sync_addr, sizeof(*request));
318         ret = 0;
319
320         PMD_DRV_LOG(DEBUG, "Result %d received for request %u\n",
321                     request->result, request->req_id);
322
323 done:
324         return ret;
325 }
326
327 static int
328 avp_dev_ctrl_set_link_state(struct rte_eth_dev *eth_dev, unsigned int state)
329 {
330         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
331         struct rte_avp_request request;
332         int ret;
333
334         /* setup a link state change request */
335         memset(&request, 0, sizeof(request));
336         request.req_id = RTE_AVP_REQ_CFG_NETWORK_IF;
337         request.if_up = state;
338
339         ret = avp_dev_process_request(avp, &request);
340
341         return ret == 0 ? request.result : ret;
342 }
343
344 static int
345 avp_dev_ctrl_set_config(struct rte_eth_dev *eth_dev,
346                         struct rte_avp_device_config *config)
347 {
348         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
349         struct rte_avp_request request;
350         int ret;
351
352         /* setup a configure request */
353         memset(&request, 0, sizeof(request));
354         request.req_id = RTE_AVP_REQ_CFG_DEVICE;
355         memcpy(&request.config, config, sizeof(request.config));
356
357         ret = avp_dev_process_request(avp, &request);
358
359         return ret == 0 ? request.result : ret;
360 }
361
362 static int
363 avp_dev_ctrl_shutdown(struct rte_eth_dev *eth_dev)
364 {
365         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
366         struct rte_avp_request request;
367         int ret;
368
369         /* setup a shutdown request */
370         memset(&request, 0, sizeof(request));
371         request.req_id = RTE_AVP_REQ_SHUTDOWN_DEVICE;
372
373         ret = avp_dev_process_request(avp, &request);
374
375         return ret == 0 ? request.result : ret;
376 }
377
378 /* translate from host mbuf virtual address to guest virtual address */
379 static inline void *
380 avp_dev_translate_buffer(struct avp_dev *avp, void *host_mbuf_address)
381 {
382         return RTE_PTR_ADD(RTE_PTR_SUB(host_mbuf_address,
383                                        (uintptr_t)avp->host_mbuf_addr),
384                            (uintptr_t)avp->mbuf_addr);
385 }
386
387 /* translate from host physical address to guest virtual address */
388 static void *
389 avp_dev_translate_address(struct rte_eth_dev *eth_dev,
390                           phys_addr_t host_phys_addr)
391 {
392         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
393         struct rte_mem_resource *resource;
394         struct rte_avp_memmap_info *info;
395         struct rte_avp_memmap *map;
396         off_t offset;
397         void *addr;
398         unsigned int i;
399
400         addr = pci_dev->mem_resource[RTE_AVP_PCI_MEMORY_BAR].addr;
401         resource = &pci_dev->mem_resource[RTE_AVP_PCI_MEMMAP_BAR];
402         info = (struct rte_avp_memmap_info *)resource->addr;
403
404         offset = 0;
405         for (i = 0; i < info->nb_maps; i++) {
406                 /* search all segments looking for a matching address */
407                 map = &info->maps[i];
408
409                 if ((host_phys_addr >= map->phys_addr) &&
410                         (host_phys_addr < (map->phys_addr + map->length))) {
411                         /* address is within this segment */
412                         offset += (host_phys_addr - map->phys_addr);
413                         addr = RTE_PTR_ADD(addr, offset);
414
415                         PMD_DRV_LOG(DEBUG, "Translating host physical 0x%" PRIx64 " to guest virtual 0x%p\n",
416                                     host_phys_addr, addr);
417
418                         return addr;
419                 }
420                 offset += map->length;
421         }
422
423         return NULL;
424 }
425
426 /* verify that the incoming device version is compatible with our version */
427 static int
428 avp_dev_version_check(uint32_t version)
429 {
430         uint32_t driver = RTE_AVP_STRIP_MINOR_VERSION(AVP_DPDK_DRIVER_VERSION);
431         uint32_t device = RTE_AVP_STRIP_MINOR_VERSION(version);
432
433         if (device <= driver) {
434                 /* the host driver version is less than or equal to ours */
435                 return 0;
436         }
437
438         return 1;
439 }
440
441 /* verify that memory regions have expected version and validation markers */
442 static int
443 avp_dev_check_regions(struct rte_eth_dev *eth_dev)
444 {
445         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
446         struct rte_avp_memmap_info *memmap;
447         struct rte_avp_device_info *info;
448         struct rte_mem_resource *resource;
449         unsigned int i;
450
451         /* Dump resource info for debug */
452         for (i = 0; i < PCI_MAX_RESOURCE; i++) {
453                 resource = &pci_dev->mem_resource[i];
454                 if ((resource->phys_addr == 0) || (resource->len == 0))
455                         continue;
456
457                 PMD_DRV_LOG(DEBUG, "resource[%u]: phys=0x%" PRIx64 " len=%" PRIu64 " addr=%p\n",
458                             i, resource->phys_addr,
459                             resource->len, resource->addr);
460
461                 switch (i) {
462                 case RTE_AVP_PCI_MEMMAP_BAR:
463                         memmap = (struct rte_avp_memmap_info *)resource->addr;
464                         if ((memmap->magic != RTE_AVP_MEMMAP_MAGIC) ||
465                             (memmap->version != RTE_AVP_MEMMAP_VERSION)) {
466                                 PMD_DRV_LOG(ERR, "Invalid memmap magic 0x%08x and version %u\n",
467                                             memmap->magic, memmap->version);
468                                 return -EINVAL;
469                         }
470                         break;
471
472                 case RTE_AVP_PCI_DEVICE_BAR:
473                         info = (struct rte_avp_device_info *)resource->addr;
474                         if ((info->magic != RTE_AVP_DEVICE_MAGIC) ||
475                             avp_dev_version_check(info->version)) {
476                                 PMD_DRV_LOG(ERR, "Invalid device info magic 0x%08x or version 0x%08x > 0x%08x\n",
477                                             info->magic, info->version,
478                                             AVP_DPDK_DRIVER_VERSION);
479                                 return -EINVAL;
480                         }
481                         break;
482
483                 case RTE_AVP_PCI_MEMORY_BAR:
484                 case RTE_AVP_PCI_MMIO_BAR:
485                         if (resource->addr == NULL) {
486                                 PMD_DRV_LOG(ERR, "Missing address space for BAR%u\n",
487                                             i);
488                                 return -EINVAL;
489                         }
490                         break;
491
492                 case RTE_AVP_PCI_MSIX_BAR:
493                 default:
494                         /* no validation required */
495                         break;
496                 }
497         }
498
499         return 0;
500 }
501
502 static int
503 avp_dev_detach(struct rte_eth_dev *eth_dev)
504 {
505         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
506         int ret;
507
508         PMD_DRV_LOG(NOTICE, "Detaching port %u from AVP device 0x%" PRIx64 "\n",
509                     eth_dev->data->port_id, avp->device_id);
510
511         rte_spinlock_lock(&avp->lock);
512
513         if (avp->flags & AVP_F_DETACHED) {
514                 PMD_DRV_LOG(NOTICE, "port %u already detached\n",
515                             eth_dev->data->port_id);
516                 ret = 0;
517                 goto unlock;
518         }
519
520         /* shutdown the device first so the host stops sending us packets. */
521         ret = avp_dev_ctrl_shutdown(eth_dev);
522         if (ret < 0) {
523                 PMD_DRV_LOG(ERR, "Failed to send/recv shutdown to host, ret=%d\n",
524                             ret);
525                 avp->flags &= ~AVP_F_DETACHED;
526                 goto unlock;
527         }
528
529         avp->flags |= AVP_F_DETACHED;
530         rte_wmb();
531
532         /* wait for queues to acknowledge the presence of the detach flag */
533         rte_delay_ms(1);
534
535         ret = 0;
536
537 unlock:
538         rte_spinlock_unlock(&avp->lock);
539         return ret;
540 }
541
542 static void
543 _avp_set_rx_queue_mappings(struct rte_eth_dev *eth_dev, uint16_t rx_queue_id)
544 {
545         struct avp_dev *avp =
546                 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
547         struct avp_queue *rxq;
548         uint16_t queue_count;
549         uint16_t remainder;
550
551         rxq = (struct avp_queue *)eth_dev->data->rx_queues[rx_queue_id];
552
553         /*
554          * Must map all AVP fifos as evenly as possible between the configured
555          * device queues.  Each device queue will service a subset of the AVP
556          * fifos. If there is an odd number of device queues the first set of
557          * device queues will get the extra AVP fifos.
558          */
559         queue_count = avp->num_rx_queues / eth_dev->data->nb_rx_queues;
560         remainder = avp->num_rx_queues % eth_dev->data->nb_rx_queues;
561         if (rx_queue_id < remainder) {
562                 /* these queues must service one extra FIFO */
563                 rxq->queue_base = rx_queue_id * (queue_count + 1);
564                 rxq->queue_limit = rxq->queue_base + (queue_count + 1) - 1;
565         } else {
566                 /* these queues service the regular number of FIFO */
567                 rxq->queue_base = ((remainder * (queue_count + 1)) +
568                                    ((rx_queue_id - remainder) * queue_count));
569                 rxq->queue_limit = rxq->queue_base + queue_count - 1;
570         }
571
572         PMD_DRV_LOG(DEBUG, "rxq %u at %p base %u limit %u\n",
573                     rx_queue_id, rxq, rxq->queue_base, rxq->queue_limit);
574
575         rxq->queue_id = rxq->queue_base;
576 }
577
578 static void
579 _avp_set_queue_counts(struct rte_eth_dev *eth_dev)
580 {
581         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
582         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
583         struct rte_avp_device_info *host_info;
584         void *addr;
585
586         addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr;
587         host_info = (struct rte_avp_device_info *)addr;
588
589         /*
590          * the transmit direction is not negotiated beyond respecting the max
591          * number of queues because the host can handle arbitrary guest tx
592          * queues (host rx queues).
593          */
594         avp->num_tx_queues = eth_dev->data->nb_tx_queues;
595
596         /*
597          * the receive direction is more restrictive.  The host requires a
598          * minimum number of guest rx queues (host tx queues) therefore
599          * negotiate a value that is at least as large as the host minimum
600          * requirement.  If the host and guest values are not identical then a
601          * mapping will be established in the receive_queue_setup function.
602          */
603         avp->num_rx_queues = RTE_MAX(host_info->min_rx_queues,
604                                      eth_dev->data->nb_rx_queues);
605
606         PMD_DRV_LOG(DEBUG, "Requesting %u Tx and %u Rx queues from host\n",
607                     avp->num_tx_queues, avp->num_rx_queues);
608 }
609
610 static int
611 avp_dev_attach(struct rte_eth_dev *eth_dev)
612 {
613         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
614         struct rte_avp_device_config config;
615         unsigned int i;
616         int ret;
617
618         PMD_DRV_LOG(NOTICE, "Attaching port %u to AVP device 0x%" PRIx64 "\n",
619                     eth_dev->data->port_id, avp->device_id);
620
621         rte_spinlock_lock(&avp->lock);
622
623         if (!(avp->flags & AVP_F_DETACHED)) {
624                 PMD_DRV_LOG(NOTICE, "port %u already attached\n",
625                             eth_dev->data->port_id);
626                 ret = 0;
627                 goto unlock;
628         }
629
630         /*
631          * make sure that the detached flag is set prior to reconfiguring the
632          * queues.
633          */
634         avp->flags |= AVP_F_DETACHED;
635         rte_wmb();
636
637         /*
638          * re-run the device create utility which will parse the new host info
639          * and setup the AVP device queue pointers.
640          */
641         ret = avp_dev_create(RTE_ETH_DEV_TO_PCI(eth_dev), eth_dev);
642         if (ret < 0) {
643                 PMD_DRV_LOG(ERR, "Failed to re-create AVP device, ret=%d\n",
644                             ret);
645                 goto unlock;
646         }
647
648         if (avp->flags & AVP_F_CONFIGURED) {
649                 /*
650                  * Update the receive queue mapping to handle cases where the
651                  * source and destination hosts have different queue
652                  * requirements.  As long as the DETACHED flag is asserted the
653                  * queue table should not be referenced so it should be safe to
654                  * update it.
655                  */
656                 _avp_set_queue_counts(eth_dev);
657                 for (i = 0; i < eth_dev->data->nb_rx_queues; i++)
658                         _avp_set_rx_queue_mappings(eth_dev, i);
659
660                 /*
661                  * Update the host with our config details so that it knows the
662                  * device is active.
663                  */
664                 memset(&config, 0, sizeof(config));
665                 config.device_id = avp->device_id;
666                 config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK;
667                 config.driver_version = AVP_DPDK_DRIVER_VERSION;
668                 config.features = avp->features;
669                 config.num_tx_queues = avp->num_tx_queues;
670                 config.num_rx_queues = avp->num_rx_queues;
671                 config.if_up = !!(avp->flags & AVP_F_LINKUP);
672
673                 ret = avp_dev_ctrl_set_config(eth_dev, &config);
674                 if (ret < 0) {
675                         PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n",
676                                     ret);
677                         goto unlock;
678                 }
679         }
680
681         rte_wmb();
682         avp->flags &= ~AVP_F_DETACHED;
683
684         ret = 0;
685
686 unlock:
687         rte_spinlock_unlock(&avp->lock);
688         return ret;
689 }
690
691 static void
692 avp_dev_interrupt_handler(void *data)
693 {
694         struct rte_eth_dev *eth_dev = data;
695         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
696         void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
697         uint32_t status, value;
698         int ret;
699
700         if (registers == NULL)
701                 rte_panic("no mapped MMIO register space\n");
702
703         /* read the interrupt status register
704          * note: this register clears on read so all raised interrupts must be
705          *    handled or remembered for later processing
706          */
707         status = AVP_READ32(
708                 RTE_PTR_ADD(registers,
709                             RTE_AVP_INTERRUPT_STATUS_OFFSET));
710
711         if (status & RTE_AVP_MIGRATION_INTERRUPT_MASK) {
712                 /* handle interrupt based on current status */
713                 value = AVP_READ32(
714                         RTE_PTR_ADD(registers,
715                                     RTE_AVP_MIGRATION_STATUS_OFFSET));
716                 switch (value) {
717                 case RTE_AVP_MIGRATION_DETACHED:
718                         ret = avp_dev_detach(eth_dev);
719                         break;
720                 case RTE_AVP_MIGRATION_ATTACHED:
721                         ret = avp_dev_attach(eth_dev);
722                         break;
723                 default:
724                         PMD_DRV_LOG(ERR, "unexpected migration status, status=%u\n",
725                                     value);
726                         ret = -EINVAL;
727                 }
728
729                 /* acknowledge the request by writing out our current status */
730                 value = (ret == 0 ? value : RTE_AVP_MIGRATION_ERROR);
731                 AVP_WRITE32(value,
732                             RTE_PTR_ADD(registers,
733                                         RTE_AVP_MIGRATION_ACK_OFFSET));
734
735                 PMD_DRV_LOG(NOTICE, "AVP migration interrupt handled\n");
736         }
737
738         if (status & ~RTE_AVP_MIGRATION_INTERRUPT_MASK)
739                 PMD_DRV_LOG(WARNING, "AVP unexpected interrupt, status=0x%08x\n",
740                             status);
741
742         /* re-enable UIO interrupt handling */
743         ret = rte_intr_enable(&pci_dev->intr_handle);
744         if (ret < 0) {
745                 PMD_DRV_LOG(ERR, "Failed to re-enable UIO interrupts, ret=%d\n",
746                             ret);
747                 /* continue */
748         }
749 }
750
751 static int
752 avp_dev_enable_interrupts(struct rte_eth_dev *eth_dev)
753 {
754         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
755         void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
756         int ret;
757
758         if (registers == NULL)
759                 return -EINVAL;
760
761         /* enable UIO interrupt handling */
762         ret = rte_intr_enable(&pci_dev->intr_handle);
763         if (ret < 0) {
764                 PMD_DRV_LOG(ERR, "Failed to enable UIO interrupts, ret=%d\n",
765                             ret);
766                 return ret;
767         }
768
769         /* inform the device that all interrupts are enabled */
770         AVP_WRITE32(RTE_AVP_APP_INTERRUPTS_MASK,
771                     RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET));
772
773         return 0;
774 }
775
776 static int
777 avp_dev_disable_interrupts(struct rte_eth_dev *eth_dev)
778 {
779         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
780         void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
781         int ret;
782
783         if (registers == NULL)
784                 return 0;
785
786         /* inform the device that all interrupts are disabled */
787         AVP_WRITE32(RTE_AVP_NO_INTERRUPTS_MASK,
788                     RTE_PTR_ADD(registers, RTE_AVP_INTERRUPT_MASK_OFFSET));
789
790         /* enable UIO interrupt handling */
791         ret = rte_intr_disable(&pci_dev->intr_handle);
792         if (ret < 0) {
793                 PMD_DRV_LOG(ERR, "Failed to disable UIO interrupts, ret=%d\n",
794                             ret);
795                 return ret;
796         }
797
798         return 0;
799 }
800
801 static int
802 avp_dev_setup_interrupts(struct rte_eth_dev *eth_dev)
803 {
804         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
805         int ret;
806
807         /* register a callback handler with UIO for interrupt notifications */
808         ret = rte_intr_callback_register(&pci_dev->intr_handle,
809                                          avp_dev_interrupt_handler,
810                                          (void *)eth_dev);
811         if (ret < 0) {
812                 PMD_DRV_LOG(ERR, "Failed to register UIO interrupt callback, ret=%d\n",
813                             ret);
814                 return ret;
815         }
816
817         /* enable interrupt processing */
818         return avp_dev_enable_interrupts(eth_dev);
819 }
820
821 static int
822 avp_dev_migration_pending(struct rte_eth_dev *eth_dev)
823 {
824         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
825         void *registers = pci_dev->mem_resource[RTE_AVP_PCI_MMIO_BAR].addr;
826         uint32_t value;
827
828         if (registers == NULL)
829                 return 0;
830
831         value = AVP_READ32(RTE_PTR_ADD(registers,
832                                        RTE_AVP_MIGRATION_STATUS_OFFSET));
833         if (value == RTE_AVP_MIGRATION_DETACHED) {
834                 /* migration is in progress; ack it if we have not already */
835                 AVP_WRITE32(value,
836                             RTE_PTR_ADD(registers,
837                                         RTE_AVP_MIGRATION_ACK_OFFSET));
838                 return 1;
839         }
840         return 0;
841 }
842
843 /*
844  * create a AVP device using the supplied device info by first translating it
845  * to guest address space(s).
846  */
847 static int
848 avp_dev_create(struct rte_pci_device *pci_dev,
849                struct rte_eth_dev *eth_dev)
850 {
851         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
852         struct rte_avp_device_info *host_info;
853         struct rte_mem_resource *resource;
854         unsigned int i;
855
856         resource = &pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR];
857         if (resource->addr == NULL) {
858                 PMD_DRV_LOG(ERR, "BAR%u is not mapped\n",
859                             RTE_AVP_PCI_DEVICE_BAR);
860                 return -EFAULT;
861         }
862         host_info = (struct rte_avp_device_info *)resource->addr;
863
864         if ((host_info->magic != RTE_AVP_DEVICE_MAGIC) ||
865                 avp_dev_version_check(host_info->version)) {
866                 PMD_DRV_LOG(ERR, "Invalid AVP PCI device, magic 0x%08x version 0x%08x > 0x%08x\n",
867                             host_info->magic, host_info->version,
868                             AVP_DPDK_DRIVER_VERSION);
869                 return -EINVAL;
870         }
871
872         PMD_DRV_LOG(DEBUG, "AVP host device is v%u.%u.%u\n",
873                     RTE_AVP_GET_RELEASE_VERSION(host_info->version),
874                     RTE_AVP_GET_MAJOR_VERSION(host_info->version),
875                     RTE_AVP_GET_MINOR_VERSION(host_info->version));
876
877         PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u TX queue(s)\n",
878                     host_info->min_tx_queues, host_info->max_tx_queues);
879         PMD_DRV_LOG(DEBUG, "AVP host supports %u to %u RX queue(s)\n",
880                     host_info->min_rx_queues, host_info->max_rx_queues);
881         PMD_DRV_LOG(DEBUG, "AVP host supports features 0x%08x\n",
882                     host_info->features);
883
884         if (avp->magic != AVP_ETHDEV_MAGIC) {
885                 /*
886                  * First time initialization (i.e., not during a VM
887                  * migration)
888                  */
889                 memset(avp, 0, sizeof(*avp));
890                 avp->magic = AVP_ETHDEV_MAGIC;
891                 avp->dev_data = eth_dev->data;
892                 avp->port_id = eth_dev->data->port_id;
893                 avp->host_mbuf_size = host_info->mbuf_size;
894                 avp->host_features = host_info->features;
895                 rte_spinlock_init(&avp->lock);
896                 memcpy(&avp->ethaddr.addr_bytes[0],
897                        host_info->ethaddr, ETHER_ADDR_LEN);
898                 /* adjust max values to not exceed our max */
899                 avp->max_tx_queues =
900                         RTE_MIN(host_info->max_tx_queues, RTE_AVP_MAX_QUEUES);
901                 avp->max_rx_queues =
902                         RTE_MIN(host_info->max_rx_queues, RTE_AVP_MAX_QUEUES);
903         } else {
904                 /* Re-attaching during migration */
905
906                 /* TODO... requires validation of host values */
907                 if ((host_info->features & avp->features) != avp->features) {
908                         PMD_DRV_LOG(ERR, "AVP host features mismatched; 0x%08x, host=0x%08x\n",
909                                     avp->features, host_info->features);
910                         /* this should not be possible; continue for now */
911                 }
912         }
913
914         /* the device id is allowed to change over migrations */
915         avp->device_id = host_info->device_id;
916
917         /* translate incoming host addresses to guest address space */
918         PMD_DRV_LOG(DEBUG, "AVP first host tx queue at 0x%" PRIx64 "\n",
919                     host_info->tx_phys);
920         PMD_DRV_LOG(DEBUG, "AVP first host alloc queue at 0x%" PRIx64 "\n",
921                     host_info->alloc_phys);
922         for (i = 0; i < avp->max_tx_queues; i++) {
923                 avp->tx_q[i] = avp_dev_translate_address(eth_dev,
924                         host_info->tx_phys + (i * host_info->tx_size));
925
926                 avp->alloc_q[i] = avp_dev_translate_address(eth_dev,
927                         host_info->alloc_phys + (i * host_info->alloc_size));
928         }
929
930         PMD_DRV_LOG(DEBUG, "AVP first host rx queue at 0x%" PRIx64 "\n",
931                     host_info->rx_phys);
932         PMD_DRV_LOG(DEBUG, "AVP first host free queue at 0x%" PRIx64 "\n",
933                     host_info->free_phys);
934         for (i = 0; i < avp->max_rx_queues; i++) {
935                 avp->rx_q[i] = avp_dev_translate_address(eth_dev,
936                         host_info->rx_phys + (i * host_info->rx_size));
937                 avp->free_q[i] = avp_dev_translate_address(eth_dev,
938                         host_info->free_phys + (i * host_info->free_size));
939         }
940
941         PMD_DRV_LOG(DEBUG, "AVP host request queue at 0x%" PRIx64 "\n",
942                     host_info->req_phys);
943         PMD_DRV_LOG(DEBUG, "AVP host response queue at 0x%" PRIx64 "\n",
944                     host_info->resp_phys);
945         PMD_DRV_LOG(DEBUG, "AVP host sync address at 0x%" PRIx64 "\n",
946                     host_info->sync_phys);
947         PMD_DRV_LOG(DEBUG, "AVP host mbuf address at 0x%" PRIx64 "\n",
948                     host_info->mbuf_phys);
949         avp->req_q = avp_dev_translate_address(eth_dev, host_info->req_phys);
950         avp->resp_q = avp_dev_translate_address(eth_dev, host_info->resp_phys);
951         avp->sync_addr =
952                 avp_dev_translate_address(eth_dev, host_info->sync_phys);
953         avp->mbuf_addr =
954                 avp_dev_translate_address(eth_dev, host_info->mbuf_phys);
955
956         /*
957          * store the host mbuf virtual address so that we can calculate
958          * relative offsets for each mbuf as they are processed
959          */
960         avp->host_mbuf_addr = host_info->mbuf_va;
961         avp->host_sync_addr = host_info->sync_va;
962
963         /*
964          * store the maximum packet length that is supported by the host.
965          */
966         avp->max_rx_pkt_len = host_info->max_rx_pkt_len;
967         PMD_DRV_LOG(DEBUG, "AVP host max receive packet length is %u\n",
968                                 host_info->max_rx_pkt_len);
969
970         return 0;
971 }
972
973 /*
974  * This function is based on probe() function in avp_pci.c
975  * It returns 0 on success.
976  */
977 static int
978 eth_avp_dev_init(struct rte_eth_dev *eth_dev)
979 {
980         struct avp_dev *avp =
981                 AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
982         struct rte_pci_device *pci_dev;
983         int ret;
984
985         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
986         eth_dev->dev_ops = &avp_eth_dev_ops;
987         eth_dev->rx_pkt_burst = &avp_recv_pkts;
988         eth_dev->tx_pkt_burst = &avp_xmit_pkts;
989
990         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
991                 /*
992                  * no setup required on secondary processes.  All data is saved
993                  * in dev_private by the primary process. All resource should
994                  * be mapped to the same virtual address so all pointers should
995                  * be valid.
996                  */
997                 if (eth_dev->data->scattered_rx) {
998                         PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
999                         eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
1000                         eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
1001                 }
1002                 return 0;
1003         }
1004
1005         rte_eth_copy_pci_info(eth_dev, pci_dev);
1006
1007         eth_dev->data->dev_flags |= RTE_ETH_DEV_DETACHABLE;
1008
1009         /* Check current migration status */
1010         if (avp_dev_migration_pending(eth_dev)) {
1011                 PMD_DRV_LOG(ERR, "VM live migration operation in progress\n");
1012                 return -EBUSY;
1013         }
1014
1015         /* Check BAR resources */
1016         ret = avp_dev_check_regions(eth_dev);
1017         if (ret < 0) {
1018                 PMD_DRV_LOG(ERR, "Failed to validate BAR resources, ret=%d\n",
1019                             ret);
1020                 return ret;
1021         }
1022
1023         /* Enable interrupts */
1024         ret = avp_dev_setup_interrupts(eth_dev);
1025         if (ret < 0) {
1026                 PMD_DRV_LOG(ERR, "Failed to enable interrupts, ret=%d\n", ret);
1027                 return ret;
1028         }
1029
1030         /* Handle each subtype */
1031         ret = avp_dev_create(pci_dev, eth_dev);
1032         if (ret < 0) {
1033                 PMD_DRV_LOG(ERR, "Failed to create device, ret=%d\n", ret);
1034                 return ret;
1035         }
1036
1037         /* Allocate memory for storing MAC addresses */
1038         eth_dev->data->mac_addrs = rte_zmalloc("avp_ethdev", ETHER_ADDR_LEN, 0);
1039         if (eth_dev->data->mac_addrs == NULL) {
1040                 PMD_DRV_LOG(ERR, "Failed to allocate %d bytes needed to store MAC addresses\n",
1041                             ETHER_ADDR_LEN);
1042                 return -ENOMEM;
1043         }
1044
1045         /* Get a mac from device config */
1046         ether_addr_copy(&avp->ethaddr, &eth_dev->data->mac_addrs[0]);
1047
1048         return 0;
1049 }
1050
1051 static int
1052 eth_avp_dev_uninit(struct rte_eth_dev *eth_dev)
1053 {
1054         int ret;
1055
1056         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1057                 return -EPERM;
1058
1059         if (eth_dev->data == NULL)
1060                 return 0;
1061
1062         ret = avp_dev_disable_interrupts(eth_dev);
1063         if (ret != 0) {
1064                 PMD_DRV_LOG(ERR, "Failed to disable interrupts, ret=%d\n", ret);
1065                 return ret;
1066         }
1067
1068         if (eth_dev->data->mac_addrs != NULL) {
1069                 rte_free(eth_dev->data->mac_addrs);
1070                 eth_dev->data->mac_addrs = NULL;
1071         }
1072
1073         return 0;
1074 }
1075
1076 static int
1077 eth_avp_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1078                   struct rte_pci_device *pci_dev)
1079 {
1080         struct rte_eth_dev *eth_dev;
1081         int ret;
1082
1083         eth_dev = rte_eth_dev_pci_allocate(pci_dev,
1084                                            sizeof(struct avp_adapter));
1085         if (eth_dev == NULL)
1086                 return -ENOMEM;
1087
1088         ret = eth_avp_dev_init(eth_dev);
1089         if (ret)
1090                 rte_eth_dev_pci_release(eth_dev);
1091
1092         return ret;
1093 }
1094
1095 static int
1096 eth_avp_pci_remove(struct rte_pci_device *pci_dev)
1097 {
1098         return rte_eth_dev_pci_generic_remove(pci_dev,
1099                                               eth_avp_dev_uninit);
1100 }
1101
1102 static struct rte_pci_driver rte_avp_pmd = {
1103         .id_table = pci_id_avp_map,
1104         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
1105         .probe = eth_avp_pci_probe,
1106         .remove = eth_avp_pci_remove,
1107 };
1108
1109 static int
1110 avp_dev_enable_scattered(struct rte_eth_dev *eth_dev,
1111                          struct avp_dev *avp)
1112 {
1113         unsigned int max_rx_pkt_len;
1114
1115         max_rx_pkt_len = eth_dev->data->dev_conf.rxmode.max_rx_pkt_len;
1116
1117         if ((max_rx_pkt_len > avp->guest_mbuf_size) ||
1118             (max_rx_pkt_len > avp->host_mbuf_size)) {
1119                 /*
1120                  * If the guest MTU is greater than either the host or guest
1121                  * buffers then chained mbufs have to be enabled in the TX
1122                  * direction.  It is assumed that the application will not need
1123                  * to send packets larger than their max_rx_pkt_len (MRU).
1124                  */
1125                 return 1;
1126         }
1127
1128         if ((avp->max_rx_pkt_len > avp->guest_mbuf_size) ||
1129             (avp->max_rx_pkt_len > avp->host_mbuf_size)) {
1130                 /*
1131                  * If the host MRU is greater than its own mbuf size or the
1132                  * guest mbuf size then chained mbufs have to be enabled in the
1133                  * RX direction.
1134                  */
1135                 return 1;
1136         }
1137
1138         return 0;
1139 }
1140
1141 static int
1142 avp_dev_rx_queue_setup(struct rte_eth_dev *eth_dev,
1143                        uint16_t rx_queue_id,
1144                        uint16_t nb_rx_desc,
1145                        unsigned int socket_id,
1146                        const struct rte_eth_rxconf *rx_conf,
1147                        struct rte_mempool *pool)
1148 {
1149         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1150         struct rte_pktmbuf_pool_private *mbp_priv;
1151         struct avp_queue *rxq;
1152
1153         if (rx_queue_id >= eth_dev->data->nb_rx_queues) {
1154                 PMD_DRV_LOG(ERR, "RX queue id is out of range: rx_queue_id=%u, nb_rx_queues=%u\n",
1155                             rx_queue_id, eth_dev->data->nb_rx_queues);
1156                 return -EINVAL;
1157         }
1158
1159         /* Save mbuf pool pointer */
1160         avp->pool = pool;
1161
1162         /* Save the local mbuf size */
1163         mbp_priv = rte_mempool_get_priv(pool);
1164         avp->guest_mbuf_size = (uint16_t)(mbp_priv->mbuf_data_room_size);
1165         avp->guest_mbuf_size -= RTE_PKTMBUF_HEADROOM;
1166
1167         if (avp_dev_enable_scattered(eth_dev, avp)) {
1168                 if (!eth_dev->data->scattered_rx) {
1169                         PMD_DRV_LOG(NOTICE, "AVP device configured for chained mbufs\n");
1170                         eth_dev->data->scattered_rx = 1;
1171                         eth_dev->rx_pkt_burst = avp_recv_scattered_pkts;
1172                         eth_dev->tx_pkt_burst = avp_xmit_scattered_pkts;
1173                 }
1174         }
1175
1176         PMD_DRV_LOG(DEBUG, "AVP max_rx_pkt_len=(%u,%u) mbuf_size=(%u,%u)\n",
1177                     avp->max_rx_pkt_len,
1178                     eth_dev->data->dev_conf.rxmode.max_rx_pkt_len,
1179                     avp->host_mbuf_size,
1180                     avp->guest_mbuf_size);
1181
1182         /* allocate a queue object */
1183         rxq = rte_zmalloc_socket("ethdev RX queue", sizeof(struct avp_queue),
1184                                  RTE_CACHE_LINE_SIZE, socket_id);
1185         if (rxq == NULL) {
1186                 PMD_DRV_LOG(ERR, "Failed to allocate new Rx queue object\n");
1187                 return -ENOMEM;
1188         }
1189
1190         /* save back pointers to AVP and Ethernet devices */
1191         rxq->avp = avp;
1192         rxq->dev_data = eth_dev->data;
1193         eth_dev->data->rx_queues[rx_queue_id] = (void *)rxq;
1194
1195         /* setup the queue receive mapping for the current queue. */
1196         _avp_set_rx_queue_mappings(eth_dev, rx_queue_id);
1197
1198         PMD_DRV_LOG(DEBUG, "Rx queue %u setup at %p\n", rx_queue_id, rxq);
1199
1200         (void)nb_rx_desc;
1201         (void)rx_conf;
1202         return 0;
1203 }
1204
1205 static int
1206 avp_dev_tx_queue_setup(struct rte_eth_dev *eth_dev,
1207                        uint16_t tx_queue_id,
1208                        uint16_t nb_tx_desc,
1209                        unsigned int socket_id,
1210                        const struct rte_eth_txconf *tx_conf)
1211 {
1212         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1213         struct avp_queue *txq;
1214
1215         if (tx_queue_id >= eth_dev->data->nb_tx_queues) {
1216                 PMD_DRV_LOG(ERR, "TX queue id is out of range: tx_queue_id=%u, nb_tx_queues=%u\n",
1217                             tx_queue_id, eth_dev->data->nb_tx_queues);
1218                 return -EINVAL;
1219         }
1220
1221         /* allocate a queue object */
1222         txq = rte_zmalloc_socket("ethdev TX queue", sizeof(struct avp_queue),
1223                                  RTE_CACHE_LINE_SIZE, socket_id);
1224         if (txq == NULL) {
1225                 PMD_DRV_LOG(ERR, "Failed to allocate new Tx queue object\n");
1226                 return -ENOMEM;
1227         }
1228
1229         /* only the configured set of transmit queues are used */
1230         txq->queue_id = tx_queue_id;
1231         txq->queue_base = tx_queue_id;
1232         txq->queue_limit = tx_queue_id;
1233
1234         /* save back pointers to AVP and Ethernet devices */
1235         txq->avp = avp;
1236         txq->dev_data = eth_dev->data;
1237         eth_dev->data->tx_queues[tx_queue_id] = (void *)txq;
1238
1239         PMD_DRV_LOG(DEBUG, "Tx queue %u setup at %p\n", tx_queue_id, txq);
1240
1241         (void)nb_tx_desc;
1242         (void)tx_conf;
1243         return 0;
1244 }
1245
1246 static inline int
1247 _avp_cmp_ether_addr(struct ether_addr *a, struct ether_addr *b)
1248 {
1249         uint16_t *_a = (uint16_t *)&a->addr_bytes[0];
1250         uint16_t *_b = (uint16_t *)&b->addr_bytes[0];
1251         return (_a[0] ^ _b[0]) | (_a[1] ^ _b[1]) | (_a[2] ^ _b[2]);
1252 }
1253
1254 static inline int
1255 _avp_mac_filter(struct avp_dev *avp, struct rte_mbuf *m)
1256 {
1257         struct ether_hdr *eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
1258
1259         if (likely(_avp_cmp_ether_addr(&avp->ethaddr, &eth->d_addr) == 0)) {
1260                 /* allow all packets destined to our address */
1261                 return 0;
1262         }
1263
1264         if (likely(is_broadcast_ether_addr(&eth->d_addr))) {
1265                 /* allow all broadcast packets */
1266                 return 0;
1267         }
1268
1269         if (likely(is_multicast_ether_addr(&eth->d_addr))) {
1270                 /* allow all multicast packets */
1271                 return 0;
1272         }
1273
1274         if (avp->flags & AVP_F_PROMISC) {
1275                 /* allow all packets when in promiscuous mode */
1276                 return 0;
1277         }
1278
1279         return -1;
1280 }
1281
1282 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
1283 static inline void
1284 __avp_dev_buffer_sanity_check(struct avp_dev *avp, struct rte_avp_desc *buf)
1285 {
1286         struct rte_avp_desc *first_buf;
1287         struct rte_avp_desc *pkt_buf;
1288         unsigned int pkt_len;
1289         unsigned int nb_segs;
1290         void *pkt_data;
1291         unsigned int i;
1292
1293         first_buf = avp_dev_translate_buffer(avp, buf);
1294
1295         i = 0;
1296         pkt_len = 0;
1297         nb_segs = first_buf->nb_segs;
1298         do {
1299                 /* Adjust pointers for guest addressing */
1300                 pkt_buf = avp_dev_translate_buffer(avp, buf);
1301                 if (pkt_buf == NULL)
1302                         rte_panic("bad buffer: segment %u has an invalid address %p\n",
1303                                   i, buf);
1304                 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1305                 if (pkt_data == NULL)
1306                         rte_panic("bad buffer: segment %u has a NULL data pointer\n",
1307                                   i);
1308                 if (pkt_buf->data_len == 0)
1309                         rte_panic("bad buffer: segment %u has 0 data length\n",
1310                                   i);
1311                 pkt_len += pkt_buf->data_len;
1312                 nb_segs--;
1313                 i++;
1314
1315         } while (nb_segs && (buf = pkt_buf->next) != NULL);
1316
1317         if (nb_segs != 0)
1318                 rte_panic("bad buffer: expected %u segments found %u\n",
1319                           first_buf->nb_segs, (first_buf->nb_segs - nb_segs));
1320         if (pkt_len != first_buf->pkt_len)
1321                 rte_panic("bad buffer: expected length %u found %u\n",
1322                           first_buf->pkt_len, pkt_len);
1323 }
1324
1325 #define avp_dev_buffer_sanity_check(a, b) \
1326         __avp_dev_buffer_sanity_check((a), (b))
1327
1328 #else /* RTE_LIBRTE_AVP_DEBUG_BUFFERS */
1329
1330 #define avp_dev_buffer_sanity_check(a, b) do {} while (0)
1331
1332 #endif
1333
1334 /*
1335  * Copy a host buffer chain to a set of mbufs.  This function assumes that
1336  * there exactly the required number of mbufs to copy all source bytes.
1337  */
1338 static inline struct rte_mbuf *
1339 avp_dev_copy_from_buffers(struct avp_dev *avp,
1340                           struct rte_avp_desc *buf,
1341                           struct rte_mbuf **mbufs,
1342                           unsigned int count)
1343 {
1344         struct rte_mbuf *m_previous = NULL;
1345         struct rte_avp_desc *pkt_buf;
1346         unsigned int total_length = 0;
1347         unsigned int copy_length;
1348         unsigned int src_offset;
1349         struct rte_mbuf *m;
1350         uint16_t ol_flags;
1351         uint16_t vlan_tci;
1352         void *pkt_data;
1353         unsigned int i;
1354
1355         avp_dev_buffer_sanity_check(avp, buf);
1356
1357         /* setup the first source buffer */
1358         pkt_buf = avp_dev_translate_buffer(avp, buf);
1359         pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1360         total_length = pkt_buf->pkt_len;
1361         src_offset = 0;
1362
1363         if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) {
1364                 ol_flags = PKT_RX_VLAN_PKT;
1365                 vlan_tci = pkt_buf->vlan_tci;
1366         } else {
1367                 ol_flags = 0;
1368                 vlan_tci = 0;
1369         }
1370
1371         for (i = 0; (i < count) && (buf != NULL); i++) {
1372                 /* fill each destination buffer */
1373                 m = mbufs[i];
1374
1375                 if (m_previous != NULL)
1376                         m_previous->next = m;
1377
1378                 m_previous = m;
1379
1380                 do {
1381                         /*
1382                          * Copy as many source buffers as will fit in the
1383                          * destination buffer.
1384                          */
1385                         copy_length = RTE_MIN((avp->guest_mbuf_size -
1386                                                rte_pktmbuf_data_len(m)),
1387                                               (pkt_buf->data_len -
1388                                                src_offset));
1389                         rte_memcpy(RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
1390                                                rte_pktmbuf_data_len(m)),
1391                                    RTE_PTR_ADD(pkt_data, src_offset),
1392                                    copy_length);
1393                         rte_pktmbuf_data_len(m) += copy_length;
1394                         src_offset += copy_length;
1395
1396                         if (likely(src_offset == pkt_buf->data_len)) {
1397                                 /* need a new source buffer */
1398                                 buf = pkt_buf->next;
1399                                 if (buf != NULL) {
1400                                         pkt_buf = avp_dev_translate_buffer(
1401                                                 avp, buf);
1402                                         pkt_data = avp_dev_translate_buffer(
1403                                                 avp, pkt_buf->data);
1404                                         src_offset = 0;
1405                                 }
1406                         }
1407
1408                         if (unlikely(rte_pktmbuf_data_len(m) ==
1409                                      avp->guest_mbuf_size)) {
1410                                 /* need a new destination mbuf */
1411                                 break;
1412                         }
1413
1414                 } while (buf != NULL);
1415         }
1416
1417         m = mbufs[0];
1418         m->ol_flags = ol_flags;
1419         m->nb_segs = count;
1420         rte_pktmbuf_pkt_len(m) = total_length;
1421         m->vlan_tci = vlan_tci;
1422
1423         __rte_mbuf_sanity_check(m, 1);
1424
1425         return m;
1426 }
1427
1428 static uint16_t
1429 avp_recv_scattered_pkts(void *rx_queue,
1430                         struct rte_mbuf **rx_pkts,
1431                         uint16_t nb_pkts)
1432 {
1433         struct avp_queue *rxq = (struct avp_queue *)rx_queue;
1434         struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST];
1435         struct rte_mbuf *mbufs[RTE_AVP_MAX_MBUF_SEGMENTS];
1436         struct avp_dev *avp = rxq->avp;
1437         struct rte_avp_desc *pkt_buf;
1438         struct rte_avp_fifo *free_q;
1439         struct rte_avp_fifo *rx_q;
1440         struct rte_avp_desc *buf;
1441         unsigned int count, avail, n;
1442         unsigned int guest_mbuf_size;
1443         struct rte_mbuf *m;
1444         unsigned int required;
1445         unsigned int buf_len;
1446         unsigned int port_id;
1447         unsigned int i;
1448
1449         if (unlikely(avp->flags & AVP_F_DETACHED)) {
1450                 /* VM live migration in progress */
1451                 return 0;
1452         }
1453
1454         guest_mbuf_size = avp->guest_mbuf_size;
1455         port_id = avp->port_id;
1456         rx_q = avp->rx_q[rxq->queue_id];
1457         free_q = avp->free_q[rxq->queue_id];
1458
1459         /* setup next queue to service */
1460         rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ?
1461                 (rxq->queue_id + 1) : rxq->queue_base;
1462
1463         /* determine how many slots are available in the free queue */
1464         count = avp_fifo_free_count(free_q);
1465
1466         /* determine how many packets are available in the rx queue */
1467         avail = avp_fifo_count(rx_q);
1468
1469         /* determine how many packets can be received */
1470         count = RTE_MIN(count, avail);
1471         count = RTE_MIN(count, nb_pkts);
1472         count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST);
1473
1474         if (unlikely(count == 0)) {
1475                 /* no free buffers, or no buffers on the rx queue */
1476                 return 0;
1477         }
1478
1479         /* retrieve pending packets */
1480         n = avp_fifo_get(rx_q, (void **)&avp_bufs, count);
1481         PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n",
1482                    count, rx_q);
1483
1484         count = 0;
1485         for (i = 0; i < n; i++) {
1486                 /* prefetch next entry while processing current one */
1487                 if (i + 1 < n) {
1488                         pkt_buf = avp_dev_translate_buffer(avp,
1489                                                            avp_bufs[i + 1]);
1490                         rte_prefetch0(pkt_buf);
1491                 }
1492                 buf = avp_bufs[i];
1493
1494                 /* Peek into the first buffer to determine the total length */
1495                 pkt_buf = avp_dev_translate_buffer(avp, buf);
1496                 buf_len = pkt_buf->pkt_len;
1497
1498                 /* Allocate enough mbufs to receive the entire packet */
1499                 required = (buf_len + guest_mbuf_size - 1) / guest_mbuf_size;
1500                 if (rte_pktmbuf_alloc_bulk(avp->pool, mbufs, required)) {
1501                         rxq->dev_data->rx_mbuf_alloc_failed++;
1502                         continue;
1503                 }
1504
1505                 /* Copy the data from the buffers to our mbufs */
1506                 m = avp_dev_copy_from_buffers(avp, buf, mbufs, required);
1507
1508                 /* finalize mbuf */
1509                 m->port = port_id;
1510
1511                 if (_avp_mac_filter(avp, m) != 0) {
1512                         /* silently discard packets not destined to our MAC */
1513                         rte_pktmbuf_free(m);
1514                         continue;
1515                 }
1516
1517                 /* return new mbuf to caller */
1518                 rx_pkts[count++] = m;
1519                 rxq->bytes += buf_len;
1520         }
1521
1522         rxq->packets += count;
1523
1524         /* return the buffers to the free queue */
1525         avp_fifo_put(free_q, (void **)&avp_bufs[0], n);
1526
1527         return count;
1528 }
1529
1530
1531 static uint16_t
1532 avp_recv_pkts(void *rx_queue,
1533               struct rte_mbuf **rx_pkts,
1534               uint16_t nb_pkts)
1535 {
1536         struct avp_queue *rxq = (struct avp_queue *)rx_queue;
1537         struct rte_avp_desc *avp_bufs[AVP_MAX_RX_BURST];
1538         struct avp_dev *avp = rxq->avp;
1539         struct rte_avp_desc *pkt_buf;
1540         struct rte_avp_fifo *free_q;
1541         struct rte_avp_fifo *rx_q;
1542         unsigned int count, avail, n;
1543         unsigned int pkt_len;
1544         struct rte_mbuf *m;
1545         char *pkt_data;
1546         unsigned int i;
1547
1548         if (unlikely(avp->flags & AVP_F_DETACHED)) {
1549                 /* VM live migration in progress */
1550                 return 0;
1551         }
1552
1553         rx_q = avp->rx_q[rxq->queue_id];
1554         free_q = avp->free_q[rxq->queue_id];
1555
1556         /* setup next queue to service */
1557         rxq->queue_id = (rxq->queue_id < rxq->queue_limit) ?
1558                 (rxq->queue_id + 1) : rxq->queue_base;
1559
1560         /* determine how many slots are available in the free queue */
1561         count = avp_fifo_free_count(free_q);
1562
1563         /* determine how many packets are available in the rx queue */
1564         avail = avp_fifo_count(rx_q);
1565
1566         /* determine how many packets can be received */
1567         count = RTE_MIN(count, avail);
1568         count = RTE_MIN(count, nb_pkts);
1569         count = RTE_MIN(count, (unsigned int)AVP_MAX_RX_BURST);
1570
1571         if (unlikely(count == 0)) {
1572                 /* no free buffers, or no buffers on the rx queue */
1573                 return 0;
1574         }
1575
1576         /* retrieve pending packets */
1577         n = avp_fifo_get(rx_q, (void **)&avp_bufs, count);
1578         PMD_RX_LOG(DEBUG, "Receiving %u packets from Rx queue at %p\n",
1579                    count, rx_q);
1580
1581         count = 0;
1582         for (i = 0; i < n; i++) {
1583                 /* prefetch next entry while processing current one */
1584                 if (i < n - 1) {
1585                         pkt_buf = avp_dev_translate_buffer(avp,
1586                                                            avp_bufs[i + 1]);
1587                         rte_prefetch0(pkt_buf);
1588                 }
1589
1590                 /* Adjust host pointers for guest addressing */
1591                 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
1592                 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1593                 pkt_len = pkt_buf->pkt_len;
1594
1595                 if (unlikely((pkt_len > avp->guest_mbuf_size) ||
1596                              (pkt_buf->nb_segs > 1))) {
1597                         /*
1598                          * application should be using the scattered receive
1599                          * function
1600                          */
1601                         rxq->errors++;
1602                         continue;
1603                 }
1604
1605                 /* process each packet to be transmitted */
1606                 m = rte_pktmbuf_alloc(avp->pool);
1607                 if (unlikely(m == NULL)) {
1608                         rxq->dev_data->rx_mbuf_alloc_failed++;
1609                         continue;
1610                 }
1611
1612                 /* copy data out of the host buffer to our buffer */
1613                 m->data_off = RTE_PKTMBUF_HEADROOM;
1614                 rte_memcpy(rte_pktmbuf_mtod(m, void *), pkt_data, pkt_len);
1615
1616                 /* initialize the local mbuf */
1617                 rte_pktmbuf_data_len(m) = pkt_len;
1618                 rte_pktmbuf_pkt_len(m) = pkt_len;
1619                 m->port = avp->port_id;
1620
1621                 if (pkt_buf->ol_flags & RTE_AVP_RX_VLAN_PKT) {
1622                         m->ol_flags = PKT_RX_VLAN_PKT;
1623                         m->vlan_tci = pkt_buf->vlan_tci;
1624                 }
1625
1626                 if (_avp_mac_filter(avp, m) != 0) {
1627                         /* silently discard packets not destined to our MAC */
1628                         rte_pktmbuf_free(m);
1629                         continue;
1630                 }
1631
1632                 /* return new mbuf to caller */
1633                 rx_pkts[count++] = m;
1634                 rxq->bytes += pkt_len;
1635         }
1636
1637         rxq->packets += count;
1638
1639         /* return the buffers to the free queue */
1640         avp_fifo_put(free_q, (void **)&avp_bufs[0], n);
1641
1642         return count;
1643 }
1644
1645 /*
1646  * Copy a chained mbuf to a set of host buffers.  This function assumes that
1647  * there are sufficient destination buffers to contain the entire source
1648  * packet.
1649  */
1650 static inline uint16_t
1651 avp_dev_copy_to_buffers(struct avp_dev *avp,
1652                         struct rte_mbuf *mbuf,
1653                         struct rte_avp_desc **buffers,
1654                         unsigned int count)
1655 {
1656         struct rte_avp_desc *previous_buf = NULL;
1657         struct rte_avp_desc *first_buf = NULL;
1658         struct rte_avp_desc *pkt_buf;
1659         struct rte_avp_desc *buf;
1660         size_t total_length;
1661         struct rte_mbuf *m;
1662         size_t copy_length;
1663         size_t src_offset;
1664         char *pkt_data;
1665         unsigned int i;
1666
1667         __rte_mbuf_sanity_check(mbuf, 1);
1668
1669         m = mbuf;
1670         src_offset = 0;
1671         total_length = rte_pktmbuf_pkt_len(m);
1672         for (i = 0; (i < count) && (m != NULL); i++) {
1673                 /* fill each destination buffer */
1674                 buf = buffers[i];
1675
1676                 if (i < count - 1) {
1677                         /* prefetch next entry while processing this one */
1678                         pkt_buf = avp_dev_translate_buffer(avp, buffers[i + 1]);
1679                         rte_prefetch0(pkt_buf);
1680                 }
1681
1682                 /* Adjust pointers for guest addressing */
1683                 pkt_buf = avp_dev_translate_buffer(avp, buf);
1684                 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1685
1686                 /* setup the buffer chain */
1687                 if (previous_buf != NULL)
1688                         previous_buf->next = buf;
1689                 else
1690                         first_buf = pkt_buf;
1691
1692                 previous_buf = pkt_buf;
1693
1694                 do {
1695                         /*
1696                          * copy as many source mbuf segments as will fit in the
1697                          * destination buffer.
1698                          */
1699                         copy_length = RTE_MIN((avp->host_mbuf_size -
1700                                                pkt_buf->data_len),
1701                                               (rte_pktmbuf_data_len(m) -
1702                                                src_offset));
1703                         rte_memcpy(RTE_PTR_ADD(pkt_data, pkt_buf->data_len),
1704                                    RTE_PTR_ADD(rte_pktmbuf_mtod(m, void *),
1705                                                src_offset),
1706                                    copy_length);
1707                         pkt_buf->data_len += copy_length;
1708                         src_offset += copy_length;
1709
1710                         if (likely(src_offset == rte_pktmbuf_data_len(m))) {
1711                                 /* need a new source buffer */
1712                                 m = m->next;
1713                                 src_offset = 0;
1714                         }
1715
1716                         if (unlikely(pkt_buf->data_len ==
1717                                      avp->host_mbuf_size)) {
1718                                 /* need a new destination buffer */
1719                                 break;
1720                         }
1721
1722                 } while (m != NULL);
1723         }
1724
1725         first_buf->nb_segs = count;
1726         first_buf->pkt_len = total_length;
1727
1728         if (mbuf->ol_flags & PKT_TX_VLAN_PKT) {
1729                 first_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
1730                 first_buf->vlan_tci = mbuf->vlan_tci;
1731         }
1732
1733         avp_dev_buffer_sanity_check(avp, buffers[0]);
1734
1735         return total_length;
1736 }
1737
1738
1739 static uint16_t
1740 avp_xmit_scattered_pkts(void *tx_queue,
1741                         struct rte_mbuf **tx_pkts,
1742                         uint16_t nb_pkts)
1743 {
1744         struct rte_avp_desc *avp_bufs[(AVP_MAX_TX_BURST *
1745                                        RTE_AVP_MAX_MBUF_SEGMENTS)];
1746         struct avp_queue *txq = (struct avp_queue *)tx_queue;
1747         struct rte_avp_desc *tx_bufs[AVP_MAX_TX_BURST];
1748         struct avp_dev *avp = txq->avp;
1749         struct rte_avp_fifo *alloc_q;
1750         struct rte_avp_fifo *tx_q;
1751         unsigned int count, avail, n;
1752         unsigned int orig_nb_pkts;
1753         struct rte_mbuf *m;
1754         unsigned int required;
1755         unsigned int segments;
1756         unsigned int tx_bytes;
1757         unsigned int i;
1758
1759         orig_nb_pkts = nb_pkts;
1760         if (unlikely(avp->flags & AVP_F_DETACHED)) {
1761                 /* VM live migration in progress */
1762                 /* TODO ... buffer for X packets then drop? */
1763                 txq->errors += nb_pkts;
1764                 return 0;
1765         }
1766
1767         tx_q = avp->tx_q[txq->queue_id];
1768         alloc_q = avp->alloc_q[txq->queue_id];
1769
1770         /* limit the number of transmitted packets to the max burst size */
1771         if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
1772                 nb_pkts = AVP_MAX_TX_BURST;
1773
1774         /* determine how many buffers are available to copy into */
1775         avail = avp_fifo_count(alloc_q);
1776         if (unlikely(avail > (AVP_MAX_TX_BURST *
1777                               RTE_AVP_MAX_MBUF_SEGMENTS)))
1778                 avail = AVP_MAX_TX_BURST * RTE_AVP_MAX_MBUF_SEGMENTS;
1779
1780         /* determine how many slots are available in the transmit queue */
1781         count = avp_fifo_free_count(tx_q);
1782
1783         /* determine how many packets can be sent */
1784         nb_pkts = RTE_MIN(count, nb_pkts);
1785
1786         /* determine how many packets will fit in the available buffers */
1787         count = 0;
1788         segments = 0;
1789         for (i = 0; i < nb_pkts; i++) {
1790                 m = tx_pkts[i];
1791                 if (likely(i < (unsigned int)nb_pkts - 1)) {
1792                         /* prefetch next entry while processing this one */
1793                         rte_prefetch0(tx_pkts[i + 1]);
1794                 }
1795                 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
1796                         avp->host_mbuf_size;
1797
1798                 if (unlikely((required == 0) ||
1799                              (required > RTE_AVP_MAX_MBUF_SEGMENTS)))
1800                         break;
1801                 else if (unlikely(required + segments > avail))
1802                         break;
1803                 segments += required;
1804                 count++;
1805         }
1806         nb_pkts = count;
1807
1808         if (unlikely(nb_pkts == 0)) {
1809                 /* no available buffers, or no space on the tx queue */
1810                 txq->errors += orig_nb_pkts;
1811                 return 0;
1812         }
1813
1814         PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
1815                    nb_pkts, tx_q);
1816
1817         /* retrieve sufficient send buffers */
1818         n = avp_fifo_get(alloc_q, (void **)&avp_bufs, segments);
1819         if (unlikely(n != segments)) {
1820                 PMD_TX_LOG(DEBUG, "Failed to allocate buffers "
1821                            "n=%u, segments=%u, orig=%u\n",
1822                            n, segments, orig_nb_pkts);
1823                 txq->errors += orig_nb_pkts;
1824                 return 0;
1825         }
1826
1827         tx_bytes = 0;
1828         count = 0;
1829         for (i = 0; i < nb_pkts; i++) {
1830                 /* process each packet to be transmitted */
1831                 m = tx_pkts[i];
1832
1833                 /* determine how many buffers are required for this packet */
1834                 required = (rte_pktmbuf_pkt_len(m) + avp->host_mbuf_size - 1) /
1835                         avp->host_mbuf_size;
1836
1837                 tx_bytes += avp_dev_copy_to_buffers(avp, m,
1838                                                     &avp_bufs[count], required);
1839                 tx_bufs[i] = avp_bufs[count];
1840                 count += required;
1841
1842                 /* free the original mbuf */
1843                 rte_pktmbuf_free(m);
1844         }
1845
1846         txq->packets += nb_pkts;
1847         txq->bytes += tx_bytes;
1848
1849 #ifdef RTE_LIBRTE_AVP_DEBUG_BUFFERS
1850         for (i = 0; i < nb_pkts; i++)
1851                 avp_dev_buffer_sanity_check(avp, tx_bufs[i]);
1852 #endif
1853
1854         /* send the packets */
1855         n = avp_fifo_put(tx_q, (void **)&tx_bufs[0], nb_pkts);
1856         if (unlikely(n != orig_nb_pkts))
1857                 txq->errors += (orig_nb_pkts - n);
1858
1859         return n;
1860 }
1861
1862
1863 static uint16_t
1864 avp_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
1865 {
1866         struct avp_queue *txq = (struct avp_queue *)tx_queue;
1867         struct rte_avp_desc *avp_bufs[AVP_MAX_TX_BURST];
1868         struct avp_dev *avp = txq->avp;
1869         struct rte_avp_desc *pkt_buf;
1870         struct rte_avp_fifo *alloc_q;
1871         struct rte_avp_fifo *tx_q;
1872         unsigned int count, avail, n;
1873         struct rte_mbuf *m;
1874         unsigned int pkt_len;
1875         unsigned int tx_bytes;
1876         char *pkt_data;
1877         unsigned int i;
1878
1879         if (unlikely(avp->flags & AVP_F_DETACHED)) {
1880                 /* VM live migration in progress */
1881                 /* TODO ... buffer for X packets then drop?! */
1882                 txq->errors++;
1883                 return 0;
1884         }
1885
1886         tx_q = avp->tx_q[txq->queue_id];
1887         alloc_q = avp->alloc_q[txq->queue_id];
1888
1889         /* limit the number of transmitted packets to the max burst size */
1890         if (unlikely(nb_pkts > AVP_MAX_TX_BURST))
1891                 nb_pkts = AVP_MAX_TX_BURST;
1892
1893         /* determine how many buffers are available to copy into */
1894         avail = avp_fifo_count(alloc_q);
1895
1896         /* determine how many slots are available in the transmit queue */
1897         count = avp_fifo_free_count(tx_q);
1898
1899         /* determine how many packets can be sent */
1900         count = RTE_MIN(count, avail);
1901         count = RTE_MIN(count, nb_pkts);
1902
1903         if (unlikely(count == 0)) {
1904                 /* no available buffers, or no space on the tx queue */
1905                 txq->errors += nb_pkts;
1906                 return 0;
1907         }
1908
1909         PMD_TX_LOG(DEBUG, "Sending %u packets on Tx queue at %p\n",
1910                    count, tx_q);
1911
1912         /* retrieve sufficient send buffers */
1913         n = avp_fifo_get(alloc_q, (void **)&avp_bufs, count);
1914         if (unlikely(n != count)) {
1915                 txq->errors++;
1916                 return 0;
1917         }
1918
1919         tx_bytes = 0;
1920         for (i = 0; i < count; i++) {
1921                 /* prefetch next entry while processing the current one */
1922                 if (i < count - 1) {
1923                         pkt_buf = avp_dev_translate_buffer(avp,
1924                                                            avp_bufs[i + 1]);
1925                         rte_prefetch0(pkt_buf);
1926                 }
1927
1928                 /* process each packet to be transmitted */
1929                 m = tx_pkts[i];
1930
1931                 /* Adjust pointers for guest addressing */
1932                 pkt_buf = avp_dev_translate_buffer(avp, avp_bufs[i]);
1933                 pkt_data = avp_dev_translate_buffer(avp, pkt_buf->data);
1934                 pkt_len = rte_pktmbuf_pkt_len(m);
1935
1936                 if (unlikely((pkt_len > avp->guest_mbuf_size) ||
1937                                          (pkt_len > avp->host_mbuf_size))) {
1938                         /*
1939                          * application should be using the scattered transmit
1940                          * function; send it truncated to avoid the performance
1941                          * hit of having to manage returning the already
1942                          * allocated buffer to the free list.  This should not
1943                          * happen since the application should have set the
1944                          * max_rx_pkt_len based on its MTU and it should be
1945                          * policing its own packet sizes.
1946                          */
1947                         txq->errors++;
1948                         pkt_len = RTE_MIN(avp->guest_mbuf_size,
1949                                           avp->host_mbuf_size);
1950                 }
1951
1952                 /* copy data out of our mbuf and into the AVP buffer */
1953                 rte_memcpy(pkt_data, rte_pktmbuf_mtod(m, void *), pkt_len);
1954                 pkt_buf->pkt_len = pkt_len;
1955                 pkt_buf->data_len = pkt_len;
1956                 pkt_buf->nb_segs = 1;
1957                 pkt_buf->next = NULL;
1958
1959                 if (m->ol_flags & PKT_TX_VLAN_PKT) {
1960                         pkt_buf->ol_flags |= RTE_AVP_TX_VLAN_PKT;
1961                         pkt_buf->vlan_tci = m->vlan_tci;
1962                 }
1963
1964                 tx_bytes += pkt_len;
1965
1966                 /* free the original mbuf */
1967                 rte_pktmbuf_free(m);
1968         }
1969
1970         txq->packets += count;
1971         txq->bytes += tx_bytes;
1972
1973         /* send the packets */
1974         n = avp_fifo_put(tx_q, (void **)&avp_bufs[0], count);
1975
1976         return n;
1977 }
1978
1979 static void
1980 avp_dev_rx_queue_release(void *rx_queue)
1981 {
1982         struct avp_queue *rxq = (struct avp_queue *)rx_queue;
1983         struct avp_dev *avp = rxq->avp;
1984         struct rte_eth_dev_data *data = avp->dev_data;
1985         unsigned int i;
1986
1987         for (i = 0; i < avp->num_rx_queues; i++) {
1988                 if (data->rx_queues[i] == rxq)
1989                         data->rx_queues[i] = NULL;
1990         }
1991 }
1992
1993 static void
1994 avp_dev_tx_queue_release(void *tx_queue)
1995 {
1996         struct avp_queue *txq = (struct avp_queue *)tx_queue;
1997         struct avp_dev *avp = txq->avp;
1998         struct rte_eth_dev_data *data = avp->dev_data;
1999         unsigned int i;
2000
2001         for (i = 0; i < avp->num_tx_queues; i++) {
2002                 if (data->tx_queues[i] == txq)
2003                         data->tx_queues[i] = NULL;
2004         }
2005 }
2006
2007 static int
2008 avp_dev_configure(struct rte_eth_dev *eth_dev)
2009 {
2010         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2011         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2012         struct rte_avp_device_info *host_info;
2013         struct rte_avp_device_config config;
2014         int mask = 0;
2015         void *addr;
2016         int ret;
2017
2018         rte_spinlock_lock(&avp->lock);
2019         if (avp->flags & AVP_F_DETACHED) {
2020                 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2021                 ret = -ENOTSUP;
2022                 goto unlock;
2023         }
2024
2025         addr = pci_dev->mem_resource[RTE_AVP_PCI_DEVICE_BAR].addr;
2026         host_info = (struct rte_avp_device_info *)addr;
2027
2028         /* Setup required number of queues */
2029         _avp_set_queue_counts(eth_dev);
2030
2031         mask = (ETH_VLAN_STRIP_MASK |
2032                 ETH_VLAN_FILTER_MASK |
2033                 ETH_VLAN_EXTEND_MASK);
2034         avp_vlan_offload_set(eth_dev, mask);
2035
2036         /* update device config */
2037         memset(&config, 0, sizeof(config));
2038         config.device_id = host_info->device_id;
2039         config.driver_type = RTE_AVP_DRIVER_TYPE_DPDK;
2040         config.driver_version = AVP_DPDK_DRIVER_VERSION;
2041         config.features = avp->features;
2042         config.num_tx_queues = avp->num_tx_queues;
2043         config.num_rx_queues = avp->num_rx_queues;
2044
2045         ret = avp_dev_ctrl_set_config(eth_dev, &config);
2046         if (ret < 0) {
2047                 PMD_DRV_LOG(ERR, "Config request failed by host, ret=%d\n",
2048                             ret);
2049                 goto unlock;
2050         }
2051
2052         avp->flags |= AVP_F_CONFIGURED;
2053         ret = 0;
2054
2055 unlock:
2056         rte_spinlock_unlock(&avp->lock);
2057         return ret;
2058 }
2059
2060 static int
2061 avp_dev_start(struct rte_eth_dev *eth_dev)
2062 {
2063         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2064         int ret;
2065
2066         rte_spinlock_lock(&avp->lock);
2067         if (avp->flags & AVP_F_DETACHED) {
2068                 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2069                 ret = -ENOTSUP;
2070                 goto unlock;
2071         }
2072
2073         /* disable features that we do not support */
2074         eth_dev->data->dev_conf.rxmode.hw_ip_checksum = 0;
2075         eth_dev->data->dev_conf.rxmode.hw_vlan_filter = 0;
2076         eth_dev->data->dev_conf.rxmode.hw_vlan_extend = 0;
2077         eth_dev->data->dev_conf.rxmode.hw_strip_crc = 0;
2078
2079         /* update link state */
2080         ret = avp_dev_ctrl_set_link_state(eth_dev, 1);
2081         if (ret < 0) {
2082                 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n",
2083                             ret);
2084                 goto unlock;
2085         }
2086
2087         /* remember current link state */
2088         avp->flags |= AVP_F_LINKUP;
2089
2090         ret = 0;
2091
2092 unlock:
2093         rte_spinlock_unlock(&avp->lock);
2094         return ret;
2095 }
2096
2097 static void
2098 avp_dev_stop(struct rte_eth_dev *eth_dev)
2099 {
2100         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2101         int ret;
2102
2103         rte_spinlock_lock(&avp->lock);
2104         if (avp->flags & AVP_F_DETACHED) {
2105                 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2106                 goto unlock;
2107         }
2108
2109         /* remember current link state */
2110         avp->flags &= ~AVP_F_LINKUP;
2111
2112         /* update link state */
2113         ret = avp_dev_ctrl_set_link_state(eth_dev, 0);
2114         if (ret < 0) {
2115                 PMD_DRV_LOG(ERR, "Link state change failed by host, ret=%d\n",
2116                             ret);
2117         }
2118
2119 unlock:
2120         rte_spinlock_unlock(&avp->lock);
2121 }
2122
2123 static void
2124 avp_dev_close(struct rte_eth_dev *eth_dev)
2125 {
2126         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2127         int ret;
2128
2129         rte_spinlock_lock(&avp->lock);
2130         if (avp->flags & AVP_F_DETACHED) {
2131                 PMD_DRV_LOG(ERR, "Operation not supported during VM live migration\n");
2132                 goto unlock;
2133         }
2134
2135         /* remember current link state */
2136         avp->flags &= ~AVP_F_LINKUP;
2137         avp->flags &= ~AVP_F_CONFIGURED;
2138
2139         ret = avp_dev_disable_interrupts(eth_dev);
2140         if (ret < 0) {
2141                 PMD_DRV_LOG(ERR, "Failed to disable interrupts\n");
2142                 /* continue */
2143         }
2144
2145         /* update device state */
2146         ret = avp_dev_ctrl_shutdown(eth_dev);
2147         if (ret < 0) {
2148                 PMD_DRV_LOG(ERR, "Device shutdown failed by host, ret=%d\n",
2149                             ret);
2150                 /* continue */
2151         }
2152
2153 unlock:
2154         rte_spinlock_unlock(&avp->lock);
2155 }
2156
2157 static int
2158 avp_dev_link_update(struct rte_eth_dev *eth_dev,
2159                                         __rte_unused int wait_to_complete)
2160 {
2161         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2162         struct rte_eth_link *link = &eth_dev->data->dev_link;
2163
2164         link->link_speed = ETH_SPEED_NUM_10G;
2165         link->link_duplex = ETH_LINK_FULL_DUPLEX;
2166         link->link_status = !!(avp->flags & AVP_F_LINKUP);
2167
2168         return -1;
2169 }
2170
2171 static void
2172 avp_dev_promiscuous_enable(struct rte_eth_dev *eth_dev)
2173 {
2174         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2175
2176         rte_spinlock_lock(&avp->lock);
2177         if ((avp->flags & AVP_F_PROMISC) == 0) {
2178                 avp->flags |= AVP_F_PROMISC;
2179                 PMD_DRV_LOG(DEBUG, "Promiscuous mode enabled on %u\n",
2180                             eth_dev->data->port_id);
2181         }
2182         rte_spinlock_unlock(&avp->lock);
2183 }
2184
2185 static void
2186 avp_dev_promiscuous_disable(struct rte_eth_dev *eth_dev)
2187 {
2188         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2189
2190         rte_spinlock_lock(&avp->lock);
2191         if ((avp->flags & AVP_F_PROMISC) != 0) {
2192                 avp->flags &= ~AVP_F_PROMISC;
2193                 PMD_DRV_LOG(DEBUG, "Promiscuous mode disabled on %u\n",
2194                             eth_dev->data->port_id);
2195         }
2196         rte_spinlock_unlock(&avp->lock);
2197 }
2198
2199 static void
2200 avp_dev_info_get(struct rte_eth_dev *eth_dev,
2201                  struct rte_eth_dev_info *dev_info)
2202 {
2203         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2204
2205         dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2206         dev_info->max_rx_queues = avp->max_rx_queues;
2207         dev_info->max_tx_queues = avp->max_tx_queues;
2208         dev_info->min_rx_bufsize = AVP_MIN_RX_BUFSIZE;
2209         dev_info->max_rx_pktlen = avp->max_rx_pkt_len;
2210         dev_info->max_mac_addrs = AVP_MAX_MAC_ADDRS;
2211         if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) {
2212                 dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP;
2213                 dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT;
2214         }
2215 }
2216
2217 static void
2218 avp_vlan_offload_set(struct rte_eth_dev *eth_dev, int mask)
2219 {
2220         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2221
2222         if (mask & ETH_VLAN_STRIP_MASK) {
2223                 if (avp->host_features & RTE_AVP_FEATURE_VLAN_OFFLOAD) {
2224                         if (eth_dev->data->dev_conf.rxmode.hw_vlan_strip)
2225                                 avp->features |= RTE_AVP_FEATURE_VLAN_OFFLOAD;
2226                         else
2227                                 avp->features &= ~RTE_AVP_FEATURE_VLAN_OFFLOAD;
2228                 } else {
2229                         PMD_DRV_LOG(ERR, "VLAN strip offload not supported\n");
2230                 }
2231         }
2232
2233         if (mask & ETH_VLAN_FILTER_MASK) {
2234                 if (eth_dev->data->dev_conf.rxmode.hw_vlan_filter)
2235                         PMD_DRV_LOG(ERR, "VLAN filter offload not supported\n");
2236         }
2237
2238         if (mask & ETH_VLAN_EXTEND_MASK) {
2239                 if (eth_dev->data->dev_conf.rxmode.hw_vlan_extend)
2240                         PMD_DRV_LOG(ERR, "VLAN extend offload not supported\n");
2241         }
2242 }
2243
2244 static void
2245 avp_dev_stats_get(struct rte_eth_dev *eth_dev, struct rte_eth_stats *stats)
2246 {
2247         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2248         unsigned int i;
2249
2250         for (i = 0; i < avp->num_rx_queues; i++) {
2251                 struct avp_queue *rxq = avp->dev_data->rx_queues[i];
2252
2253                 if (rxq) {
2254                         stats->ipackets += rxq->packets;
2255                         stats->ibytes += rxq->bytes;
2256                         stats->ierrors += rxq->errors;
2257
2258                         stats->q_ipackets[i] += rxq->packets;
2259                         stats->q_ibytes[i] += rxq->bytes;
2260                         stats->q_errors[i] += rxq->errors;
2261                 }
2262         }
2263
2264         for (i = 0; i < avp->num_tx_queues; i++) {
2265                 struct avp_queue *txq = avp->dev_data->tx_queues[i];
2266
2267                 if (txq) {
2268                         stats->opackets += txq->packets;
2269                         stats->obytes += txq->bytes;
2270                         stats->oerrors += txq->errors;
2271
2272                         stats->q_opackets[i] += txq->packets;
2273                         stats->q_obytes[i] += txq->bytes;
2274                         stats->q_errors[i] += txq->errors;
2275                 }
2276         }
2277 }
2278
2279 static void
2280 avp_dev_stats_reset(struct rte_eth_dev *eth_dev)
2281 {
2282         struct avp_dev *avp = AVP_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2283         unsigned int i;
2284
2285         for (i = 0; i < avp->num_rx_queues; i++) {
2286                 struct avp_queue *rxq = avp->dev_data->rx_queues[i];
2287
2288                 if (rxq) {
2289                         rxq->bytes = 0;
2290                         rxq->packets = 0;
2291                         rxq->errors = 0;
2292                 }
2293         }
2294
2295         for (i = 0; i < avp->num_tx_queues; i++) {
2296                 struct avp_queue *txq = avp->dev_data->tx_queues[i];
2297
2298                 if (txq) {
2299                         txq->bytes = 0;
2300                         txq->packets = 0;
2301                         txq->errors = 0;
2302                 }
2303         }
2304 }
2305
2306 RTE_PMD_REGISTER_PCI(net_avp, rte_avp_pmd);
2307 RTE_PMD_REGISTER_PCI_TABLE(net_avp, pci_id_avp_map);