New upstream version 18.11-rc1
[deb_dpdk.git] / drivers / net / cxgbe / base / t4_hw.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5
6 #include <netinet/in.h>
7
8 #include <rte_interrupts.h>
9 #include <rte_log.h>
10 #include <rte_debug.h>
11 #include <rte_pci.h>
12 #include <rte_atomic.h>
13 #include <rte_branch_prediction.h>
14 #include <rte_memory.h>
15 #include <rte_tailq.h>
16 #include <rte_eal.h>
17 #include <rte_alarm.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_malloc.h>
21 #include <rte_random.h>
22 #include <rte_dev.h>
23 #include <rte_byteorder.h>
24
25 #include "common.h"
26 #include "t4_regs.h"
27 #include "t4_regs_values.h"
28 #include "t4fw_interface.h"
29
30 /**
31  * t4_read_mtu_tbl - returns the values in the HW path MTU table
32  * @adap: the adapter
33  * @mtus: where to store the MTU values
34  * @mtu_log: where to store the MTU base-2 log (may be %NULL)
35  *
36  * Reads the HW path MTU table.
37  */
38 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
39 {
40         u32 v;
41         int i;
42
43         for (i = 0; i < NMTUS; ++i) {
44                 t4_write_reg(adap, A_TP_MTU_TABLE,
45                              V_MTUINDEX(0xff) | V_MTUVALUE(i));
46                 v = t4_read_reg(adap, A_TP_MTU_TABLE);
47                 mtus[i] = G_MTUVALUE(v);
48                 if (mtu_log)
49                         mtu_log[i] = G_MTUWIDTH(v);
50         }
51 }
52
53 /**
54  * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
55  * @adap: the adapter
56  * @addr: the indirect TP register address
57  * @mask: specifies the field within the register to modify
58  * @val: new value for the field
59  *
60  * Sets a field of an indirect TP register to the given value.
61  */
62 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
63                             unsigned int mask, unsigned int val)
64 {
65         t4_write_reg(adap, A_TP_PIO_ADDR, addr);
66         val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
67         t4_write_reg(adap, A_TP_PIO_DATA, val);
68 }
69
70 /* The minimum additive increment value for the congestion control table */
71 #define CC_MIN_INCR 2U
72
73 /**
74  * t4_load_mtus - write the MTU and congestion control HW tables
75  * @adap: the adapter
76  * @mtus: the values for the MTU table
77  * @alpha: the values for the congestion control alpha parameter
78  * @beta: the values for the congestion control beta parameter
79  *
80  * Write the HW MTU table with the supplied MTUs and the high-speed
81  * congestion control table with the supplied alpha, beta, and MTUs.
82  * We write the two tables together because the additive increments
83  * depend on the MTUs.
84  */
85 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
86                   const unsigned short *alpha, const unsigned short *beta)
87 {
88         static const unsigned int avg_pkts[NCCTRL_WIN] = {
89                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
90                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
91                 28672, 40960, 57344, 81920, 114688, 163840, 229376
92         };
93
94         unsigned int i, w;
95
96         for (i = 0; i < NMTUS; ++i) {
97                 unsigned int mtu = mtus[i];
98                 unsigned int log2 = cxgbe_fls(mtu);
99
100                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
101                         log2--;
102                 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
103                              V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
104
105                 for (w = 0; w < NCCTRL_WIN; ++w) {
106                         unsigned int inc;
107
108                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
109                                   CC_MIN_INCR);
110
111                         t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
112                                      (w << 16) | (beta[w] << 13) | inc);
113                 }
114         }
115 }
116
117 /**
118  * t4_wait_op_done_val - wait until an operation is completed
119  * @adapter: the adapter performing the operation
120  * @reg: the register to check for completion
121  * @mask: a single-bit field within @reg that indicates completion
122  * @polarity: the value of the field when the operation is completed
123  * @attempts: number of check iterations
124  * @delay: delay in usecs between iterations
125  * @valp: where to store the value of the register at completion time
126  *
127  * Wait until an operation is completed by checking a bit in a register
128  * up to @attempts times.  If @valp is not NULL the value of the register
129  * at the time it indicated completion is stored there.  Returns 0 if the
130  * operation completes and -EAGAIN otherwise.
131  */
132 int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
133                         int polarity, int attempts, int delay, u32 *valp)
134 {
135         while (1) {
136                 u32 val = t4_read_reg(adapter, reg);
137
138                 if (!!(val & mask) == polarity) {
139                         if (valp)
140                                 *valp = val;
141                         return 0;
142                 }
143                 if (--attempts == 0)
144                         return -EAGAIN;
145                 if (delay)
146                         udelay(delay);
147         }
148 }
149
150 /**
151  * t4_set_reg_field - set a register field to a value
152  * @adapter: the adapter to program
153  * @addr: the register address
154  * @mask: specifies the portion of the register to modify
155  * @val: the new value for the register field
156  *
157  * Sets a register field specified by the supplied mask to the
158  * given value.
159  */
160 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
161                       u32 val)
162 {
163         u32 v = t4_read_reg(adapter, addr) & ~mask;
164
165         t4_write_reg(adapter, addr, v | val);
166         (void)t4_read_reg(adapter, addr);      /* flush */
167 }
168
169 /**
170  * t4_read_indirect - read indirectly addressed registers
171  * @adap: the adapter
172  * @addr_reg: register holding the indirect address
173  * @data_reg: register holding the value of the indirect register
174  * @vals: where the read register values are stored
175  * @nregs: how many indirect registers to read
176  * @start_idx: index of first indirect register to read
177  *
178  * Reads registers that are accessed indirectly through an address/data
179  * register pair.
180  */
181 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
182                       unsigned int data_reg, u32 *vals, unsigned int nregs,
183                       unsigned int start_idx)
184 {
185         while (nregs--) {
186                 t4_write_reg(adap, addr_reg, start_idx);
187                 *vals++ = t4_read_reg(adap, data_reg);
188                 start_idx++;
189         }
190 }
191
192 /**
193  * t4_write_indirect - write indirectly addressed registers
194  * @adap: the adapter
195  * @addr_reg: register holding the indirect addresses
196  * @data_reg: register holding the value for the indirect registers
197  * @vals: values to write
198  * @nregs: how many indirect registers to write
199  * @start_idx: address of first indirect register to write
200  *
201  * Writes a sequential block of registers that are accessed indirectly
202  * through an address/data register pair.
203  */
204 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
205                        unsigned int data_reg, const u32 *vals,
206                        unsigned int nregs, unsigned int start_idx)
207 {
208         while (nregs--) {
209                 t4_write_reg(adap, addr_reg, start_idx++);
210                 t4_write_reg(adap, data_reg, *vals++);
211         }
212 }
213
214 /**
215  * t4_report_fw_error - report firmware error
216  * @adap: the adapter
217  *
218  * The adapter firmware can indicate error conditions to the host.
219  * If the firmware has indicated an error, print out the reason for
220  * the firmware error.
221  */
222 static void t4_report_fw_error(struct adapter *adap)
223 {
224         static const char * const reason[] = {
225                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
226                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
227                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
228                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
229                 "Unexpected Event",     /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
230                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
231                 "Device Shutdown",      /* PCIE_FW_EVAL_DEVICESHUTDOWN */
232                 "Reserved",                     /* reserved */
233         };
234         u32 pcie_fw;
235
236         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
237         if (pcie_fw & F_PCIE_FW_ERR)
238                 pr_err("%s: Firmware reports adapter error: %s\n",
239                        __func__, reason[G_PCIE_FW_EVAL(pcie_fw)]);
240 }
241
242 /*
243  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
244  */
245 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
246                          u32 mbox_addr)
247 {
248         for ( ; nflit; nflit--, mbox_addr += 8)
249                 *rpl++ = htobe64(t4_read_reg64(adap, mbox_addr));
250 }
251
252 /*
253  * Handle a FW assertion reported in a mailbox.
254  */
255 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
256 {
257         struct fw_debug_cmd asrt;
258
259         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
260         pr_warn("FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
261                 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
262                 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
263 }
264
265 #define X_CIM_PF_NOACCESS 0xeeeeeeee
266
267 /*
268  * If the Host OS Driver needs locking arround accesses to the mailbox, this
269  * can be turned on via the T4_OS_NEEDS_MBOX_LOCKING CPP define ...
270  */
271 /* makes single-statement usage a bit cleaner ... */
272 #ifdef T4_OS_NEEDS_MBOX_LOCKING
273 #define T4_OS_MBOX_LOCKING(x) x
274 #else
275 #define T4_OS_MBOX_LOCKING(x) do {} while (0)
276 #endif
277
278 /**
279  * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
280  * @adap: the adapter
281  * @mbox: index of the mailbox to use
282  * @cmd: the command to write
283  * @size: command length in bytes
284  * @rpl: where to optionally store the reply
285  * @sleep_ok: if true we may sleep while awaiting command completion
286  * @timeout: time to wait for command to finish before timing out
287  *           (negative implies @sleep_ok=false)
288  *
289  * Sends the given command to FW through the selected mailbox and waits
290  * for the FW to execute the command.  If @rpl is not %NULL it is used to
291  * store the FW's reply to the command.  The command and its optional
292  * reply are of the same length.  Some FW commands like RESET and
293  * INITIALIZE can take a considerable amount of time to execute.
294  * @sleep_ok determines whether we may sleep while awaiting the response.
295  * If sleeping is allowed we use progressive backoff otherwise we spin.
296  * Note that passing in a negative @timeout is an alternate mechanism
297  * for specifying @sleep_ok=false.  This is useful when a higher level
298  * interface allows for specification of @timeout but not @sleep_ok ...
299  *
300  * Returns 0 on success or a negative errno on failure.  A
301  * failure can happen either because we are not able to execute the
302  * command or FW executes it but signals an error.  In the latter case
303  * the return value is the error code indicated by FW (negated).
304  */
305 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox,
306                             const void __attribute__((__may_alias__)) *cmd,
307                             int size, void *rpl, bool sleep_ok, int timeout)
308 {
309         /*
310          * We delay in small increments at first in an effort to maintain
311          * responsiveness for simple, fast executing commands but then back
312          * off to larger delays to a maximum retry delay.
313          */
314         static const int delay[] = {
315                 1, 1, 3, 5, 10, 10, 20, 50, 100
316         };
317
318         u32 v;
319         u64 res;
320         int i, ms;
321         unsigned int delay_idx;
322         __be64 *temp = (__be64 *)malloc(size * sizeof(char));
323         __be64 *p = temp;
324         u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
325         u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
326         u32 ctl;
327         struct mbox_entry entry;
328         u32 pcie_fw = 0;
329
330         if (!temp)
331                 return -ENOMEM;
332
333         if ((size & 15) || size > MBOX_LEN) {
334                 free(temp);
335                 return -EINVAL;
336         }
337
338         bzero(p, size);
339         memcpy(p, (const __be64 *)cmd, size);
340
341         /*
342          * If we have a negative timeout, that implies that we can't sleep.
343          */
344         if (timeout < 0) {
345                 sleep_ok = false;
346                 timeout = -timeout;
347         }
348
349 #ifdef T4_OS_NEEDS_MBOX_LOCKING
350         /*
351          * Queue ourselves onto the mailbox access list.  When our entry is at
352          * the front of the list, we have rights to access the mailbox.  So we
353          * wait [for a while] till we're at the front [or bail out with an
354          * EBUSY] ...
355          */
356         t4_os_atomic_add_tail(&entry, &adap->mbox_list, &adap->mbox_lock);
357
358         delay_idx = 0;
359         ms = delay[0];
360
361         for (i = 0; ; i += ms) {
362                 /*
363                  * If we've waited too long, return a busy indication.  This
364                  * really ought to be based on our initial position in the
365                  * mailbox access list but this is a start.  We very rarely
366                  * contend on access to the mailbox ...  Also check for a
367                  * firmware error which we'll report as a device error.
368                  */
369                 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
370                 if (i > 4 * timeout || (pcie_fw & F_PCIE_FW_ERR)) {
371                         t4_os_atomic_list_del(&entry, &adap->mbox_list,
372                                               &adap->mbox_lock);
373                         t4_report_fw_error(adap);
374                         free(temp);
375                         return (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -EBUSY;
376                 }
377
378                 /*
379                  * If we're at the head, break out and start the mailbox
380                  * protocol.
381                  */
382                 if (t4_os_list_first_entry(&adap->mbox_list) == &entry)
383                         break;
384
385                 /*
386                  * Delay for a bit before checking again ...
387                  */
388                 if (sleep_ok) {
389                         ms = delay[delay_idx];  /* last element may repeat */
390                         if (delay_idx < ARRAY_SIZE(delay) - 1)
391                                 delay_idx++;
392                         msleep(ms);
393                 } else {
394                         rte_delay_ms(ms);
395                 }
396         }
397 #endif /* T4_OS_NEEDS_MBOX_LOCKING */
398
399         /*
400          * Attempt to gain access to the mailbox.
401          */
402         for (i = 0; i < 4; i++) {
403                 ctl = t4_read_reg(adap, ctl_reg);
404                 v = G_MBOWNER(ctl);
405                 if (v != X_MBOWNER_NONE)
406                         break;
407         }
408
409         /*
410          * If we were unable to gain access, dequeue ourselves from the
411          * mailbox atomic access list and report the error to our caller.
412          */
413         if (v != X_MBOWNER_PL) {
414                 T4_OS_MBOX_LOCKING(t4_os_atomic_list_del(&entry,
415                                                          &adap->mbox_list,
416                                                          &adap->mbox_lock));
417                 t4_report_fw_error(adap);
418                 free(temp);
419                 return (v == X_MBOWNER_FW ? -EBUSY : -ETIMEDOUT);
420         }
421
422         /*
423          * If we gain ownership of the mailbox and there's a "valid" message
424          * in it, this is likely an asynchronous error message from the
425          * firmware.  So we'll report that and then proceed on with attempting
426          * to issue our own command ... which may well fail if the error
427          * presaged the firmware crashing ...
428          */
429         if (ctl & F_MBMSGVALID) {
430                 dev_err(adap, "found VALID command in mbox %u: "
431                         "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
432                         (unsigned long long)t4_read_reg64(adap, data_reg),
433                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
434                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
435                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
436                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
437                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
438                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
439                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
440         }
441
442         /*
443          * Copy in the new mailbox command and send it on its way ...
444          */
445         for (i = 0; i < size; i += 8, p++)
446                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
447
448         CXGBE_DEBUG_MBOX(adap, "%s: mbox %u: %016llx %016llx %016llx %016llx "
449                         "%016llx %016llx %016llx %016llx\n", __func__,  (mbox),
450                         (unsigned long long)t4_read_reg64(adap, data_reg),
451                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
452                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
453                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
454                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
455                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
456                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
457                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
458
459         t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
460         t4_read_reg(adap, ctl_reg);          /* flush write */
461
462         delay_idx = 0;
463         ms = delay[0];
464
465         /*
466          * Loop waiting for the reply; bail out if we time out or the firmware
467          * reports an error.
468          */
469         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
470         for (i = 0; i < timeout && !(pcie_fw & F_PCIE_FW_ERR); i += ms) {
471                 if (sleep_ok) {
472                         ms = delay[delay_idx];  /* last element may repeat */
473                         if (delay_idx < ARRAY_SIZE(delay) - 1)
474                                 delay_idx++;
475                         msleep(ms);
476                 } else {
477                         msleep(ms);
478                 }
479
480                 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
481                 v = t4_read_reg(adap, ctl_reg);
482                 if (v == X_CIM_PF_NOACCESS)
483                         continue;
484                 if (G_MBOWNER(v) == X_MBOWNER_PL) {
485                         if (!(v & F_MBMSGVALID)) {
486                                 t4_write_reg(adap, ctl_reg,
487                                              V_MBOWNER(X_MBOWNER_NONE));
488                                 continue;
489                         }
490
491                         CXGBE_DEBUG_MBOX(adap,
492                         "%s: mbox %u: %016llx %016llx %016llx %016llx "
493                         "%016llx %016llx %016llx %016llx\n", __func__,  (mbox),
494                         (unsigned long long)t4_read_reg64(adap, data_reg),
495                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
496                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
497                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
498                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
499                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
500                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
501                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
502
503                         CXGBE_DEBUG_MBOX(adap,
504                                 "command %#x completed in %d ms (%ssleeping)\n",
505                                 *(const u8 *)cmd,
506                                 i + ms, sleep_ok ? "" : "non-");
507
508                         res = t4_read_reg64(adap, data_reg);
509                         if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
510                                 fw_asrt(adap, data_reg);
511                                 res = V_FW_CMD_RETVAL(EIO);
512                         } else if (rpl) {
513                                 get_mbox_rpl(adap, rpl, size / 8, data_reg);
514                         }
515                         t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
516                         T4_OS_MBOX_LOCKING(
517                                 t4_os_atomic_list_del(&entry, &adap->mbox_list,
518                                                       &adap->mbox_lock));
519                         free(temp);
520                         return -G_FW_CMD_RETVAL((int)res);
521                 }
522         }
523
524         /*
525          * We timed out waiting for a reply to our mailbox command.  Report
526          * the error and also check to see if the firmware reported any
527          * errors ...
528          */
529         dev_err(adap, "command %#x in mailbox %d timed out\n",
530                 *(const u8 *)cmd, mbox);
531         T4_OS_MBOX_LOCKING(t4_os_atomic_list_del(&entry,
532                                                  &adap->mbox_list,
533                                                  &adap->mbox_lock));
534         t4_report_fw_error(adap);
535         free(temp);
536         return (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
537 }
538
539 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
540                     void *rpl, bool sleep_ok)
541 {
542         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
543                                        FW_CMD_MAX_TIMEOUT);
544 }
545
546 /**
547  * t4_get_regs_len - return the size of the chips register set
548  * @adapter: the adapter
549  *
550  * Returns the size of the chip's BAR0 register space.
551  */
552 unsigned int t4_get_regs_len(struct adapter *adapter)
553 {
554         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
555
556         switch (chip_version) {
557         case CHELSIO_T5:
558         case CHELSIO_T6:
559                 return T5_REGMAP_SIZE;
560         }
561
562         dev_err(adapter,
563                 "Unsupported chip version %d\n", chip_version);
564         return 0;
565 }
566
567 /**
568  * t4_get_regs - read chip registers into provided buffer
569  * @adap: the adapter
570  * @buf: register buffer
571  * @buf_size: size (in bytes) of register buffer
572  *
573  * If the provided register buffer isn't large enough for the chip's
574  * full register range, the register dump will be truncated to the
575  * register buffer's size.
576  */
577 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
578 {
579         static const unsigned int t5_reg_ranges[] = {
580                 0x1008, 0x10c0,
581                 0x10cc, 0x10f8,
582                 0x1100, 0x1100,
583                 0x110c, 0x1148,
584                 0x1180, 0x1184,
585                 0x1190, 0x1194,
586                 0x11a0, 0x11a4,
587                 0x11b0, 0x11b4,
588                 0x11fc, 0x123c,
589                 0x1280, 0x173c,
590                 0x1800, 0x18fc,
591                 0x3000, 0x3028,
592                 0x3060, 0x30b0,
593                 0x30b8, 0x30d8,
594                 0x30e0, 0x30fc,
595                 0x3140, 0x357c,
596                 0x35a8, 0x35cc,
597                 0x35ec, 0x35ec,
598                 0x3600, 0x5624,
599                 0x56cc, 0x56ec,
600                 0x56f4, 0x5720,
601                 0x5728, 0x575c,
602                 0x580c, 0x5814,
603                 0x5890, 0x589c,
604                 0x58a4, 0x58ac,
605                 0x58b8, 0x58bc,
606                 0x5940, 0x59c8,
607                 0x59d0, 0x59dc,
608                 0x59fc, 0x5a18,
609                 0x5a60, 0x5a70,
610                 0x5a80, 0x5a9c,
611                 0x5b94, 0x5bfc,
612                 0x6000, 0x6020,
613                 0x6028, 0x6040,
614                 0x6058, 0x609c,
615                 0x60a8, 0x614c,
616                 0x7700, 0x7798,
617                 0x77c0, 0x78fc,
618                 0x7b00, 0x7b58,
619                 0x7b60, 0x7b84,
620                 0x7b8c, 0x7c54,
621                 0x7d00, 0x7d38,
622                 0x7d40, 0x7d80,
623                 0x7d8c, 0x7ddc,
624                 0x7de4, 0x7e04,
625                 0x7e10, 0x7e1c,
626                 0x7e24, 0x7e38,
627                 0x7e40, 0x7e44,
628                 0x7e4c, 0x7e78,
629                 0x7e80, 0x7edc,
630                 0x7ee8, 0x7efc,
631                 0x8dc0, 0x8de0,
632                 0x8df8, 0x8e04,
633                 0x8e10, 0x8e84,
634                 0x8ea0, 0x8f84,
635                 0x8fc0, 0x9058,
636                 0x9060, 0x9060,
637                 0x9068, 0x90f8,
638                 0x9400, 0x9408,
639                 0x9410, 0x9470,
640                 0x9600, 0x9600,
641                 0x9608, 0x9638,
642                 0x9640, 0x96f4,
643                 0x9800, 0x9808,
644                 0x9820, 0x983c,
645                 0x9850, 0x9864,
646                 0x9c00, 0x9c6c,
647                 0x9c80, 0x9cec,
648                 0x9d00, 0x9d6c,
649                 0x9d80, 0x9dec,
650                 0x9e00, 0x9e6c,
651                 0x9e80, 0x9eec,
652                 0x9f00, 0x9f6c,
653                 0x9f80, 0xa020,
654                 0xd004, 0xd004,
655                 0xd010, 0xd03c,
656                 0xdfc0, 0xdfe0,
657                 0xe000, 0x1106c,
658                 0x11074, 0x11088,
659                 0x1109c, 0x1117c,
660                 0x11190, 0x11204,
661                 0x19040, 0x1906c,
662                 0x19078, 0x19080,
663                 0x1908c, 0x190e8,
664                 0x190f0, 0x190f8,
665                 0x19100, 0x19110,
666                 0x19120, 0x19124,
667                 0x19150, 0x19194,
668                 0x1919c, 0x191b0,
669                 0x191d0, 0x191e8,
670                 0x19238, 0x19290,
671                 0x193f8, 0x19428,
672                 0x19430, 0x19444,
673                 0x1944c, 0x1946c,
674                 0x19474, 0x19474,
675                 0x19490, 0x194cc,
676                 0x194f0, 0x194f8,
677                 0x19c00, 0x19c08,
678                 0x19c10, 0x19c60,
679                 0x19c94, 0x19ce4,
680                 0x19cf0, 0x19d40,
681                 0x19d50, 0x19d94,
682                 0x19da0, 0x19de8,
683                 0x19df0, 0x19e10,
684                 0x19e50, 0x19e90,
685                 0x19ea0, 0x19f24,
686                 0x19f34, 0x19f34,
687                 0x19f40, 0x19f50,
688                 0x19f90, 0x19fb4,
689                 0x19fc4, 0x19fe4,
690                 0x1a000, 0x1a004,
691                 0x1a010, 0x1a06c,
692                 0x1a0b0, 0x1a0e4,
693                 0x1a0ec, 0x1a0f8,
694                 0x1a100, 0x1a108,
695                 0x1a114, 0x1a120,
696                 0x1a128, 0x1a130,
697                 0x1a138, 0x1a138,
698                 0x1a190, 0x1a1c4,
699                 0x1a1fc, 0x1a1fc,
700                 0x1e008, 0x1e00c,
701                 0x1e040, 0x1e044,
702                 0x1e04c, 0x1e04c,
703                 0x1e284, 0x1e290,
704                 0x1e2c0, 0x1e2c0,
705                 0x1e2e0, 0x1e2e0,
706                 0x1e300, 0x1e384,
707                 0x1e3c0, 0x1e3c8,
708                 0x1e408, 0x1e40c,
709                 0x1e440, 0x1e444,
710                 0x1e44c, 0x1e44c,
711                 0x1e684, 0x1e690,
712                 0x1e6c0, 0x1e6c0,
713                 0x1e6e0, 0x1e6e0,
714                 0x1e700, 0x1e784,
715                 0x1e7c0, 0x1e7c8,
716                 0x1e808, 0x1e80c,
717                 0x1e840, 0x1e844,
718                 0x1e84c, 0x1e84c,
719                 0x1ea84, 0x1ea90,
720                 0x1eac0, 0x1eac0,
721                 0x1eae0, 0x1eae0,
722                 0x1eb00, 0x1eb84,
723                 0x1ebc0, 0x1ebc8,
724                 0x1ec08, 0x1ec0c,
725                 0x1ec40, 0x1ec44,
726                 0x1ec4c, 0x1ec4c,
727                 0x1ee84, 0x1ee90,
728                 0x1eec0, 0x1eec0,
729                 0x1eee0, 0x1eee0,
730                 0x1ef00, 0x1ef84,
731                 0x1efc0, 0x1efc8,
732                 0x1f008, 0x1f00c,
733                 0x1f040, 0x1f044,
734                 0x1f04c, 0x1f04c,
735                 0x1f284, 0x1f290,
736                 0x1f2c0, 0x1f2c0,
737                 0x1f2e0, 0x1f2e0,
738                 0x1f300, 0x1f384,
739                 0x1f3c0, 0x1f3c8,
740                 0x1f408, 0x1f40c,
741                 0x1f440, 0x1f444,
742                 0x1f44c, 0x1f44c,
743                 0x1f684, 0x1f690,
744                 0x1f6c0, 0x1f6c0,
745                 0x1f6e0, 0x1f6e0,
746                 0x1f700, 0x1f784,
747                 0x1f7c0, 0x1f7c8,
748                 0x1f808, 0x1f80c,
749                 0x1f840, 0x1f844,
750                 0x1f84c, 0x1f84c,
751                 0x1fa84, 0x1fa90,
752                 0x1fac0, 0x1fac0,
753                 0x1fae0, 0x1fae0,
754                 0x1fb00, 0x1fb84,
755                 0x1fbc0, 0x1fbc8,
756                 0x1fc08, 0x1fc0c,
757                 0x1fc40, 0x1fc44,
758                 0x1fc4c, 0x1fc4c,
759                 0x1fe84, 0x1fe90,
760                 0x1fec0, 0x1fec0,
761                 0x1fee0, 0x1fee0,
762                 0x1ff00, 0x1ff84,
763                 0x1ffc0, 0x1ffc8,
764                 0x30000, 0x30030,
765                 0x30038, 0x30038,
766                 0x30040, 0x30040,
767                 0x30100, 0x30144,
768                 0x30190, 0x301a0,
769                 0x301a8, 0x301b8,
770                 0x301c4, 0x301c8,
771                 0x301d0, 0x301d0,
772                 0x30200, 0x30318,
773                 0x30400, 0x304b4,
774                 0x304c0, 0x3052c,
775                 0x30540, 0x3061c,
776                 0x30800, 0x30828,
777                 0x30834, 0x30834,
778                 0x308c0, 0x30908,
779                 0x30910, 0x309ac,
780                 0x30a00, 0x30a14,
781                 0x30a1c, 0x30a2c,
782                 0x30a44, 0x30a50,
783                 0x30a74, 0x30a74,
784                 0x30a7c, 0x30afc,
785                 0x30b08, 0x30c24,
786                 0x30d00, 0x30d00,
787                 0x30d08, 0x30d14,
788                 0x30d1c, 0x30d20,
789                 0x30d3c, 0x30d3c,
790                 0x30d48, 0x30d50,
791                 0x31200, 0x3120c,
792                 0x31220, 0x31220,
793                 0x31240, 0x31240,
794                 0x31600, 0x3160c,
795                 0x31a00, 0x31a1c,
796                 0x31e00, 0x31e20,
797                 0x31e38, 0x31e3c,
798                 0x31e80, 0x31e80,
799                 0x31e88, 0x31ea8,
800                 0x31eb0, 0x31eb4,
801                 0x31ec8, 0x31ed4,
802                 0x31fb8, 0x32004,
803                 0x32200, 0x32200,
804                 0x32208, 0x32240,
805                 0x32248, 0x32280,
806                 0x32288, 0x322c0,
807                 0x322c8, 0x322fc,
808                 0x32600, 0x32630,
809                 0x32a00, 0x32abc,
810                 0x32b00, 0x32b10,
811                 0x32b20, 0x32b30,
812                 0x32b40, 0x32b50,
813                 0x32b60, 0x32b70,
814                 0x33000, 0x33028,
815                 0x33030, 0x33048,
816                 0x33060, 0x33068,
817                 0x33070, 0x3309c,
818                 0x330f0, 0x33128,
819                 0x33130, 0x33148,
820                 0x33160, 0x33168,
821                 0x33170, 0x3319c,
822                 0x331f0, 0x33238,
823                 0x33240, 0x33240,
824                 0x33248, 0x33250,
825                 0x3325c, 0x33264,
826                 0x33270, 0x332b8,
827                 0x332c0, 0x332e4,
828                 0x332f8, 0x33338,
829                 0x33340, 0x33340,
830                 0x33348, 0x33350,
831                 0x3335c, 0x33364,
832                 0x33370, 0x333b8,
833                 0x333c0, 0x333e4,
834                 0x333f8, 0x33428,
835                 0x33430, 0x33448,
836                 0x33460, 0x33468,
837                 0x33470, 0x3349c,
838                 0x334f0, 0x33528,
839                 0x33530, 0x33548,
840                 0x33560, 0x33568,
841                 0x33570, 0x3359c,
842                 0x335f0, 0x33638,
843                 0x33640, 0x33640,
844                 0x33648, 0x33650,
845                 0x3365c, 0x33664,
846                 0x33670, 0x336b8,
847                 0x336c0, 0x336e4,
848                 0x336f8, 0x33738,
849                 0x33740, 0x33740,
850                 0x33748, 0x33750,
851                 0x3375c, 0x33764,
852                 0x33770, 0x337b8,
853                 0x337c0, 0x337e4,
854                 0x337f8, 0x337fc,
855                 0x33814, 0x33814,
856                 0x3382c, 0x3382c,
857                 0x33880, 0x3388c,
858                 0x338e8, 0x338ec,
859                 0x33900, 0x33928,
860                 0x33930, 0x33948,
861                 0x33960, 0x33968,
862                 0x33970, 0x3399c,
863                 0x339f0, 0x33a38,
864                 0x33a40, 0x33a40,
865                 0x33a48, 0x33a50,
866                 0x33a5c, 0x33a64,
867                 0x33a70, 0x33ab8,
868                 0x33ac0, 0x33ae4,
869                 0x33af8, 0x33b10,
870                 0x33b28, 0x33b28,
871                 0x33b3c, 0x33b50,
872                 0x33bf0, 0x33c10,
873                 0x33c28, 0x33c28,
874                 0x33c3c, 0x33c50,
875                 0x33cf0, 0x33cfc,
876                 0x34000, 0x34030,
877                 0x34038, 0x34038,
878                 0x34040, 0x34040,
879                 0x34100, 0x34144,
880                 0x34190, 0x341a0,
881                 0x341a8, 0x341b8,
882                 0x341c4, 0x341c8,
883                 0x341d0, 0x341d0,
884                 0x34200, 0x34318,
885                 0x34400, 0x344b4,
886                 0x344c0, 0x3452c,
887                 0x34540, 0x3461c,
888                 0x34800, 0x34828,
889                 0x34834, 0x34834,
890                 0x348c0, 0x34908,
891                 0x34910, 0x349ac,
892                 0x34a00, 0x34a14,
893                 0x34a1c, 0x34a2c,
894                 0x34a44, 0x34a50,
895                 0x34a74, 0x34a74,
896                 0x34a7c, 0x34afc,
897                 0x34b08, 0x34c24,
898                 0x34d00, 0x34d00,
899                 0x34d08, 0x34d14,
900                 0x34d1c, 0x34d20,
901                 0x34d3c, 0x34d3c,
902                 0x34d48, 0x34d50,
903                 0x35200, 0x3520c,
904                 0x35220, 0x35220,
905                 0x35240, 0x35240,
906                 0x35600, 0x3560c,
907                 0x35a00, 0x35a1c,
908                 0x35e00, 0x35e20,
909                 0x35e38, 0x35e3c,
910                 0x35e80, 0x35e80,
911                 0x35e88, 0x35ea8,
912                 0x35eb0, 0x35eb4,
913                 0x35ec8, 0x35ed4,
914                 0x35fb8, 0x36004,
915                 0x36200, 0x36200,
916                 0x36208, 0x36240,
917                 0x36248, 0x36280,
918                 0x36288, 0x362c0,
919                 0x362c8, 0x362fc,
920                 0x36600, 0x36630,
921                 0x36a00, 0x36abc,
922                 0x36b00, 0x36b10,
923                 0x36b20, 0x36b30,
924                 0x36b40, 0x36b50,
925                 0x36b60, 0x36b70,
926                 0x37000, 0x37028,
927                 0x37030, 0x37048,
928                 0x37060, 0x37068,
929                 0x37070, 0x3709c,
930                 0x370f0, 0x37128,
931                 0x37130, 0x37148,
932                 0x37160, 0x37168,
933                 0x37170, 0x3719c,
934                 0x371f0, 0x37238,
935                 0x37240, 0x37240,
936                 0x37248, 0x37250,
937                 0x3725c, 0x37264,
938                 0x37270, 0x372b8,
939                 0x372c0, 0x372e4,
940                 0x372f8, 0x37338,
941                 0x37340, 0x37340,
942                 0x37348, 0x37350,
943                 0x3735c, 0x37364,
944                 0x37370, 0x373b8,
945                 0x373c0, 0x373e4,
946                 0x373f8, 0x37428,
947                 0x37430, 0x37448,
948                 0x37460, 0x37468,
949                 0x37470, 0x3749c,
950                 0x374f0, 0x37528,
951                 0x37530, 0x37548,
952                 0x37560, 0x37568,
953                 0x37570, 0x3759c,
954                 0x375f0, 0x37638,
955                 0x37640, 0x37640,
956                 0x37648, 0x37650,
957                 0x3765c, 0x37664,
958                 0x37670, 0x376b8,
959                 0x376c0, 0x376e4,
960                 0x376f8, 0x37738,
961                 0x37740, 0x37740,
962                 0x37748, 0x37750,
963                 0x3775c, 0x37764,
964                 0x37770, 0x377b8,
965                 0x377c0, 0x377e4,
966                 0x377f8, 0x377fc,
967                 0x37814, 0x37814,
968                 0x3782c, 0x3782c,
969                 0x37880, 0x3788c,
970                 0x378e8, 0x378ec,
971                 0x37900, 0x37928,
972                 0x37930, 0x37948,
973                 0x37960, 0x37968,
974                 0x37970, 0x3799c,
975                 0x379f0, 0x37a38,
976                 0x37a40, 0x37a40,
977                 0x37a48, 0x37a50,
978                 0x37a5c, 0x37a64,
979                 0x37a70, 0x37ab8,
980                 0x37ac0, 0x37ae4,
981                 0x37af8, 0x37b10,
982                 0x37b28, 0x37b28,
983                 0x37b3c, 0x37b50,
984                 0x37bf0, 0x37c10,
985                 0x37c28, 0x37c28,
986                 0x37c3c, 0x37c50,
987                 0x37cf0, 0x37cfc,
988                 0x38000, 0x38030,
989                 0x38038, 0x38038,
990                 0x38040, 0x38040,
991                 0x38100, 0x38144,
992                 0x38190, 0x381a0,
993                 0x381a8, 0x381b8,
994                 0x381c4, 0x381c8,
995                 0x381d0, 0x381d0,
996                 0x38200, 0x38318,
997                 0x38400, 0x384b4,
998                 0x384c0, 0x3852c,
999                 0x38540, 0x3861c,
1000                 0x38800, 0x38828,
1001                 0x38834, 0x38834,
1002                 0x388c0, 0x38908,
1003                 0x38910, 0x389ac,
1004                 0x38a00, 0x38a14,
1005                 0x38a1c, 0x38a2c,
1006                 0x38a44, 0x38a50,
1007                 0x38a74, 0x38a74,
1008                 0x38a7c, 0x38afc,
1009                 0x38b08, 0x38c24,
1010                 0x38d00, 0x38d00,
1011                 0x38d08, 0x38d14,
1012                 0x38d1c, 0x38d20,
1013                 0x38d3c, 0x38d3c,
1014                 0x38d48, 0x38d50,
1015                 0x39200, 0x3920c,
1016                 0x39220, 0x39220,
1017                 0x39240, 0x39240,
1018                 0x39600, 0x3960c,
1019                 0x39a00, 0x39a1c,
1020                 0x39e00, 0x39e20,
1021                 0x39e38, 0x39e3c,
1022                 0x39e80, 0x39e80,
1023                 0x39e88, 0x39ea8,
1024                 0x39eb0, 0x39eb4,
1025                 0x39ec8, 0x39ed4,
1026                 0x39fb8, 0x3a004,
1027                 0x3a200, 0x3a200,
1028                 0x3a208, 0x3a240,
1029                 0x3a248, 0x3a280,
1030                 0x3a288, 0x3a2c0,
1031                 0x3a2c8, 0x3a2fc,
1032                 0x3a600, 0x3a630,
1033                 0x3aa00, 0x3aabc,
1034                 0x3ab00, 0x3ab10,
1035                 0x3ab20, 0x3ab30,
1036                 0x3ab40, 0x3ab50,
1037                 0x3ab60, 0x3ab70,
1038                 0x3b000, 0x3b028,
1039                 0x3b030, 0x3b048,
1040                 0x3b060, 0x3b068,
1041                 0x3b070, 0x3b09c,
1042                 0x3b0f0, 0x3b128,
1043                 0x3b130, 0x3b148,
1044                 0x3b160, 0x3b168,
1045                 0x3b170, 0x3b19c,
1046                 0x3b1f0, 0x3b238,
1047                 0x3b240, 0x3b240,
1048                 0x3b248, 0x3b250,
1049                 0x3b25c, 0x3b264,
1050                 0x3b270, 0x3b2b8,
1051                 0x3b2c0, 0x3b2e4,
1052                 0x3b2f8, 0x3b338,
1053                 0x3b340, 0x3b340,
1054                 0x3b348, 0x3b350,
1055                 0x3b35c, 0x3b364,
1056                 0x3b370, 0x3b3b8,
1057                 0x3b3c0, 0x3b3e4,
1058                 0x3b3f8, 0x3b428,
1059                 0x3b430, 0x3b448,
1060                 0x3b460, 0x3b468,
1061                 0x3b470, 0x3b49c,
1062                 0x3b4f0, 0x3b528,
1063                 0x3b530, 0x3b548,
1064                 0x3b560, 0x3b568,
1065                 0x3b570, 0x3b59c,
1066                 0x3b5f0, 0x3b638,
1067                 0x3b640, 0x3b640,
1068                 0x3b648, 0x3b650,
1069                 0x3b65c, 0x3b664,
1070                 0x3b670, 0x3b6b8,
1071                 0x3b6c0, 0x3b6e4,
1072                 0x3b6f8, 0x3b738,
1073                 0x3b740, 0x3b740,
1074                 0x3b748, 0x3b750,
1075                 0x3b75c, 0x3b764,
1076                 0x3b770, 0x3b7b8,
1077                 0x3b7c0, 0x3b7e4,
1078                 0x3b7f8, 0x3b7fc,
1079                 0x3b814, 0x3b814,
1080                 0x3b82c, 0x3b82c,
1081                 0x3b880, 0x3b88c,
1082                 0x3b8e8, 0x3b8ec,
1083                 0x3b900, 0x3b928,
1084                 0x3b930, 0x3b948,
1085                 0x3b960, 0x3b968,
1086                 0x3b970, 0x3b99c,
1087                 0x3b9f0, 0x3ba38,
1088                 0x3ba40, 0x3ba40,
1089                 0x3ba48, 0x3ba50,
1090                 0x3ba5c, 0x3ba64,
1091                 0x3ba70, 0x3bab8,
1092                 0x3bac0, 0x3bae4,
1093                 0x3baf8, 0x3bb10,
1094                 0x3bb28, 0x3bb28,
1095                 0x3bb3c, 0x3bb50,
1096                 0x3bbf0, 0x3bc10,
1097                 0x3bc28, 0x3bc28,
1098                 0x3bc3c, 0x3bc50,
1099                 0x3bcf0, 0x3bcfc,
1100                 0x3c000, 0x3c030,
1101                 0x3c038, 0x3c038,
1102                 0x3c040, 0x3c040,
1103                 0x3c100, 0x3c144,
1104                 0x3c190, 0x3c1a0,
1105                 0x3c1a8, 0x3c1b8,
1106                 0x3c1c4, 0x3c1c8,
1107                 0x3c1d0, 0x3c1d0,
1108                 0x3c200, 0x3c318,
1109                 0x3c400, 0x3c4b4,
1110                 0x3c4c0, 0x3c52c,
1111                 0x3c540, 0x3c61c,
1112                 0x3c800, 0x3c828,
1113                 0x3c834, 0x3c834,
1114                 0x3c8c0, 0x3c908,
1115                 0x3c910, 0x3c9ac,
1116                 0x3ca00, 0x3ca14,
1117                 0x3ca1c, 0x3ca2c,
1118                 0x3ca44, 0x3ca50,
1119                 0x3ca74, 0x3ca74,
1120                 0x3ca7c, 0x3cafc,
1121                 0x3cb08, 0x3cc24,
1122                 0x3cd00, 0x3cd00,
1123                 0x3cd08, 0x3cd14,
1124                 0x3cd1c, 0x3cd20,
1125                 0x3cd3c, 0x3cd3c,
1126                 0x3cd48, 0x3cd50,
1127                 0x3d200, 0x3d20c,
1128                 0x3d220, 0x3d220,
1129                 0x3d240, 0x3d240,
1130                 0x3d600, 0x3d60c,
1131                 0x3da00, 0x3da1c,
1132                 0x3de00, 0x3de20,
1133                 0x3de38, 0x3de3c,
1134                 0x3de80, 0x3de80,
1135                 0x3de88, 0x3dea8,
1136                 0x3deb0, 0x3deb4,
1137                 0x3dec8, 0x3ded4,
1138                 0x3dfb8, 0x3e004,
1139                 0x3e200, 0x3e200,
1140                 0x3e208, 0x3e240,
1141                 0x3e248, 0x3e280,
1142                 0x3e288, 0x3e2c0,
1143                 0x3e2c8, 0x3e2fc,
1144                 0x3e600, 0x3e630,
1145                 0x3ea00, 0x3eabc,
1146                 0x3eb00, 0x3eb10,
1147                 0x3eb20, 0x3eb30,
1148                 0x3eb40, 0x3eb50,
1149                 0x3eb60, 0x3eb70,
1150                 0x3f000, 0x3f028,
1151                 0x3f030, 0x3f048,
1152                 0x3f060, 0x3f068,
1153                 0x3f070, 0x3f09c,
1154                 0x3f0f0, 0x3f128,
1155                 0x3f130, 0x3f148,
1156                 0x3f160, 0x3f168,
1157                 0x3f170, 0x3f19c,
1158                 0x3f1f0, 0x3f238,
1159                 0x3f240, 0x3f240,
1160                 0x3f248, 0x3f250,
1161                 0x3f25c, 0x3f264,
1162                 0x3f270, 0x3f2b8,
1163                 0x3f2c0, 0x3f2e4,
1164                 0x3f2f8, 0x3f338,
1165                 0x3f340, 0x3f340,
1166                 0x3f348, 0x3f350,
1167                 0x3f35c, 0x3f364,
1168                 0x3f370, 0x3f3b8,
1169                 0x3f3c0, 0x3f3e4,
1170                 0x3f3f8, 0x3f428,
1171                 0x3f430, 0x3f448,
1172                 0x3f460, 0x3f468,
1173                 0x3f470, 0x3f49c,
1174                 0x3f4f0, 0x3f528,
1175                 0x3f530, 0x3f548,
1176                 0x3f560, 0x3f568,
1177                 0x3f570, 0x3f59c,
1178                 0x3f5f0, 0x3f638,
1179                 0x3f640, 0x3f640,
1180                 0x3f648, 0x3f650,
1181                 0x3f65c, 0x3f664,
1182                 0x3f670, 0x3f6b8,
1183                 0x3f6c0, 0x3f6e4,
1184                 0x3f6f8, 0x3f738,
1185                 0x3f740, 0x3f740,
1186                 0x3f748, 0x3f750,
1187                 0x3f75c, 0x3f764,
1188                 0x3f770, 0x3f7b8,
1189                 0x3f7c0, 0x3f7e4,
1190                 0x3f7f8, 0x3f7fc,
1191                 0x3f814, 0x3f814,
1192                 0x3f82c, 0x3f82c,
1193                 0x3f880, 0x3f88c,
1194                 0x3f8e8, 0x3f8ec,
1195                 0x3f900, 0x3f928,
1196                 0x3f930, 0x3f948,
1197                 0x3f960, 0x3f968,
1198                 0x3f970, 0x3f99c,
1199                 0x3f9f0, 0x3fa38,
1200                 0x3fa40, 0x3fa40,
1201                 0x3fa48, 0x3fa50,
1202                 0x3fa5c, 0x3fa64,
1203                 0x3fa70, 0x3fab8,
1204                 0x3fac0, 0x3fae4,
1205                 0x3faf8, 0x3fb10,
1206                 0x3fb28, 0x3fb28,
1207                 0x3fb3c, 0x3fb50,
1208                 0x3fbf0, 0x3fc10,
1209                 0x3fc28, 0x3fc28,
1210                 0x3fc3c, 0x3fc50,
1211                 0x3fcf0, 0x3fcfc,
1212                 0x40000, 0x4000c,
1213                 0x40040, 0x40050,
1214                 0x40060, 0x40068,
1215                 0x4007c, 0x4008c,
1216                 0x40094, 0x400b0,
1217                 0x400c0, 0x40144,
1218                 0x40180, 0x4018c,
1219                 0x40200, 0x40254,
1220                 0x40260, 0x40264,
1221                 0x40270, 0x40288,
1222                 0x40290, 0x40298,
1223                 0x402ac, 0x402c8,
1224                 0x402d0, 0x402e0,
1225                 0x402f0, 0x402f0,
1226                 0x40300, 0x4033c,
1227                 0x403f8, 0x403fc,
1228                 0x41304, 0x413c4,
1229                 0x41400, 0x4140c,
1230                 0x41414, 0x4141c,
1231                 0x41480, 0x414d0,
1232                 0x44000, 0x44054,
1233                 0x4405c, 0x44078,
1234                 0x440c0, 0x44174,
1235                 0x44180, 0x441ac,
1236                 0x441b4, 0x441b8,
1237                 0x441c0, 0x44254,
1238                 0x4425c, 0x44278,
1239                 0x442c0, 0x44374,
1240                 0x44380, 0x443ac,
1241                 0x443b4, 0x443b8,
1242                 0x443c0, 0x44454,
1243                 0x4445c, 0x44478,
1244                 0x444c0, 0x44574,
1245                 0x44580, 0x445ac,
1246                 0x445b4, 0x445b8,
1247                 0x445c0, 0x44654,
1248                 0x4465c, 0x44678,
1249                 0x446c0, 0x44774,
1250                 0x44780, 0x447ac,
1251                 0x447b4, 0x447b8,
1252                 0x447c0, 0x44854,
1253                 0x4485c, 0x44878,
1254                 0x448c0, 0x44974,
1255                 0x44980, 0x449ac,
1256                 0x449b4, 0x449b8,
1257                 0x449c0, 0x449fc,
1258                 0x45000, 0x45004,
1259                 0x45010, 0x45030,
1260                 0x45040, 0x45060,
1261                 0x45068, 0x45068,
1262                 0x45080, 0x45084,
1263                 0x450a0, 0x450b0,
1264                 0x45200, 0x45204,
1265                 0x45210, 0x45230,
1266                 0x45240, 0x45260,
1267                 0x45268, 0x45268,
1268                 0x45280, 0x45284,
1269                 0x452a0, 0x452b0,
1270                 0x460c0, 0x460e4,
1271                 0x47000, 0x4703c,
1272                 0x47044, 0x4708c,
1273                 0x47200, 0x47250,
1274                 0x47400, 0x47408,
1275                 0x47414, 0x47420,
1276                 0x47600, 0x47618,
1277                 0x47800, 0x47814,
1278                 0x48000, 0x4800c,
1279                 0x48040, 0x48050,
1280                 0x48060, 0x48068,
1281                 0x4807c, 0x4808c,
1282                 0x48094, 0x480b0,
1283                 0x480c0, 0x48144,
1284                 0x48180, 0x4818c,
1285                 0x48200, 0x48254,
1286                 0x48260, 0x48264,
1287                 0x48270, 0x48288,
1288                 0x48290, 0x48298,
1289                 0x482ac, 0x482c8,
1290                 0x482d0, 0x482e0,
1291                 0x482f0, 0x482f0,
1292                 0x48300, 0x4833c,
1293                 0x483f8, 0x483fc,
1294                 0x49304, 0x493c4,
1295                 0x49400, 0x4940c,
1296                 0x49414, 0x4941c,
1297                 0x49480, 0x494d0,
1298                 0x4c000, 0x4c054,
1299                 0x4c05c, 0x4c078,
1300                 0x4c0c0, 0x4c174,
1301                 0x4c180, 0x4c1ac,
1302                 0x4c1b4, 0x4c1b8,
1303                 0x4c1c0, 0x4c254,
1304                 0x4c25c, 0x4c278,
1305                 0x4c2c0, 0x4c374,
1306                 0x4c380, 0x4c3ac,
1307                 0x4c3b4, 0x4c3b8,
1308                 0x4c3c0, 0x4c454,
1309                 0x4c45c, 0x4c478,
1310                 0x4c4c0, 0x4c574,
1311                 0x4c580, 0x4c5ac,
1312                 0x4c5b4, 0x4c5b8,
1313                 0x4c5c0, 0x4c654,
1314                 0x4c65c, 0x4c678,
1315                 0x4c6c0, 0x4c774,
1316                 0x4c780, 0x4c7ac,
1317                 0x4c7b4, 0x4c7b8,
1318                 0x4c7c0, 0x4c854,
1319                 0x4c85c, 0x4c878,
1320                 0x4c8c0, 0x4c974,
1321                 0x4c980, 0x4c9ac,
1322                 0x4c9b4, 0x4c9b8,
1323                 0x4c9c0, 0x4c9fc,
1324                 0x4d000, 0x4d004,
1325                 0x4d010, 0x4d030,
1326                 0x4d040, 0x4d060,
1327                 0x4d068, 0x4d068,
1328                 0x4d080, 0x4d084,
1329                 0x4d0a0, 0x4d0b0,
1330                 0x4d200, 0x4d204,
1331                 0x4d210, 0x4d230,
1332                 0x4d240, 0x4d260,
1333                 0x4d268, 0x4d268,
1334                 0x4d280, 0x4d284,
1335                 0x4d2a0, 0x4d2b0,
1336                 0x4e0c0, 0x4e0e4,
1337                 0x4f000, 0x4f03c,
1338                 0x4f044, 0x4f08c,
1339                 0x4f200, 0x4f250,
1340                 0x4f400, 0x4f408,
1341                 0x4f414, 0x4f420,
1342                 0x4f600, 0x4f618,
1343                 0x4f800, 0x4f814,
1344                 0x50000, 0x50084,
1345                 0x50090, 0x500cc,
1346                 0x50400, 0x50400,
1347                 0x50800, 0x50884,
1348                 0x50890, 0x508cc,
1349                 0x50c00, 0x50c00,
1350                 0x51000, 0x5101c,
1351                 0x51300, 0x51308,
1352         };
1353
1354         static const unsigned int t6_reg_ranges[] = {
1355                 0x1008, 0x101c,
1356                 0x1024, 0x10a8,
1357                 0x10b4, 0x10f8,
1358                 0x1100, 0x1114,
1359                 0x111c, 0x112c,
1360                 0x1138, 0x113c,
1361                 0x1144, 0x114c,
1362                 0x1180, 0x1184,
1363                 0x1190, 0x1194,
1364                 0x11a0, 0x11a4,
1365                 0x11b0, 0x11b4,
1366                 0x11fc, 0x1274,
1367                 0x1280, 0x133c,
1368                 0x1800, 0x18fc,
1369                 0x3000, 0x302c,
1370                 0x3060, 0x30b0,
1371                 0x30b8, 0x30d8,
1372                 0x30e0, 0x30fc,
1373                 0x3140, 0x357c,
1374                 0x35a8, 0x35cc,
1375                 0x35ec, 0x35ec,
1376                 0x3600, 0x5624,
1377                 0x56cc, 0x56ec,
1378                 0x56f4, 0x5720,
1379                 0x5728, 0x575c,
1380                 0x580c, 0x5814,
1381                 0x5890, 0x589c,
1382                 0x58a4, 0x58ac,
1383                 0x58b8, 0x58bc,
1384                 0x5940, 0x595c,
1385                 0x5980, 0x598c,
1386                 0x59b0, 0x59c8,
1387                 0x59d0, 0x59dc,
1388                 0x59fc, 0x5a18,
1389                 0x5a60, 0x5a6c,
1390                 0x5a80, 0x5a8c,
1391                 0x5a94, 0x5a9c,
1392                 0x5b94, 0x5bfc,
1393                 0x5c10, 0x5e48,
1394                 0x5e50, 0x5e94,
1395                 0x5ea0, 0x5eb0,
1396                 0x5ec0, 0x5ec0,
1397                 0x5ec8, 0x5ed0,
1398                 0x5ee0, 0x5ee0,
1399                 0x5ef0, 0x5ef0,
1400                 0x5f00, 0x5f00,
1401                 0x6000, 0x6020,
1402                 0x6028, 0x6040,
1403                 0x6058, 0x609c,
1404                 0x60a8, 0x619c,
1405                 0x7700, 0x7798,
1406                 0x77c0, 0x7880,
1407                 0x78cc, 0x78fc,
1408                 0x7b00, 0x7b58,
1409                 0x7b60, 0x7b84,
1410                 0x7b8c, 0x7c54,
1411                 0x7d00, 0x7d38,
1412                 0x7d40, 0x7d84,
1413                 0x7d8c, 0x7ddc,
1414                 0x7de4, 0x7e04,
1415                 0x7e10, 0x7e1c,
1416                 0x7e24, 0x7e38,
1417                 0x7e40, 0x7e44,
1418                 0x7e4c, 0x7e78,
1419                 0x7e80, 0x7edc,
1420                 0x7ee8, 0x7efc,
1421                 0x8dc0, 0x8de4,
1422                 0x8df8, 0x8e04,
1423                 0x8e10, 0x8e84,
1424                 0x8ea0, 0x8f88,
1425                 0x8fb8, 0x9058,
1426                 0x9060, 0x9060,
1427                 0x9068, 0x90f8,
1428                 0x9100, 0x9124,
1429                 0x9400, 0x9470,
1430                 0x9600, 0x9600,
1431                 0x9608, 0x9638,
1432                 0x9640, 0x9704,
1433                 0x9710, 0x971c,
1434                 0x9800, 0x9808,
1435                 0x9820, 0x983c,
1436                 0x9850, 0x9864,
1437                 0x9c00, 0x9c6c,
1438                 0x9c80, 0x9cec,
1439                 0x9d00, 0x9d6c,
1440                 0x9d80, 0x9dec,
1441                 0x9e00, 0x9e6c,
1442                 0x9e80, 0x9eec,
1443                 0x9f00, 0x9f6c,
1444                 0x9f80, 0xa020,
1445                 0xd004, 0xd03c,
1446                 0xd100, 0xd118,
1447                 0xd200, 0xd214,
1448                 0xd220, 0xd234,
1449                 0xd240, 0xd254,
1450                 0xd260, 0xd274,
1451                 0xd280, 0xd294,
1452                 0xd2a0, 0xd2b4,
1453                 0xd2c0, 0xd2d4,
1454                 0xd2e0, 0xd2f4,
1455                 0xd300, 0xd31c,
1456                 0xdfc0, 0xdfe0,
1457                 0xe000, 0xf008,
1458                 0xf010, 0xf018,
1459                 0xf020, 0xf028,
1460                 0x11000, 0x11014,
1461                 0x11048, 0x1106c,
1462                 0x11074, 0x11088,
1463                 0x11098, 0x11120,
1464                 0x1112c, 0x1117c,
1465                 0x11190, 0x112e0,
1466                 0x11300, 0x1130c,
1467                 0x12000, 0x1206c,
1468                 0x19040, 0x1906c,
1469                 0x19078, 0x19080,
1470                 0x1908c, 0x190e8,
1471                 0x190f0, 0x190f8,
1472                 0x19100, 0x19110,
1473                 0x19120, 0x19124,
1474                 0x19150, 0x19194,
1475                 0x1919c, 0x191b0,
1476                 0x191d0, 0x191e8,
1477                 0x19238, 0x19290,
1478                 0x192a4, 0x192b0,
1479                 0x192bc, 0x192bc,
1480                 0x19348, 0x1934c,
1481                 0x193f8, 0x19418,
1482                 0x19420, 0x19428,
1483                 0x19430, 0x19444,
1484                 0x1944c, 0x1946c,
1485                 0x19474, 0x19474,
1486                 0x19490, 0x194cc,
1487                 0x194f0, 0x194f8,
1488                 0x19c00, 0x19c48,
1489                 0x19c50, 0x19c80,
1490                 0x19c94, 0x19c98,
1491                 0x19ca0, 0x19cbc,
1492                 0x19ce4, 0x19ce4,
1493                 0x19cf0, 0x19cf8,
1494                 0x19d00, 0x19d28,
1495                 0x19d50, 0x19d78,
1496                 0x19d94, 0x19d98,
1497                 0x19da0, 0x19dc8,
1498                 0x19df0, 0x19e10,
1499                 0x19e50, 0x19e6c,
1500                 0x19ea0, 0x19ebc,
1501                 0x19ec4, 0x19ef4,
1502                 0x19f04, 0x19f2c,
1503                 0x19f34, 0x19f34,
1504                 0x19f40, 0x19f50,
1505                 0x19f90, 0x19fac,
1506                 0x19fc4, 0x19fc8,
1507                 0x19fd0, 0x19fe4,
1508                 0x1a000, 0x1a004,
1509                 0x1a010, 0x1a06c,
1510                 0x1a0b0, 0x1a0e4,
1511                 0x1a0ec, 0x1a0f8,
1512                 0x1a100, 0x1a108,
1513                 0x1a114, 0x1a120,
1514                 0x1a128, 0x1a130,
1515                 0x1a138, 0x1a138,
1516                 0x1a190, 0x1a1c4,
1517                 0x1a1fc, 0x1a1fc,
1518                 0x1e008, 0x1e00c,
1519                 0x1e040, 0x1e044,
1520                 0x1e04c, 0x1e04c,
1521                 0x1e284, 0x1e290,
1522                 0x1e2c0, 0x1e2c0,
1523                 0x1e2e0, 0x1e2e0,
1524                 0x1e300, 0x1e384,
1525                 0x1e3c0, 0x1e3c8,
1526                 0x1e408, 0x1e40c,
1527                 0x1e440, 0x1e444,
1528                 0x1e44c, 0x1e44c,
1529                 0x1e684, 0x1e690,
1530                 0x1e6c0, 0x1e6c0,
1531                 0x1e6e0, 0x1e6e0,
1532                 0x1e700, 0x1e784,
1533                 0x1e7c0, 0x1e7c8,
1534                 0x1e808, 0x1e80c,
1535                 0x1e840, 0x1e844,
1536                 0x1e84c, 0x1e84c,
1537                 0x1ea84, 0x1ea90,
1538                 0x1eac0, 0x1eac0,
1539                 0x1eae0, 0x1eae0,
1540                 0x1eb00, 0x1eb84,
1541                 0x1ebc0, 0x1ebc8,
1542                 0x1ec08, 0x1ec0c,
1543                 0x1ec40, 0x1ec44,
1544                 0x1ec4c, 0x1ec4c,
1545                 0x1ee84, 0x1ee90,
1546                 0x1eec0, 0x1eec0,
1547                 0x1eee0, 0x1eee0,
1548                 0x1ef00, 0x1ef84,
1549                 0x1efc0, 0x1efc8,
1550                 0x1f008, 0x1f00c,
1551                 0x1f040, 0x1f044,
1552                 0x1f04c, 0x1f04c,
1553                 0x1f284, 0x1f290,
1554                 0x1f2c0, 0x1f2c0,
1555                 0x1f2e0, 0x1f2e0,
1556                 0x1f300, 0x1f384,
1557                 0x1f3c0, 0x1f3c8,
1558                 0x1f408, 0x1f40c,
1559                 0x1f440, 0x1f444,
1560                 0x1f44c, 0x1f44c,
1561                 0x1f684, 0x1f690,
1562                 0x1f6c0, 0x1f6c0,
1563                 0x1f6e0, 0x1f6e0,
1564                 0x1f700, 0x1f784,
1565                 0x1f7c0, 0x1f7c8,
1566                 0x1f808, 0x1f80c,
1567                 0x1f840, 0x1f844,
1568                 0x1f84c, 0x1f84c,
1569                 0x1fa84, 0x1fa90,
1570                 0x1fac0, 0x1fac0,
1571                 0x1fae0, 0x1fae0,
1572                 0x1fb00, 0x1fb84,
1573                 0x1fbc0, 0x1fbc8,
1574                 0x1fc08, 0x1fc0c,
1575                 0x1fc40, 0x1fc44,
1576                 0x1fc4c, 0x1fc4c,
1577                 0x1fe84, 0x1fe90,
1578                 0x1fec0, 0x1fec0,
1579                 0x1fee0, 0x1fee0,
1580                 0x1ff00, 0x1ff84,
1581                 0x1ffc0, 0x1ffc8,
1582                 0x30000, 0x30030,
1583                 0x30100, 0x30168,
1584                 0x30190, 0x301a0,
1585                 0x301a8, 0x301b8,
1586                 0x301c4, 0x301c8,
1587                 0x301d0, 0x301d0,
1588                 0x30200, 0x30320,
1589                 0x30400, 0x304b4,
1590                 0x304c0, 0x3052c,
1591                 0x30540, 0x3061c,
1592                 0x30800, 0x308a0,
1593                 0x308c0, 0x30908,
1594                 0x30910, 0x309b8,
1595                 0x30a00, 0x30a04,
1596                 0x30a0c, 0x30a14,
1597                 0x30a1c, 0x30a2c,
1598                 0x30a44, 0x30a50,
1599                 0x30a74, 0x30a74,
1600                 0x30a7c, 0x30afc,
1601                 0x30b08, 0x30c24,
1602                 0x30d00, 0x30d14,
1603                 0x30d1c, 0x30d3c,
1604                 0x30d44, 0x30d4c,
1605                 0x30d54, 0x30d74,
1606                 0x30d7c, 0x30d7c,
1607                 0x30de0, 0x30de0,
1608                 0x30e00, 0x30ed4,
1609                 0x30f00, 0x30fa4,
1610                 0x30fc0, 0x30fc4,
1611                 0x31000, 0x31004,
1612                 0x31080, 0x310fc,
1613                 0x31208, 0x31220,
1614                 0x3123c, 0x31254,
1615                 0x31300, 0x31300,
1616                 0x31308, 0x3131c,
1617                 0x31338, 0x3133c,
1618                 0x31380, 0x31380,
1619                 0x31388, 0x313a8,
1620                 0x313b4, 0x313b4,
1621                 0x31400, 0x31420,
1622                 0x31438, 0x3143c,
1623                 0x31480, 0x31480,
1624                 0x314a8, 0x314a8,
1625                 0x314b0, 0x314b4,
1626                 0x314c8, 0x314d4,
1627                 0x31a40, 0x31a4c,
1628                 0x31af0, 0x31b20,
1629                 0x31b38, 0x31b3c,
1630                 0x31b80, 0x31b80,
1631                 0x31ba8, 0x31ba8,
1632                 0x31bb0, 0x31bb4,
1633                 0x31bc8, 0x31bd4,
1634                 0x32140, 0x3218c,
1635                 0x321f0, 0x321f4,
1636                 0x32200, 0x32200,
1637                 0x32218, 0x32218,
1638                 0x32400, 0x32400,
1639                 0x32408, 0x3241c,
1640                 0x32618, 0x32620,
1641                 0x32664, 0x32664,
1642                 0x326a8, 0x326a8,
1643                 0x326ec, 0x326ec,
1644                 0x32a00, 0x32abc,
1645                 0x32b00, 0x32b38,
1646                 0x32b20, 0x32b38,
1647                 0x32b40, 0x32b58,
1648                 0x32b60, 0x32b78,
1649                 0x32c00, 0x32c00,
1650                 0x32c08, 0x32c3c,
1651                 0x33000, 0x3302c,
1652                 0x33034, 0x33050,
1653                 0x33058, 0x33058,
1654                 0x33060, 0x3308c,
1655                 0x3309c, 0x330ac,
1656                 0x330c0, 0x330c0,
1657                 0x330c8, 0x330d0,
1658                 0x330d8, 0x330e0,
1659                 0x330ec, 0x3312c,
1660                 0x33134, 0x33150,
1661                 0x33158, 0x33158,
1662                 0x33160, 0x3318c,
1663                 0x3319c, 0x331ac,
1664                 0x331c0, 0x331c0,
1665                 0x331c8, 0x331d0,
1666                 0x331d8, 0x331e0,
1667                 0x331ec, 0x33290,
1668                 0x33298, 0x332c4,
1669                 0x332e4, 0x33390,
1670                 0x33398, 0x333c4,
1671                 0x333e4, 0x3342c,
1672                 0x33434, 0x33450,
1673                 0x33458, 0x33458,
1674                 0x33460, 0x3348c,
1675                 0x3349c, 0x334ac,
1676                 0x334c0, 0x334c0,
1677                 0x334c8, 0x334d0,
1678                 0x334d8, 0x334e0,
1679                 0x334ec, 0x3352c,
1680                 0x33534, 0x33550,
1681                 0x33558, 0x33558,
1682                 0x33560, 0x3358c,
1683                 0x3359c, 0x335ac,
1684                 0x335c0, 0x335c0,
1685                 0x335c8, 0x335d0,
1686                 0x335d8, 0x335e0,
1687                 0x335ec, 0x33690,
1688                 0x33698, 0x336c4,
1689                 0x336e4, 0x33790,
1690                 0x33798, 0x337c4,
1691                 0x337e4, 0x337fc,
1692                 0x33814, 0x33814,
1693                 0x33854, 0x33868,
1694                 0x33880, 0x3388c,
1695                 0x338c0, 0x338d0,
1696                 0x338e8, 0x338ec,
1697                 0x33900, 0x3392c,
1698                 0x33934, 0x33950,
1699                 0x33958, 0x33958,
1700                 0x33960, 0x3398c,
1701                 0x3399c, 0x339ac,
1702                 0x339c0, 0x339c0,
1703                 0x339c8, 0x339d0,
1704                 0x339d8, 0x339e0,
1705                 0x339ec, 0x33a90,
1706                 0x33a98, 0x33ac4,
1707                 0x33ae4, 0x33b10,
1708                 0x33b24, 0x33b28,
1709                 0x33b38, 0x33b50,
1710                 0x33bf0, 0x33c10,
1711                 0x33c24, 0x33c28,
1712                 0x33c38, 0x33c50,
1713                 0x33cf0, 0x33cfc,
1714                 0x34000, 0x34030,
1715                 0x34100, 0x34168,
1716                 0x34190, 0x341a0,
1717                 0x341a8, 0x341b8,
1718                 0x341c4, 0x341c8,
1719                 0x341d0, 0x341d0,
1720                 0x34200, 0x34320,
1721                 0x34400, 0x344b4,
1722                 0x344c0, 0x3452c,
1723                 0x34540, 0x3461c,
1724                 0x34800, 0x348a0,
1725                 0x348c0, 0x34908,
1726                 0x34910, 0x349b8,
1727                 0x34a00, 0x34a04,
1728                 0x34a0c, 0x34a14,
1729                 0x34a1c, 0x34a2c,
1730                 0x34a44, 0x34a50,
1731                 0x34a74, 0x34a74,
1732                 0x34a7c, 0x34afc,
1733                 0x34b08, 0x34c24,
1734                 0x34d00, 0x34d14,
1735                 0x34d1c, 0x34d3c,
1736                 0x34d44, 0x34d4c,
1737                 0x34d54, 0x34d74,
1738                 0x34d7c, 0x34d7c,
1739                 0x34de0, 0x34de0,
1740                 0x34e00, 0x34ed4,
1741                 0x34f00, 0x34fa4,
1742                 0x34fc0, 0x34fc4,
1743                 0x35000, 0x35004,
1744                 0x35080, 0x350fc,
1745                 0x35208, 0x35220,
1746                 0x3523c, 0x35254,
1747                 0x35300, 0x35300,
1748                 0x35308, 0x3531c,
1749                 0x35338, 0x3533c,
1750                 0x35380, 0x35380,
1751                 0x35388, 0x353a8,
1752                 0x353b4, 0x353b4,
1753                 0x35400, 0x35420,
1754                 0x35438, 0x3543c,
1755                 0x35480, 0x35480,
1756                 0x354a8, 0x354a8,
1757                 0x354b0, 0x354b4,
1758                 0x354c8, 0x354d4,
1759                 0x35a40, 0x35a4c,
1760                 0x35af0, 0x35b20,
1761                 0x35b38, 0x35b3c,
1762                 0x35b80, 0x35b80,
1763                 0x35ba8, 0x35ba8,
1764                 0x35bb0, 0x35bb4,
1765                 0x35bc8, 0x35bd4,
1766                 0x36140, 0x3618c,
1767                 0x361f0, 0x361f4,
1768                 0x36200, 0x36200,
1769                 0x36218, 0x36218,
1770                 0x36400, 0x36400,
1771                 0x36408, 0x3641c,
1772                 0x36618, 0x36620,
1773                 0x36664, 0x36664,
1774                 0x366a8, 0x366a8,
1775                 0x366ec, 0x366ec,
1776                 0x36a00, 0x36abc,
1777                 0x36b00, 0x36b38,
1778                 0x36b20, 0x36b38,
1779                 0x36b40, 0x36b58,
1780                 0x36b60, 0x36b78,
1781                 0x36c00, 0x36c00,
1782                 0x36c08, 0x36c3c,
1783                 0x37000, 0x3702c,
1784                 0x37034, 0x37050,
1785                 0x37058, 0x37058,
1786                 0x37060, 0x3708c,
1787                 0x3709c, 0x370ac,
1788                 0x370c0, 0x370c0,
1789                 0x370c8, 0x370d0,
1790                 0x370d8, 0x370e0,
1791                 0x370ec, 0x3712c,
1792                 0x37134, 0x37150,
1793                 0x37158, 0x37158,
1794                 0x37160, 0x3718c,
1795                 0x3719c, 0x371ac,
1796                 0x371c0, 0x371c0,
1797                 0x371c8, 0x371d0,
1798                 0x371d8, 0x371e0,
1799                 0x371ec, 0x37290,
1800                 0x37298, 0x372c4,
1801                 0x372e4, 0x37390,
1802                 0x37398, 0x373c4,
1803                 0x373e4, 0x3742c,
1804                 0x37434, 0x37450,
1805                 0x37458, 0x37458,
1806                 0x37460, 0x3748c,
1807                 0x3749c, 0x374ac,
1808                 0x374c0, 0x374c0,
1809                 0x374c8, 0x374d0,
1810                 0x374d8, 0x374e0,
1811                 0x374ec, 0x3752c,
1812                 0x37534, 0x37550,
1813                 0x37558, 0x37558,
1814                 0x37560, 0x3758c,
1815                 0x3759c, 0x375ac,
1816                 0x375c0, 0x375c0,
1817                 0x375c8, 0x375d0,
1818                 0x375d8, 0x375e0,
1819                 0x375ec, 0x37690,
1820                 0x37698, 0x376c4,
1821                 0x376e4, 0x37790,
1822                 0x37798, 0x377c4,
1823                 0x377e4, 0x377fc,
1824                 0x37814, 0x37814,
1825                 0x37854, 0x37868,
1826                 0x37880, 0x3788c,
1827                 0x378c0, 0x378d0,
1828                 0x378e8, 0x378ec,
1829                 0x37900, 0x3792c,
1830                 0x37934, 0x37950,
1831                 0x37958, 0x37958,
1832                 0x37960, 0x3798c,
1833                 0x3799c, 0x379ac,
1834                 0x379c0, 0x379c0,
1835                 0x379c8, 0x379d0,
1836                 0x379d8, 0x379e0,
1837                 0x379ec, 0x37a90,
1838                 0x37a98, 0x37ac4,
1839                 0x37ae4, 0x37b10,
1840                 0x37b24, 0x37b28,
1841                 0x37b38, 0x37b50,
1842                 0x37bf0, 0x37c10,
1843                 0x37c24, 0x37c28,
1844                 0x37c38, 0x37c50,
1845                 0x37cf0, 0x37cfc,
1846                 0x40040, 0x40040,
1847                 0x40080, 0x40084,
1848                 0x40100, 0x40100,
1849                 0x40140, 0x401bc,
1850                 0x40200, 0x40214,
1851                 0x40228, 0x40228,
1852                 0x40240, 0x40258,
1853                 0x40280, 0x40280,
1854                 0x40304, 0x40304,
1855                 0x40330, 0x4033c,
1856                 0x41304, 0x413c8,
1857                 0x413d0, 0x413dc,
1858                 0x413f0, 0x413f0,
1859                 0x41400, 0x4140c,
1860                 0x41414, 0x4141c,
1861                 0x41480, 0x414d0,
1862                 0x44000, 0x4407c,
1863                 0x440c0, 0x441ac,
1864                 0x441b4, 0x4427c,
1865                 0x442c0, 0x443ac,
1866                 0x443b4, 0x4447c,
1867                 0x444c0, 0x445ac,
1868                 0x445b4, 0x4467c,
1869                 0x446c0, 0x447ac,
1870                 0x447b4, 0x4487c,
1871                 0x448c0, 0x449ac,
1872                 0x449b4, 0x44a7c,
1873                 0x44ac0, 0x44bac,
1874                 0x44bb4, 0x44c7c,
1875                 0x44cc0, 0x44dac,
1876                 0x44db4, 0x44e7c,
1877                 0x44ec0, 0x44fac,
1878                 0x44fb4, 0x4507c,
1879                 0x450c0, 0x451ac,
1880                 0x451b4, 0x451fc,
1881                 0x45800, 0x45804,
1882                 0x45810, 0x45830,
1883                 0x45840, 0x45860,
1884                 0x45868, 0x45868,
1885                 0x45880, 0x45884,
1886                 0x458a0, 0x458b0,
1887                 0x45a00, 0x45a04,
1888                 0x45a10, 0x45a30,
1889                 0x45a40, 0x45a60,
1890                 0x45a68, 0x45a68,
1891                 0x45a80, 0x45a84,
1892                 0x45aa0, 0x45ab0,
1893                 0x460c0, 0x460e4,
1894                 0x47000, 0x4703c,
1895                 0x47044, 0x4708c,
1896                 0x47200, 0x47250,
1897                 0x47400, 0x47408,
1898                 0x47414, 0x47420,
1899                 0x47600, 0x47618,
1900                 0x47800, 0x47814,
1901                 0x47820, 0x4782c,
1902                 0x50000, 0x50084,
1903                 0x50090, 0x500cc,
1904                 0x50300, 0x50384,
1905                 0x50400, 0x50400,
1906                 0x50800, 0x50884,
1907                 0x50890, 0x508cc,
1908                 0x50b00, 0x50b84,
1909                 0x50c00, 0x50c00,
1910                 0x51000, 0x51020,
1911                 0x51028, 0x510b0,
1912                 0x51300, 0x51324,
1913         };
1914
1915         u32 *buf_end = (u32 *)((char *)buf + buf_size);
1916         const unsigned int *reg_ranges;
1917         int reg_ranges_size, range;
1918         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
1919
1920         /* Select the right set of register ranges to dump depending on the
1921          * adapter chip type.
1922          */
1923         switch (chip_version) {
1924         case CHELSIO_T5:
1925                 reg_ranges = t5_reg_ranges;
1926                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
1927                 break;
1928
1929         case CHELSIO_T6:
1930                 reg_ranges = t6_reg_ranges;
1931                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
1932                 break;
1933
1934         default:
1935                 dev_err(adap,
1936                         "Unsupported chip version %d\n", chip_version);
1937                 return;
1938         }
1939
1940         /* Clear the register buffer and insert the appropriate register
1941          * values selected by the above register ranges.
1942          */
1943         memset(buf, 0, buf_size);
1944         for (range = 0; range < reg_ranges_size; range += 2) {
1945                 unsigned int reg = reg_ranges[range];
1946                 unsigned int last_reg = reg_ranges[range + 1];
1947                 u32 *bufp = (u32 *)((char *)buf + reg);
1948
1949                 /* Iterate across the register range filling in the register
1950                  * buffer but don't write past the end of the register buffer.
1951                  */
1952                 while (reg <= last_reg && bufp < buf_end) {
1953                         *bufp++ = t4_read_reg(adap, reg);
1954                         reg += sizeof(u32);
1955                 }
1956         }
1957 }
1958
1959 /* EEPROM reads take a few tens of us while writes can take a bit over 5 ms. */
1960 #define EEPROM_DELAY            10              /* 10us per poll spin */
1961 #define EEPROM_MAX_POLL         5000            /* x 5000 == 50ms */
1962
1963 #define EEPROM_STAT_ADDR        0x7bfc
1964
1965 /**
1966  * Small utility function to wait till any outstanding VPD Access is complete.
1967  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
1968  * VPD Access in flight.  This allows us to handle the problem of having a
1969  * previous VPD Access time out and prevent an attempt to inject a new VPD
1970  * Request before any in-flight VPD request has completed.
1971  */
1972 static int t4_seeprom_wait(struct adapter *adapter)
1973 {
1974         unsigned int base = adapter->params.pci.vpd_cap_addr;
1975         int max_poll;
1976
1977         /* If no VPD Access is in flight, we can just return success right
1978          * away.
1979          */
1980         if (!adapter->vpd_busy)
1981                 return 0;
1982
1983         /* Poll the VPD Capability Address/Flag register waiting for it
1984          * to indicate that the operation is complete.
1985          */
1986         max_poll = EEPROM_MAX_POLL;
1987         do {
1988                 u16 val;
1989
1990                 udelay(EEPROM_DELAY);
1991                 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
1992
1993                 /* If the operation is complete, mark the VPD as no longer
1994                  * busy and return success.
1995                  */
1996                 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
1997                         adapter->vpd_busy = 0;
1998                         return 0;
1999                 }
2000         } while (--max_poll);
2001
2002         /* Failure!  Note that we leave the VPD Busy status set in order to
2003          * avoid pushing a new VPD Access request into the VPD Capability till
2004          * the current operation eventually succeeds.  It's a bug to issue a
2005          * new request when an existing request is in flight and will result
2006          * in corrupt hardware state.
2007          */
2008         return -ETIMEDOUT;
2009 }
2010
2011 /**
2012  * t4_seeprom_read - read a serial EEPROM location
2013  * @adapter: adapter to read
2014  * @addr: EEPROM virtual address
2015  * @data: where to store the read data
2016  *
2017  * Read a 32-bit word from a location in serial EEPROM using the card's PCI
2018  * VPD capability.  Note that this function must be called with a virtual
2019  * address.
2020  */
2021 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2022 {
2023         unsigned int base = adapter->params.pci.vpd_cap_addr;
2024         int ret;
2025
2026         /* VPD Accesses must alway be 4-byte aligned!
2027          */
2028         if (addr >= EEPROMVSIZE || (addr & 3))
2029                 return -EINVAL;
2030
2031         /* Wait for any previous operation which may still be in flight to
2032          * complete.
2033          */
2034         ret = t4_seeprom_wait(adapter);
2035         if (ret) {
2036                 dev_err(adapter, "VPD still busy from previous operation\n");
2037                 return ret;
2038         }
2039
2040         /* Issue our new VPD Read request, mark the VPD as being busy and wait
2041          * for our request to complete.  If it doesn't complete, note the
2042          * error and return it to our caller.  Note that we do not reset the
2043          * VPD Busy status!
2044          */
2045         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2046         adapter->vpd_busy = 1;
2047         adapter->vpd_flag = PCI_VPD_ADDR_F;
2048         ret = t4_seeprom_wait(adapter);
2049         if (ret) {
2050                 dev_err(adapter, "VPD read of address %#x failed\n", addr);
2051                 return ret;
2052         }
2053
2054         /* Grab the returned data, swizzle it into our endianness and
2055          * return success.
2056          */
2057         t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2058         *data = le32_to_cpu(*data);
2059         return 0;
2060 }
2061
2062 /**
2063  * t4_seeprom_write - write a serial EEPROM location
2064  * @adapter: adapter to write
2065  * @addr: virtual EEPROM address
2066  * @data: value to write
2067  *
2068  * Write a 32-bit word to a location in serial EEPROM using the card's PCI
2069  * VPD capability.  Note that this function must be called with a virtual
2070  * address.
2071  */
2072 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2073 {
2074         unsigned int base = adapter->params.pci.vpd_cap_addr;
2075         int ret;
2076         u32 stats_reg = 0;
2077         int max_poll;
2078
2079         /* VPD Accesses must alway be 4-byte aligned!
2080          */
2081         if (addr >= EEPROMVSIZE || (addr & 3))
2082                 return -EINVAL;
2083
2084         /* Wait for any previous operation which may still be in flight to
2085          * complete.
2086          */
2087         ret = t4_seeprom_wait(adapter);
2088         if (ret) {
2089                 dev_err(adapter, "VPD still busy from previous operation\n");
2090                 return ret;
2091         }
2092
2093         /* Issue our new VPD Read request, mark the VPD as being busy and wait
2094          * for our request to complete.  If it doesn't complete, note the
2095          * error and return it to our caller.  Note that we do not reset the
2096          * VPD Busy status!
2097          */
2098         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2099                              cpu_to_le32(data));
2100         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2101                              (u16)addr | PCI_VPD_ADDR_F);
2102         adapter->vpd_busy = 1;
2103         adapter->vpd_flag = 0;
2104         ret = t4_seeprom_wait(adapter);
2105         if (ret) {
2106                 dev_err(adapter, "VPD write of address %#x failed\n", addr);
2107                 return ret;
2108         }
2109
2110         /* Reset PCI_VPD_DATA register after a transaction and wait for our
2111          * request to complete. If it doesn't complete, return error.
2112          */
2113         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2114         max_poll = EEPROM_MAX_POLL;
2115         do {
2116                 udelay(EEPROM_DELAY);
2117                 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2118         } while ((stats_reg & 0x1) && --max_poll);
2119         if (!max_poll)
2120                 return -ETIMEDOUT;
2121
2122         /* Return success! */
2123         return 0;
2124 }
2125
2126 /**
2127  * t4_seeprom_wp - enable/disable EEPROM write protection
2128  * @adapter: the adapter
2129  * @enable: whether to enable or disable write protection
2130  *
2131  * Enables or disables write protection on the serial EEPROM.
2132  */
2133 int t4_seeprom_wp(struct adapter *adapter, int enable)
2134 {
2135         return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2136 }
2137
2138 /**
2139  * t4_fw_tp_pio_rw - Access TP PIO through LDST
2140  * @adap: the adapter
2141  * @vals: where the indirect register values are stored/written
2142  * @nregs: how many indirect registers to read/write
2143  * @start_idx: index of first indirect register to read/write
2144  * @rw: Read (1) or Write (0)
2145  *
2146  * Access TP PIO registers through LDST
2147  */
2148 void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
2149                      unsigned int start_index, unsigned int rw)
2150 {
2151         int cmd = FW_LDST_ADDRSPC_TP_PIO;
2152         struct fw_ldst_cmd c;
2153         unsigned int i;
2154         int ret;
2155
2156         for (i = 0 ; i < nregs; i++) {
2157                 memset(&c, 0, sizeof(c));
2158                 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
2159                                                 F_FW_CMD_REQUEST |
2160                                                 (rw ? F_FW_CMD_READ :
2161                                                       F_FW_CMD_WRITE) |
2162                                                 V_FW_LDST_CMD_ADDRSPACE(cmd));
2163                 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
2164
2165                 c.u.addrval.addr = cpu_to_be32(start_index + i);
2166                 c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
2167                 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
2168                 if (ret == 0) {
2169                         if (rw)
2170                                 vals[i] = be32_to_cpu(c.u.addrval.val);
2171                 }
2172         }
2173 }
2174
2175 /**
2176  * t4_read_rss_key - read the global RSS key
2177  * @adap: the adapter
2178  * @key: 10-entry array holding the 320-bit RSS key
2179  *
2180  * Reads the global 320-bit RSS key.
2181  */
2182 void t4_read_rss_key(struct adapter *adap, u32 *key)
2183 {
2184         t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 1);
2185 }
2186
2187 /**
2188  * t4_write_rss_key - program one of the RSS keys
2189  * @adap: the adapter
2190  * @key: 10-entry array holding the 320-bit RSS key
2191  * @idx: which RSS key to write
2192  *
2193  * Writes one of the RSS keys with the given 320-bit value.  If @idx is
2194  * 0..15 the corresponding entry in the RSS key table is written,
2195  * otherwise the global RSS key is written.
2196  */
2197 void t4_write_rss_key(struct adapter *adap, u32 *key, int idx)
2198 {
2199         u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
2200         u8 rss_key_addr_cnt = 16;
2201
2202         /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
2203          * allows access to key addresses 16-63 by using KeyWrAddrX
2204          * as index[5:4](upper 2) into key table
2205          */
2206         if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
2207             (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
2208                 rss_key_addr_cnt = 32;
2209
2210         t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 0);
2211
2212         if (idx >= 0 && idx < rss_key_addr_cnt) {
2213                 if (rss_key_addr_cnt > 16)
2214                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
2215                                      V_KEYWRADDRX(idx >> 4) |
2216                                      V_T6_VFWRADDR(idx) | F_KEYWREN);
2217                 else
2218                         t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
2219                                      V_KEYWRADDR(idx) | F_KEYWREN);
2220         }
2221 }
2222
2223 /**
2224  * t4_config_rss_range - configure a portion of the RSS mapping table
2225  * @adapter: the adapter
2226  * @mbox: mbox to use for the FW command
2227  * @viid: virtual interface whose RSS subtable is to be written
2228  * @start: start entry in the table to write
2229  * @n: how many table entries to write
2230  * @rspq: values for the "response queue" (Ingress Queue) lookup table
2231  * @nrspq: number of values in @rspq
2232  *
2233  * Programs the selected part of the VI's RSS mapping table with the
2234  * provided values.  If @nrspq < @n the supplied values are used repeatedly
2235  * until the full table range is populated.
2236  *
2237  * The caller must ensure the values in @rspq are in the range allowed for
2238  * @viid.
2239  */
2240 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
2241                         int start, int n, const u16 *rspq, unsigned int nrspq)
2242 {
2243         int ret;
2244         const u16 *rsp = rspq;
2245         const u16 *rsp_end = rspq + nrspq;
2246         struct fw_rss_ind_tbl_cmd cmd;
2247
2248         memset(&cmd, 0, sizeof(cmd));
2249         cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
2250                                      F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2251                                      V_FW_RSS_IND_TBL_CMD_VIID(viid));
2252         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2253
2254         /*
2255          * Each firmware RSS command can accommodate up to 32 RSS Ingress
2256          * Queue Identifiers.  These Ingress Queue IDs are packed three to
2257          * a 32-bit word as 10-bit values with the upper remaining 2 bits
2258          * reserved.
2259          */
2260         while (n > 0) {
2261                 int nq = min(n, 32);
2262                 int nq_packed = 0;
2263                 __be32 *qp = &cmd.iq0_to_iq2;
2264
2265                 /*
2266                  * Set up the firmware RSS command header to send the next
2267                  * "nq" Ingress Queue IDs to the firmware.
2268                  */
2269                 cmd.niqid = cpu_to_be16(nq);
2270                 cmd.startidx = cpu_to_be16(start);
2271
2272                 /*
2273                  * "nq" more done for the start of the next loop.
2274                  */
2275                 start += nq;
2276                 n -= nq;
2277
2278                 /*
2279                  * While there are still Ingress Queue IDs to stuff into the
2280                  * current firmware RSS command, retrieve them from the
2281                  * Ingress Queue ID array and insert them into the command.
2282                  */
2283                 while (nq > 0) {
2284                         /*
2285                          * Grab up to the next 3 Ingress Queue IDs (wrapping
2286                          * around the Ingress Queue ID array if necessary) and
2287                          * insert them into the firmware RSS command at the
2288                          * current 3-tuple position within the commad.
2289                          */
2290                         u16 qbuf[3];
2291                         u16 *qbp = qbuf;
2292                         int nqbuf = min(3, nq);
2293
2294                         nq -= nqbuf;
2295                         qbuf[0] = 0;
2296                         qbuf[1] = 0;
2297                         qbuf[2] = 0;
2298                         while (nqbuf && nq_packed < 32) {
2299                                 nqbuf--;
2300                                 nq_packed++;
2301                                 *qbp++ = *rsp++;
2302                                 if (rsp >= rsp_end)
2303                                         rsp = rspq;
2304                         }
2305                         *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
2306                                             V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
2307                                             V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
2308                 }
2309
2310                 /*
2311                  * Send this portion of the RRS table update to the firmware;
2312                  * bail out on any errors.
2313                  */
2314                 if (is_pf4(adapter))
2315                         ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd),
2316                                          NULL);
2317                 else
2318                         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
2319                 if (ret)
2320                         return ret;
2321         }
2322
2323         return 0;
2324 }
2325
2326 /**
2327  * t4_config_vi_rss - configure per VI RSS settings
2328  * @adapter: the adapter
2329  * @mbox: mbox to use for the FW command
2330  * @viid: the VI id
2331  * @flags: RSS flags
2332  * @defq: id of the default RSS queue for the VI.
2333  *
2334  * Configures VI-specific RSS properties.
2335  */
2336 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
2337                      unsigned int flags, unsigned int defq)
2338 {
2339         struct fw_rss_vi_config_cmd c;
2340
2341         memset(&c, 0, sizeof(c));
2342         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2343                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2344                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
2345         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2346         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
2347                         V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
2348         if (is_pf4(adapter))
2349                 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2350         else
2351                 return t4vf_wr_mbox(adapter, &c, sizeof(c), NULL);
2352 }
2353
2354 /**
2355  * t4_read_config_vi_rss - read the configured per VI RSS settings
2356  * @adapter: the adapter
2357  * @mbox: mbox to use for the FW command
2358  * @viid: the VI id
2359  * @flags: where to place the configured flags
2360  * @defq: where to place the id of the default RSS queue for the VI.
2361  *
2362  * Read configured VI-specific RSS properties.
2363  */
2364 int t4_read_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
2365                           u64 *flags, unsigned int *defq)
2366 {
2367         struct fw_rss_vi_config_cmd c;
2368         unsigned int result;
2369         int ret;
2370
2371         memset(&c, 0, sizeof(c));
2372         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2373                                    F_FW_CMD_REQUEST | F_FW_CMD_READ |
2374                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
2375         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2376         ret = t4_wr_mbox(adapter, mbox, &c, sizeof(c), &c);
2377         if (!ret) {
2378                 result = be32_to_cpu(c.u.basicvirtual.defaultq_to_udpen);
2379                 if (defq)
2380                         *defq = G_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(result);
2381                 if (flags)
2382                         *flags = result & M_FW_RSS_VI_CONFIG_CMD_DEFAULTQ;
2383         }
2384
2385         return ret;
2386 }
2387
2388 /**
2389  * init_cong_ctrl - initialize congestion control parameters
2390  * @a: the alpha values for congestion control
2391  * @b: the beta values for congestion control
2392  *
2393  * Initialize the congestion control parameters.
2394  */
2395 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
2396 {
2397         int i;
2398
2399         for (i = 0; i < 9; i++) {
2400                 a[i] = 1;
2401                 b[i] = 0;
2402         }
2403
2404         a[9] = 2;
2405         a[10] = 3;
2406         a[11] = 4;
2407         a[12] = 5;
2408         a[13] = 6;
2409         a[14] = 7;
2410         a[15] = 8;
2411         a[16] = 9;
2412         a[17] = 10;
2413         a[18] = 14;
2414         a[19] = 17;
2415         a[20] = 21;
2416         a[21] = 25;
2417         a[22] = 30;
2418         a[23] = 35;
2419         a[24] = 45;
2420         a[25] = 60;
2421         a[26] = 80;
2422         a[27] = 100;
2423         a[28] = 200;
2424         a[29] = 300;
2425         a[30] = 400;
2426         a[31] = 500;
2427
2428         b[9] = 1;
2429         b[10] = 1;
2430         b[11] = 2;
2431         b[12] = 2;
2432         b[13] = 3;
2433         b[14] = 3;
2434         b[15] = 3;
2435         b[16] = 3;
2436         b[17] = 4;
2437         b[18] = 4;
2438         b[19] = 4;
2439         b[20] = 4;
2440         b[21] = 4;
2441         b[22] = 5;
2442         b[23] = 5;
2443         b[24] = 5;
2444         b[25] = 5;
2445         b[26] = 5;
2446         b[27] = 5;
2447         b[28] = 6;
2448         b[29] = 6;
2449         b[30] = 7;
2450         b[31] = 7;
2451 }
2452
2453 #define INIT_CMD(var, cmd, rd_wr) do { \
2454         (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
2455                         F_FW_CMD_REQUEST | F_FW_CMD_##rd_wr); \
2456         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
2457 } while (0)
2458
2459 int t4_get_core_clock(struct adapter *adapter, struct vpd_params *p)
2460 {
2461         u32 cclk_param, cclk_val;
2462         int ret;
2463
2464         /*
2465          * Ask firmware for the Core Clock since it knows how to translate the
2466          * Reference Clock ('V2') VPD field into a Core Clock value ...
2467          */
2468         cclk_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2469                       V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
2470         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2471                               1, &cclk_param, &cclk_val);
2472         if (ret) {
2473                 dev_err(adapter, "%s: error in fetching from coreclock - %d\n",
2474                         __func__, ret);
2475                 return ret;
2476         }
2477
2478         p->cclk = cclk_val;
2479         dev_debug(adapter, "%s: p->cclk = %u\n", __func__, p->cclk);
2480         return 0;
2481 }
2482
2483 /**
2484  * t4_get_pfres - retrieve VF resource limits
2485  * @adapter: the adapter
2486  *
2487  * Retrieves configured resource limits and capabilities for a physical
2488  * function.  The results are stored in @adapter->pfres.
2489  */
2490 int t4_get_pfres(struct adapter *adapter)
2491 {
2492         struct pf_resources *pfres = &adapter->params.pfres;
2493         struct fw_pfvf_cmd cmd, rpl;
2494         u32 word;
2495         int v;
2496
2497         /*
2498          * Execute PFVF Read command to get VF resource limits; bail out early
2499          * with error on command failure.
2500          */
2501         memset(&cmd, 0, sizeof(cmd));
2502         cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) |
2503                                     F_FW_CMD_REQUEST |
2504                                     F_FW_CMD_READ |
2505                                     V_FW_PFVF_CMD_PFN(adapter->pf) |
2506                                     V_FW_PFVF_CMD_VFN(0));
2507         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2508         v = t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &rpl);
2509         if (v != FW_SUCCESS)
2510                 return v;
2511
2512         /*
2513          * Extract PF resource limits and return success.
2514          */
2515         word = be32_to_cpu(rpl.niqflint_niq);
2516         pfres->niqflint = G_FW_PFVF_CMD_NIQFLINT(word);
2517
2518         word = be32_to_cpu(rpl.type_to_neq);
2519         pfres->neq = G_FW_PFVF_CMD_NEQ(word);
2520         return 0;
2521 }
2522
2523 /* serial flash and firmware constants and flash config file constants */
2524 enum {
2525         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2526
2527         /* flash command opcodes */
2528         SF_PROG_PAGE    = 2,          /* program page */
2529         SF_WR_DISABLE   = 4,          /* disable writes */
2530         SF_RD_STATUS    = 5,          /* read status register */
2531         SF_WR_ENABLE    = 6,          /* enable writes */
2532         SF_RD_DATA_FAST = 0xb,        /* read flash */
2533         SF_RD_ID        = 0x9f,       /* read ID */
2534         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2535 };
2536
2537 /**
2538  * sf1_read - read data from the serial flash
2539  * @adapter: the adapter
2540  * @byte_cnt: number of bytes to read
2541  * @cont: whether another operation will be chained
2542  * @lock: whether to lock SF for PL access only
2543  * @valp: where to store the read data
2544  *
2545  * Reads up to 4 bytes of data from the serial flash.  The location of
2546  * the read needs to be specified prior to calling this by issuing the
2547  * appropriate commands to the serial flash.
2548  */
2549 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2550                     int lock, u32 *valp)
2551 {
2552         int ret;
2553
2554         if (!byte_cnt || byte_cnt > 4)
2555                 return -EINVAL;
2556         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
2557                 return -EBUSY;
2558         t4_write_reg(adapter, A_SF_OP,
2559                      V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
2560         ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
2561         if (!ret)
2562                 *valp = t4_read_reg(adapter, A_SF_DATA);
2563         return ret;
2564 }
2565
2566 /**
2567  * sf1_write - write data to the serial flash
2568  * @adapter: the adapter
2569  * @byte_cnt: number of bytes to write
2570  * @cont: whether another operation will be chained
2571  * @lock: whether to lock SF for PL access only
2572  * @val: value to write
2573  *
2574  * Writes up to 4 bytes of data to the serial flash.  The location of
2575  * the write needs to be specified prior to calling this by issuing the
2576  * appropriate commands to the serial flash.
2577  */
2578 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2579                      int lock, u32 val)
2580 {
2581         if (!byte_cnt || byte_cnt > 4)
2582                 return -EINVAL;
2583         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
2584                 return -EBUSY;
2585         t4_write_reg(adapter, A_SF_DATA, val);
2586         t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
2587                      V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
2588         return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
2589 }
2590
2591 /**
2592  * t4_read_flash - read words from serial flash
2593  * @adapter: the adapter
2594  * @addr: the start address for the read
2595  * @nwords: how many 32-bit words to read
2596  * @data: where to store the read data
2597  * @byte_oriented: whether to store data as bytes or as words
2598  *
2599  * Read the specified number of 32-bit words from the serial flash.
2600  * If @byte_oriented is set the read data is stored as a byte array
2601  * (i.e., big-endian), otherwise as 32-bit words in the platform's
2602  * natural endianness.
2603  */
2604 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2605                   unsigned int nwords, u32 *data, int byte_oriented)
2606 {
2607         int ret;
2608
2609         if (((addr + nwords * sizeof(u32)) > adapter->params.sf_size) ||
2610             (addr & 3))
2611                 return -EINVAL;
2612
2613         addr = rte_constant_bswap32(addr) | SF_RD_DATA_FAST;
2614
2615         ret = sf1_write(adapter, 4, 1, 0, addr);
2616         if (ret != 0)
2617                 return ret;
2618
2619         ret = sf1_read(adapter, 1, 1, 0, data);
2620         if (ret != 0)
2621                 return ret;
2622
2623         for ( ; nwords; nwords--, data++) {
2624                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2625                 if (nwords == 1)
2626                         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
2627                 if (ret)
2628                         return ret;
2629                 if (byte_oriented)
2630                         *data = cpu_to_be32(*data);
2631         }
2632         return 0;
2633 }
2634
2635 /**
2636  * t4_get_exprom_version - return the Expansion ROM version (if any)
2637  * @adapter: the adapter
2638  * @vers: where to place the version
2639  *
2640  * Reads the Expansion ROM header from FLASH and returns the version
2641  * number (if present) through the @vers return value pointer.  We return
2642  * this in the Firmware Version Format since it's convenient.  Return
2643  * 0 on success, -ENOENT if no Expansion ROM is present.
2644  */
2645 static int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
2646 {
2647         struct exprom_header {
2648                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
2649                 unsigned char hdr_ver[4];       /* Expansion ROM version */
2650         } *hdr;
2651         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2652                                            sizeof(u32))];
2653         int ret;
2654
2655         ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
2656                             ARRAY_SIZE(exprom_header_buf),
2657                             exprom_header_buf, 0);
2658         if (ret)
2659                 return ret;
2660
2661         hdr = (struct exprom_header *)exprom_header_buf;
2662         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2663                 return -ENOENT;
2664
2665         *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
2666                  V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
2667                  V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
2668                  V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
2669         return 0;
2670 }
2671
2672 /**
2673  * t4_get_fw_version - read the firmware version
2674  * @adapter: the adapter
2675  * @vers: where to place the version
2676  *
2677  * Reads the FW version from flash.
2678  */
2679 static int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2680 {
2681         return t4_read_flash(adapter, FLASH_FW_START +
2682                              offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
2683 }
2684
2685 /**
2686  *     t4_get_bs_version - read the firmware bootstrap version
2687  *     @adapter: the adapter
2688  *     @vers: where to place the version
2689  *
2690  *     Reads the FW Bootstrap version from flash.
2691  */
2692 static int t4_get_bs_version(struct adapter *adapter, u32 *vers)
2693 {
2694         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
2695                              offsetof(struct fw_hdr, fw_ver), 1,
2696                              vers, 0);
2697 }
2698
2699 /**
2700  * t4_get_tp_version - read the TP microcode version
2701  * @adapter: the adapter
2702  * @vers: where to place the version
2703  *
2704  * Reads the TP microcode version from flash.
2705  */
2706 static int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2707 {
2708         return t4_read_flash(adapter, FLASH_FW_START +
2709                              offsetof(struct fw_hdr, tp_microcode_ver),
2710                              1, vers, 0);
2711 }
2712
2713 /**
2714  * t4_get_version_info - extract various chip/firmware version information
2715  * @adapter: the adapter
2716  *
2717  * Reads various chip/firmware version numbers and stores them into the
2718  * adapter Adapter Parameters structure.  If any of the efforts fails
2719  * the first failure will be returned, but all of the version numbers
2720  * will be read.
2721  */
2722 int t4_get_version_info(struct adapter *adapter)
2723 {
2724         int ret = 0;
2725
2726 #define FIRST_RET(__getvinfo) \
2727         do { \
2728                 int __ret = __getvinfo; \
2729                 if (__ret && !ret) \
2730                         ret = __ret; \
2731         } while (0)
2732
2733         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
2734         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
2735         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
2736         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
2737
2738 #undef FIRST_RET
2739
2740         return ret;
2741 }
2742
2743 /**
2744  * t4_dump_version_info - dump all of the adapter configuration IDs
2745  * @adapter: the adapter
2746  *
2747  * Dumps all of the various bits of adapter configuration version/revision
2748  * IDs information.  This is typically called at some point after
2749  * t4_get_version_info() has been called.
2750  */
2751 void t4_dump_version_info(struct adapter *adapter)
2752 {
2753         /**
2754          * Device information.
2755          */
2756         dev_info(adapter, "Chelsio rev %d\n",
2757                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
2758
2759         /**
2760          * Firmware Version.
2761          */
2762         if (!adapter->params.fw_vers)
2763                 dev_warn(adapter, "No firmware loaded\n");
2764         else
2765                 dev_info(adapter, "Firmware version: %u.%u.%u.%u\n",
2766                          G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers),
2767                          G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers),
2768                          G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers),
2769                          G_FW_HDR_FW_VER_BUILD(adapter->params.fw_vers));
2770
2771         /**
2772          * Bootstrap Firmware Version.
2773          */
2774         if (!adapter->params.bs_vers)
2775                 dev_warn(adapter, "No bootstrap loaded\n");
2776         else
2777                 dev_info(adapter, "Bootstrap version: %u.%u.%u.%u\n",
2778                          G_FW_HDR_FW_VER_MAJOR(adapter->params.bs_vers),
2779                          G_FW_HDR_FW_VER_MINOR(adapter->params.bs_vers),
2780                          G_FW_HDR_FW_VER_MICRO(adapter->params.bs_vers),
2781                          G_FW_HDR_FW_VER_BUILD(adapter->params.bs_vers));
2782
2783         /**
2784          * TP Microcode Version.
2785          */
2786         if (!adapter->params.tp_vers)
2787                 dev_warn(adapter, "No TP Microcode loaded\n");
2788         else
2789                 dev_info(adapter, "TP Microcode version: %u.%u.%u.%u\n",
2790                          G_FW_HDR_FW_VER_MAJOR(adapter->params.tp_vers),
2791                          G_FW_HDR_FW_VER_MINOR(adapter->params.tp_vers),
2792                          G_FW_HDR_FW_VER_MICRO(adapter->params.tp_vers),
2793                          G_FW_HDR_FW_VER_BUILD(adapter->params.tp_vers));
2794
2795         /**
2796          * Expansion ROM version.
2797          */
2798         if (!adapter->params.er_vers)
2799                 dev_info(adapter, "No Expansion ROM loaded\n");
2800         else
2801                 dev_info(adapter, "Expansion ROM version: %u.%u.%u.%u\n",
2802                          G_FW_HDR_FW_VER_MAJOR(adapter->params.er_vers),
2803                          G_FW_HDR_FW_VER_MINOR(adapter->params.er_vers),
2804                          G_FW_HDR_FW_VER_MICRO(adapter->params.er_vers),
2805                          G_FW_HDR_FW_VER_BUILD(adapter->params.er_vers));
2806 }
2807
2808 #define ADVERT_MASK (V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED) | \
2809                      FW_PORT_CAP32_ANEG)
2810 /**
2811  *     fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
2812  *     @caps16: a 16-bit Port Capabilities value
2813  *
2814  *     Returns the equivalent 32-bit Port Capabilities value.
2815  */
2816 fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
2817 {
2818         fw_port_cap32_t caps32 = 0;
2819
2820 #define CAP16_TO_CAP32(__cap) \
2821         do { \
2822                 if (caps16 & FW_PORT_CAP_##__cap) \
2823                         caps32 |= FW_PORT_CAP32_##__cap; \
2824         } while (0)
2825
2826         CAP16_TO_CAP32(SPEED_100M);
2827         CAP16_TO_CAP32(SPEED_1G);
2828         CAP16_TO_CAP32(SPEED_25G);
2829         CAP16_TO_CAP32(SPEED_10G);
2830         CAP16_TO_CAP32(SPEED_40G);
2831         CAP16_TO_CAP32(SPEED_100G);
2832         CAP16_TO_CAP32(FC_RX);
2833         CAP16_TO_CAP32(FC_TX);
2834         CAP16_TO_CAP32(ANEG);
2835         CAP16_TO_CAP32(MDIX);
2836         CAP16_TO_CAP32(MDIAUTO);
2837         CAP16_TO_CAP32(FEC_RS);
2838         CAP16_TO_CAP32(FEC_BASER_RS);
2839         CAP16_TO_CAP32(802_3_PAUSE);
2840         CAP16_TO_CAP32(802_3_ASM_DIR);
2841
2842 #undef CAP16_TO_CAP32
2843
2844         return caps32;
2845 }
2846
2847 /**
2848  *     fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
2849  *     @caps32: a 32-bit Port Capabilities value
2850  *
2851  *     Returns the equivalent 16-bit Port Capabilities value.  Note that
2852  *     not all 32-bit Port Capabilities can be represented in the 16-bit
2853  *     Port Capabilities and some fields/values may not make it.
2854  */
2855 static fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
2856 {
2857         fw_port_cap16_t caps16 = 0;
2858
2859 #define CAP32_TO_CAP16(__cap) \
2860         do { \
2861                 if (caps32 & FW_PORT_CAP32_##__cap) \
2862                         caps16 |= FW_PORT_CAP_##__cap; \
2863         } while (0)
2864
2865         CAP32_TO_CAP16(SPEED_100M);
2866         CAP32_TO_CAP16(SPEED_1G);
2867         CAP32_TO_CAP16(SPEED_10G);
2868         CAP32_TO_CAP16(SPEED_25G);
2869         CAP32_TO_CAP16(SPEED_40G);
2870         CAP32_TO_CAP16(SPEED_100G);
2871         CAP32_TO_CAP16(FC_RX);
2872         CAP32_TO_CAP16(FC_TX);
2873         CAP32_TO_CAP16(802_3_PAUSE);
2874         CAP32_TO_CAP16(802_3_ASM_DIR);
2875         CAP32_TO_CAP16(ANEG);
2876         CAP32_TO_CAP16(MDIX);
2877         CAP32_TO_CAP16(MDIAUTO);
2878         CAP32_TO_CAP16(FEC_RS);
2879         CAP32_TO_CAP16(FEC_BASER_RS);
2880
2881 #undef CAP32_TO_CAP16
2882
2883         return caps16;
2884 }
2885
2886 /* Translate Firmware Pause specification to Common Code */
2887 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
2888 {
2889         enum cc_pause cc_pause = 0;
2890
2891         if (fw_pause & FW_PORT_CAP32_FC_RX)
2892                 cc_pause |= PAUSE_RX;
2893         if (fw_pause & FW_PORT_CAP32_FC_TX)
2894                 cc_pause |= PAUSE_TX;
2895
2896         return cc_pause;
2897 }
2898
2899 /* Translate Common Code Pause Frame specification into Firmware */
2900 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
2901 {
2902         fw_port_cap32_t fw_pause = 0;
2903
2904         if (cc_pause & PAUSE_RX)
2905                 fw_pause |= FW_PORT_CAP32_FC_RX;
2906         if (cc_pause & PAUSE_TX)
2907                 fw_pause |= FW_PORT_CAP32_FC_TX;
2908
2909         return fw_pause;
2910 }
2911
2912 /* Translate Firmware Forward Error Correction specification to Common Code */
2913 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
2914 {
2915         enum cc_fec cc_fec = 0;
2916
2917         if (fw_fec & FW_PORT_CAP32_FEC_RS)
2918                 cc_fec |= FEC_RS;
2919         if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
2920                 cc_fec |= FEC_BASER_RS;
2921
2922         return cc_fec;
2923 }
2924
2925 /* Translate Common Code Forward Error Correction specification to Firmware */
2926 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
2927 {
2928         fw_port_cap32_t fw_fec = 0;
2929
2930         if (cc_fec & FEC_RS)
2931                 fw_fec |= FW_PORT_CAP32_FEC_RS;
2932         if (cc_fec & FEC_BASER_RS)
2933                 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
2934
2935         return fw_fec;
2936 }
2937
2938 /**
2939  * t4_link_l1cfg - apply link configuration to MAC/PHY
2940  * @adapter: the adapter
2941  * @mbox: the Firmware Mailbox to use
2942  * @port: the Port ID
2943  * @lc: the Port's Link Configuration
2944  *
2945  * Set up a port's MAC and PHY according to a desired link configuration.
2946  * - If the PHY can auto-negotiate first decide what to advertise, then
2947  *   enable/disable auto-negotiation as desired, and reset.
2948  * - If the PHY does not auto-negotiate just reset it.
2949  * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
2950  *   otherwise do it later based on the outcome of auto-negotiation.
2951  */
2952 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
2953                   struct link_config *lc)
2954 {
2955         unsigned int fw_mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
2956         unsigned int fw_caps = adap->params.fw_caps_support;
2957         fw_port_cap32_t fw_fc, cc_fec, fw_fec, rcap;
2958         struct fw_port_cmd cmd;
2959
2960         lc->link_ok = 0;
2961
2962         fw_fc = cc_to_fwcap_pause(lc->requested_fc);
2963
2964         /* Convert Common Code Forward Error Control settings into the
2965          * Firmware's API.  If the current Requested FEC has "Automatic"
2966          * (IEEE 802.3) specified, then we use whatever the Firmware
2967          * sent us as part of it's IEEE 802.3-based interpratation of
2968          * the Transceiver Module EPROM FEC parameters.  Otherwise we
2969          * use whatever is in the current Requested FEC settings.
2970          */
2971         if (lc->requested_fec & FEC_AUTO)
2972                 cc_fec = lc->auto_fec;
2973         else
2974                 cc_fec = lc->requested_fec;
2975         fw_fec = cc_to_fwcap_fec(cc_fec);
2976
2977         /* Figure out what our Requested Port Capabilities are going to be.
2978          */
2979         if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
2980                 rcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
2981                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
2982                 lc->fec = cc_fec;
2983         } else if (lc->autoneg == AUTONEG_DISABLE) {
2984                 rcap = lc->requested_speed | fw_fc | fw_fec | fw_mdi;
2985                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
2986                 lc->fec = cc_fec;
2987         } else {
2988                 rcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
2989         }
2990
2991         /* And send that on to the Firmware ...
2992          */
2993         memset(&cmd, 0, sizeof(cmd));
2994         cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
2995                                        F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
2996                                        V_FW_PORT_CMD_PORTID(port));
2997         cmd.action_to_len16 =
2998                 cpu_to_be32(V_FW_PORT_CMD_ACTION(fw_caps == FW_CAPS16 ?
2999                                                  FW_PORT_ACTION_L1_CFG :
3000                                                  FW_PORT_ACTION_L1_CFG32) |
3001                             FW_LEN16(cmd));
3002
3003         if (fw_caps == FW_CAPS16)
3004                 cmd.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3005         else
3006                 cmd.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3007
3008         return t4_wr_mbox(adap, mbox, &cmd, sizeof(cmd), NULL);
3009 }
3010
3011 /**
3012  * t4_flash_cfg_addr - return the address of the flash configuration file
3013  * @adapter: the adapter
3014  *
3015  * Return the address within the flash where the Firmware Configuration
3016  * File is stored, or an error if the device FLASH is too small to contain
3017  * a Firmware Configuration File.
3018  */
3019 int t4_flash_cfg_addr(struct adapter *adapter)
3020 {
3021         /*
3022          * If the device FLASH isn't large enough to hold a Firmware
3023          * Configuration File, return an error.
3024          */
3025         if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3026                 return -ENOSPC;
3027
3028         return FLASH_CFG_START;
3029 }
3030
3031 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
3032
3033 /**
3034  * t4_intr_enable - enable interrupts
3035  * @adapter: the adapter whose interrupts should be enabled
3036  *
3037  * Enable PF-specific interrupts for the calling function and the top-level
3038  * interrupt concentrator for global interrupts.  Interrupts are already
3039  * enabled at each module, here we just enable the roots of the interrupt
3040  * hierarchies.
3041  *
3042  * Note: this function should be called only when the driver manages
3043  * non PF-specific interrupts from the various HW modules.  Only one PCI
3044  * function at a time should be doing this.
3045  */
3046 void t4_intr_enable(struct adapter *adapter)
3047 {
3048         u32 val = 0;
3049         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
3050         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
3051                  G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
3052
3053         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3054                 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
3055         t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
3056                      F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
3057                      F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
3058                      F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
3059                      F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
3060                      F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
3061                      F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
3062         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
3063         t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
3064 }
3065
3066 /**
3067  * t4_intr_disable - disable interrupts
3068  * @adapter: the adapter whose interrupts should be disabled
3069  *
3070  * Disable interrupts.  We only disable the top-level interrupt
3071  * concentrators.  The caller must be a PCI function managing global
3072  * interrupts.
3073  */
3074 void t4_intr_disable(struct adapter *adapter)
3075 {
3076         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
3077         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
3078                  G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
3079
3080         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
3081         t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
3082 }
3083
3084 /**
3085  * t4_get_port_type_description - return Port Type string description
3086  * @port_type: firmware Port Type enumeration
3087  */
3088 const char *t4_get_port_type_description(enum fw_port_type port_type)
3089 {
3090         static const char * const port_type_description[] = {
3091                 "Fiber_XFI",
3092                 "Fiber_XAUI",
3093                 "BT_SGMII",
3094                 "BT_XFI",
3095                 "BT_XAUI",
3096                 "KX4",
3097                 "CX4",
3098                 "KX",
3099                 "KR",
3100                 "SFP",
3101                 "BP_AP",
3102                 "BP4_AP",
3103                 "QSFP_10G",
3104                 "QSA",
3105                 "QSFP",
3106                 "BP40_BA",
3107                 "KR4_100G",
3108                 "CR4_QSFP",
3109                 "CR_QSFP",
3110                 "CR2_QSFP",
3111                 "SFP28",
3112                 "KR_SFP28",
3113         };
3114
3115         if (port_type < ARRAY_SIZE(port_type_description))
3116                 return port_type_description[port_type];
3117         return "UNKNOWN";
3118 }
3119
3120 /**
3121  * t4_get_mps_bg_map - return the buffer groups associated with a port
3122  * @adap: the adapter
3123  * @pidx: the port index
3124  *
3125  * Returns a bitmap indicating which MPS buffer groups are associated
3126  * with the given port.  Bit i is set if buffer group i is used by the
3127  * port.
3128  */
3129 unsigned int t4_get_mps_bg_map(struct adapter *adap, unsigned int pidx)
3130 {
3131         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3132         unsigned int nports = 1 << G_NUMPORTS(t4_read_reg(adap,
3133                                                           A_MPS_CMN_CTL));
3134
3135         if (pidx >= nports) {
3136                 dev_warn(adap, "MPS Port Index %d >= Nports %d\n",
3137                          pidx, nports);
3138                 return 0;
3139         }
3140
3141         switch (chip_version) {
3142         case CHELSIO_T4:
3143         case CHELSIO_T5:
3144                 switch (nports) {
3145                 case 1: return 0xf;
3146                 case 2: return 3 << (2 * pidx);
3147                 case 4: return 1 << pidx;
3148                 }
3149                 break;
3150
3151         case CHELSIO_T6:
3152                 switch (nports) {
3153                 case 2: return 1 << (2 * pidx);
3154                 }
3155                 break;
3156         }
3157
3158         dev_err(adap, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
3159                 chip_version, nports);
3160         return 0;
3161 }
3162
3163 /**
3164  * t4_get_tp_ch_map - return TP ingress channels associated with a port
3165  * @adapter: the adapter
3166  * @pidx: the port index
3167  *
3168  * Returns a bitmap indicating which TP Ingress Channels are associated with
3169  * a given Port.  Bit i is set if TP Ingress Channel i is used by the Port.
3170  */
3171 unsigned int t4_get_tp_ch_map(struct adapter *adapter, unsigned int pidx)
3172 {
3173         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
3174         unsigned int nports = 1 << G_NUMPORTS(t4_read_reg(adapter,
3175                                                           A_MPS_CMN_CTL));
3176
3177         if (pidx >= nports) {
3178                 dev_warn(adap, "TP Port Index %d >= Nports %d\n",
3179                          pidx, nports);
3180                 return 0;
3181         }
3182
3183         switch (chip_version) {
3184         case CHELSIO_T4:
3185         case CHELSIO_T5:
3186                 /* Note that this happens to be the same values as the MPS
3187                  * Buffer Group Map for these Chips.  But we replicate the code
3188                  * here because they're really separate concepts.
3189                  */
3190                 switch (nports) {
3191                 case 1: return 0xf;
3192                 case 2: return 3 << (2 * pidx);
3193                 case 4: return 1 << pidx;
3194                 }
3195                 break;
3196
3197         case CHELSIO_T6:
3198                 switch (nports) {
3199                 case 2: return 1 << pidx;
3200                 }
3201                 break;
3202         }
3203
3204         dev_err(adapter, "Need TP Channel Map for Chip %0x, Nports %d\n",
3205                 chip_version, nports);
3206         return 0;
3207 }
3208
3209 /**
3210  * t4_get_port_stats - collect port statistics
3211  * @adap: the adapter
3212  * @idx: the port index
3213  * @p: the stats structure to fill
3214  *
3215  * Collect statistics related to the given port from HW.
3216  */
3217 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
3218 {
3219         u32 bgmap = t4_get_mps_bg_map(adap, idx);
3220         u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
3221
3222 #define GET_STAT(name) \
3223         t4_read_reg64(adap, \
3224                       (is_t4(adap->params.chip) ? \
3225                        PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) :\
3226                        T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
3227 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
3228
3229         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
3230         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
3231         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
3232         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
3233         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
3234         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
3235         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
3236         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
3237         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
3238         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
3239         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
3240         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
3241         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
3242         p->tx_drop             = GET_STAT(TX_PORT_DROP);
3243         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
3244         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
3245         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
3246         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
3247         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
3248         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
3249         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
3250         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
3251         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
3252
3253         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
3254                 if (stat_ctl & F_COUNTPAUSESTATTX) {
3255                         p->tx_frames -= p->tx_pause;
3256                         p->tx_octets -= p->tx_pause * 64;
3257                 }
3258                 if (stat_ctl & F_COUNTPAUSEMCTX)
3259                         p->tx_mcast_frames -= p->tx_pause;
3260         }
3261
3262         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
3263         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
3264         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
3265         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
3266         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
3267         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
3268         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
3269         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
3270         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
3271         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
3272         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
3273         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
3274         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
3275         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
3276         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
3277         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
3278         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
3279         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
3280         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
3281         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
3282         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
3283         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
3284         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
3285         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
3286         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
3287         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
3288         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
3289
3290         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
3291                 if (stat_ctl & F_COUNTPAUSESTATRX) {
3292                         p->rx_frames -= p->rx_pause;
3293                         p->rx_octets -= p->rx_pause * 64;
3294                 }
3295                 if (stat_ctl & F_COUNTPAUSEMCRX)
3296                         p->rx_mcast_frames -= p->rx_pause;
3297         }
3298
3299         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
3300         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
3301         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
3302         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
3303         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
3304         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
3305         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
3306         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
3307
3308 #undef GET_STAT
3309 #undef GET_STAT_COM
3310 }
3311
3312 /**
3313  * t4_get_port_stats_offset - collect port stats relative to a previous snapshot
3314  * @adap: The adapter
3315  * @idx: The port
3316  * @stats: Current stats to fill
3317  * @offset: Previous stats snapshot
3318  */
3319 void t4_get_port_stats_offset(struct adapter *adap, int idx,
3320                               struct port_stats *stats,
3321                               struct port_stats *offset)
3322 {
3323         u64 *s, *o;
3324         unsigned int i;
3325
3326         t4_get_port_stats(adap, idx, stats);
3327         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
3328              i < (sizeof(struct port_stats) / sizeof(u64));
3329              i++, s++, o++)
3330                 *s -= *o;
3331 }
3332
3333 /**
3334  * t4_clr_port_stats - clear port statistics
3335  * @adap: the adapter
3336  * @idx: the port index
3337  *
3338  * Clear HW statistics for the given port.
3339  */
3340 void t4_clr_port_stats(struct adapter *adap, int idx)
3341 {
3342         unsigned int i;
3343         u32 bgmap = t4_get_mps_bg_map(adap, idx);
3344         u32 port_base_addr;
3345
3346         if (is_t4(adap->params.chip))
3347                 port_base_addr = PORT_BASE(idx);
3348         else
3349                 port_base_addr = T5_PORT_BASE(idx);
3350
3351         for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
3352              i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
3353                 t4_write_reg(adap, port_base_addr + i, 0);
3354         for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
3355              i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
3356                 t4_write_reg(adap, port_base_addr + i, 0);
3357         for (i = 0; i < 4; i++)
3358                 if (bgmap & (1 << i)) {
3359                         t4_write_reg(adap,
3360                                      A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L +
3361                                      i * 8, 0);
3362                         t4_write_reg(adap,
3363                                      A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L +
3364                                      i * 8, 0);
3365                 }
3366 }
3367
3368 /**
3369  * t4_fw_hello - establish communication with FW
3370  * @adap: the adapter
3371  * @mbox: mailbox to use for the FW command
3372  * @evt_mbox: mailbox to receive async FW events
3373  * @master: specifies the caller's willingness to be the device master
3374  * @state: returns the current device state (if non-NULL)
3375  *
3376  * Issues a command to establish communication with FW.  Returns either
3377  * an error (negative integer) or the mailbox of the Master PF.
3378  */
3379 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
3380                 enum dev_master master, enum dev_state *state)
3381 {
3382         int ret;
3383         struct fw_hello_cmd c;
3384         u32 v;
3385         unsigned int master_mbox;
3386         int retries = FW_CMD_HELLO_RETRIES;
3387
3388 retry:
3389         memset(&c, 0, sizeof(c));
3390         INIT_CMD(c, HELLO, WRITE);
3391         c.err_to_clearinit = cpu_to_be32(
3392                         V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
3393                         V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
3394                         V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
3395                                                 M_FW_HELLO_CMD_MBMASTER) |
3396                         V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
3397                         V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
3398                         F_FW_HELLO_CMD_CLEARINIT);
3399
3400         /*
3401          * Issue the HELLO command to the firmware.  If it's not successful
3402          * but indicates that we got a "busy" or "timeout" condition, retry
3403          * the HELLO until we exhaust our retry limit.  If we do exceed our
3404          * retry limit, check to see if the firmware left us any error
3405          * information and report that if so ...
3406          */
3407         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3408         if (ret != FW_SUCCESS) {
3409                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
3410                         goto retry;
3411                 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
3412                         t4_report_fw_error(adap);
3413                 return ret;
3414         }
3415
3416         v = be32_to_cpu(c.err_to_clearinit);
3417         master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
3418         if (state) {
3419                 if (v & F_FW_HELLO_CMD_ERR)
3420                         *state = DEV_STATE_ERR;
3421                 else if (v & F_FW_HELLO_CMD_INIT)
3422                         *state = DEV_STATE_INIT;
3423                 else
3424                         *state = DEV_STATE_UNINIT;
3425         }
3426
3427         /*
3428          * If we're not the Master PF then we need to wait around for the
3429          * Master PF Driver to finish setting up the adapter.
3430          *
3431          * Note that we also do this wait if we're a non-Master-capable PF and
3432          * there is no current Master PF; a Master PF may show up momentarily
3433          * and we wouldn't want to fail pointlessly.  (This can happen when an
3434          * OS loads lots of different drivers rapidly at the same time).  In
3435          * this case, the Master PF returned by the firmware will be
3436          * M_PCIE_FW_MASTER so the test below will work ...
3437          */
3438         if ((v & (F_FW_HELLO_CMD_ERR | F_FW_HELLO_CMD_INIT)) == 0 &&
3439             master_mbox != mbox) {
3440                 int waiting = FW_CMD_HELLO_TIMEOUT;
3441
3442                 /*
3443                  * Wait for the firmware to either indicate an error or
3444                  * initialized state.  If we see either of these we bail out
3445                  * and report the issue to the caller.  If we exhaust the
3446                  * "hello timeout" and we haven't exhausted our retries, try
3447                  * again.  Otherwise bail with a timeout error.
3448                  */
3449                 for (;;) {
3450                         u32 pcie_fw;
3451
3452                         msleep(50);
3453                         waiting -= 50;
3454
3455                         /*
3456                          * If neither Error nor Initialialized are indicated
3457                          * by the firmware keep waiting till we exaust our
3458                          * timeout ... and then retry if we haven't exhausted
3459                          * our retries ...
3460                          */
3461                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
3462                         if (!(pcie_fw & (F_PCIE_FW_ERR | F_PCIE_FW_INIT))) {
3463                                 if (waiting <= 0) {
3464                                         if (retries-- > 0)
3465                                                 goto retry;
3466
3467                                         return -ETIMEDOUT;
3468                                 }
3469                                 continue;
3470                         }
3471
3472                         /*
3473                          * We either have an Error or Initialized condition
3474                          * report errors preferentially.
3475                          */
3476                         if (state) {
3477                                 if (pcie_fw & F_PCIE_FW_ERR)
3478                                         *state = DEV_STATE_ERR;
3479                                 else if (pcie_fw & F_PCIE_FW_INIT)
3480                                         *state = DEV_STATE_INIT;
3481                         }
3482
3483                         /*
3484                          * If we arrived before a Master PF was selected and
3485                          * there's not a valid Master PF, grab its identity
3486                          * for our caller.
3487                          */
3488                         if (master_mbox == M_PCIE_FW_MASTER &&
3489                             (pcie_fw & F_PCIE_FW_MASTER_VLD))
3490                                 master_mbox = G_PCIE_FW_MASTER(pcie_fw);
3491                         break;
3492                 }
3493         }
3494
3495         return master_mbox;
3496 }
3497
3498 /**
3499  * t4_fw_bye - end communication with FW
3500  * @adap: the adapter
3501  * @mbox: mailbox to use for the FW command
3502  *
3503  * Issues a command to terminate communication with FW.
3504  */
3505 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
3506 {
3507         struct fw_bye_cmd c;
3508
3509         memset(&c, 0, sizeof(c));
3510         INIT_CMD(c, BYE, WRITE);
3511         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3512 }
3513
3514 /**
3515  * t4_fw_reset - issue a reset to FW
3516  * @adap: the adapter
3517  * @mbox: mailbox to use for the FW command
3518  * @reset: specifies the type of reset to perform
3519  *
3520  * Issues a reset command of the specified type to FW.
3521  */
3522 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
3523 {
3524         struct fw_reset_cmd c;
3525
3526         memset(&c, 0, sizeof(c));
3527         INIT_CMD(c, RESET, WRITE);
3528         c.val = cpu_to_be32(reset);
3529         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3530 }
3531
3532 /**
3533  * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
3534  * @adap: the adapter
3535  * @mbox: mailbox to use for the FW RESET command (if desired)
3536  * @force: force uP into RESET even if FW RESET command fails
3537  *
3538  * Issues a RESET command to firmware (if desired) with a HALT indication
3539  * and then puts the microprocessor into RESET state.  The RESET command
3540  * will only be issued if a legitimate mailbox is provided (mbox <=
3541  * M_PCIE_FW_MASTER).
3542  *
3543  * This is generally used in order for the host to safely manipulate the
3544  * adapter without fear of conflicting with whatever the firmware might
3545  * be doing.  The only way out of this state is to RESTART the firmware
3546  * ...
3547  */
3548 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
3549 {
3550         int ret = 0;
3551
3552         /*
3553          * If a legitimate mailbox is provided, issue a RESET command
3554          * with a HALT indication.
3555          */
3556         if (mbox <= M_PCIE_FW_MASTER) {
3557                 struct fw_reset_cmd c;
3558
3559                 memset(&c, 0, sizeof(c));
3560                 INIT_CMD(c, RESET, WRITE);
3561                 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
3562                 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
3563                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3564         }
3565
3566         /*
3567          * Normally we won't complete the operation if the firmware RESET
3568          * command fails but if our caller insists we'll go ahead and put the
3569          * uP into RESET.  This can be useful if the firmware is hung or even
3570          * missing ...  We'll have to take the risk of putting the uP into
3571          * RESET without the cooperation of firmware in that case.
3572          *
3573          * We also force the firmware's HALT flag to be on in case we bypassed
3574          * the firmware RESET command above or we're dealing with old firmware
3575          * which doesn't have the HALT capability.  This will serve as a flag
3576          * for the incoming firmware to know that it's coming out of a HALT
3577          * rather than a RESET ... if it's new enough to understand that ...
3578          */
3579         if (ret == 0 || force) {
3580                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
3581                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
3582                                  F_PCIE_FW_HALT);
3583         }
3584
3585         /*
3586          * And we always return the result of the firmware RESET command
3587          * even when we force the uP into RESET ...
3588          */
3589         return ret;
3590 }
3591
3592 /**
3593  * t4_fw_restart - restart the firmware by taking the uP out of RESET
3594  * @adap: the adapter
3595  * @mbox: mailbox to use for the FW RESET command (if desired)
3596  * @reset: if we want to do a RESET to restart things
3597  *
3598  * Restart firmware previously halted by t4_fw_halt().  On successful
3599  * return the previous PF Master remains as the new PF Master and there
3600  * is no need to issue a new HELLO command, etc.
3601  *
3602  * We do this in two ways:
3603  *
3604  * 1. If we're dealing with newer firmware we'll simply want to take
3605  *    the chip's microprocessor out of RESET.  This will cause the
3606  *    firmware to start up from its start vector.  And then we'll loop
3607  *    until the firmware indicates it's started again (PCIE_FW.HALT
3608  *    reset to 0) or we timeout.
3609  *
3610  * 2. If we're dealing with older firmware then we'll need to RESET
3611  *    the chip since older firmware won't recognize the PCIE_FW.HALT
3612  *    flag and automatically RESET itself on startup.
3613  */
3614 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
3615 {
3616         if (reset) {
3617                 /*
3618                  * Since we're directing the RESET instead of the firmware
3619                  * doing it automatically, we need to clear the PCIE_FW.HALT
3620                  * bit.
3621                  */
3622                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
3623
3624                 /*
3625                  * If we've been given a valid mailbox, first try to get the
3626                  * firmware to do the RESET.  If that works, great and we can
3627                  * return success.  Otherwise, if we haven't been given a
3628                  * valid mailbox or the RESET command failed, fall back to
3629                  * hitting the chip with a hammer.
3630                  */
3631                 if (mbox <= M_PCIE_FW_MASTER) {
3632                         t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
3633                         msleep(100);
3634                         if (t4_fw_reset(adap, mbox,
3635                                         F_PIORST | F_PIORSTMODE) == 0)
3636                                 return 0;
3637                 }
3638
3639                 t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
3640                 msleep(2000);
3641         } else {
3642                 int ms;
3643
3644                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
3645                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
3646                         if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
3647                                 return FW_SUCCESS;
3648                         msleep(100);
3649                         ms += 100;
3650                 }
3651                 return -ETIMEDOUT;
3652         }
3653         return 0;
3654 }
3655
3656 /**
3657  * t4_fl_pkt_align - return the fl packet alignment
3658  * @adap: the adapter
3659  *
3660  * T4 has a single field to specify the packing and padding boundary.
3661  * T5 onwards has separate fields for this and hence the alignment for
3662  * next packet offset is maximum of these two.
3663  */
3664 int t4_fl_pkt_align(struct adapter *adap)
3665 {
3666         u32 sge_control, sge_control2;
3667         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
3668
3669         sge_control = t4_read_reg(adap, A_SGE_CONTROL);
3670
3671         /* T4 uses a single control field to specify both the PCIe Padding and
3672          * Packing Boundary.  T5 introduced the ability to specify these
3673          * separately.  The actual Ingress Packet Data alignment boundary
3674          * within Packed Buffer Mode is the maximum of these two
3675          * specifications.
3676          */
3677         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
3678                 ingpad_shift = X_INGPADBOUNDARY_SHIFT;
3679         else
3680                 ingpad_shift = X_T6_INGPADBOUNDARY_SHIFT;
3681
3682         ingpadboundary = 1 << (G_INGPADBOUNDARY(sge_control) + ingpad_shift);
3683
3684         fl_align = ingpadboundary;
3685         if (!is_t4(adap->params.chip)) {
3686                 sge_control2 = t4_read_reg(adap, A_SGE_CONTROL2);
3687                 ingpackboundary = G_INGPACKBOUNDARY(sge_control2);
3688                 if (ingpackboundary == X_INGPACKBOUNDARY_16B)
3689                         ingpackboundary = 16;
3690                 else
3691                         ingpackboundary = 1 << (ingpackboundary +
3692                                         X_INGPACKBOUNDARY_SHIFT);
3693
3694                 fl_align = max(ingpadboundary, ingpackboundary);
3695         }
3696         return fl_align;
3697 }
3698
3699 /**
3700  * t4_fixup_host_params_compat - fix up host-dependent parameters
3701  * @adap: the adapter
3702  * @page_size: the host's Base Page Size
3703  * @cache_line_size: the host's Cache Line Size
3704  * @chip_compat: maintain compatibility with designated chip
3705  *
3706  * Various registers in the chip contain values which are dependent on the
3707  * host's Base Page and Cache Line Sizes.  This function will fix all of
3708  * those registers with the appropriate values as passed in ...
3709  *
3710  * @chip_compat is used to limit the set of changes that are made
3711  * to be compatible with the indicated chip release.  This is used by
3712  * drivers to maintain compatibility with chip register settings when
3713  * the drivers haven't [yet] been updated with new chip support.
3714  */
3715 int t4_fixup_host_params_compat(struct adapter *adap,
3716                                 unsigned int page_size,
3717                                 unsigned int cache_line_size,
3718                                 enum chip_type chip_compat)
3719 {
3720         unsigned int page_shift = cxgbe_fls(page_size) - 1;
3721         unsigned int sge_hps = page_shift - 10;
3722         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
3723         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
3724         unsigned int fl_align_log = cxgbe_fls(fl_align) - 1;
3725
3726         t4_write_reg(adap, A_SGE_HOST_PAGE_SIZE,
3727                      V_HOSTPAGESIZEPF0(sge_hps) |
3728                      V_HOSTPAGESIZEPF1(sge_hps) |
3729                      V_HOSTPAGESIZEPF2(sge_hps) |
3730                      V_HOSTPAGESIZEPF3(sge_hps) |
3731                      V_HOSTPAGESIZEPF4(sge_hps) |
3732                      V_HOSTPAGESIZEPF5(sge_hps) |
3733                      V_HOSTPAGESIZEPF6(sge_hps) |
3734                      V_HOSTPAGESIZEPF7(sge_hps));
3735
3736         if (is_t4(adap->params.chip) || is_t4(chip_compat))
3737                 t4_set_reg_field(adap, A_SGE_CONTROL,
3738                                  V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
3739                                  F_EGRSTATUSPAGESIZE,
3740                                  V_INGPADBOUNDARY(fl_align_log -
3741                                                   X_INGPADBOUNDARY_SHIFT) |
3742                                 V_EGRSTATUSPAGESIZE(stat_len != 64));
3743         else {
3744                 unsigned int pack_align;
3745                 unsigned int ingpad, ingpack;
3746                 unsigned int pcie_cap;
3747
3748                 /*
3749                  * T5 introduced the separation of the Free List Padding and
3750                  * Packing Boundaries.  Thus, we can select a smaller Padding
3751                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
3752                  * Bandwidth, and use a Packing Boundary which is large enough
3753                  * to avoid false sharing between CPUs, etc.
3754                  *
3755                  * For the PCI Link, the smaller the Padding Boundary the
3756                  * better.  For the Memory Controller, a smaller Padding
3757                  * Boundary is better until we cross under the Memory Line
3758                  * Size (the minimum unit of transfer to/from Memory).  If we
3759                  * have a Padding Boundary which is smaller than the Memory
3760                  * Line Size, that'll involve a Read-Modify-Write cycle on the
3761                  * Memory Controller which is never good.
3762                  */
3763
3764                 /* We want the Packing Boundary to be based on the Cache Line
3765                  * Size in order to help avoid False Sharing performance
3766                  * issues between CPUs, etc.  We also want the Packing
3767                  * Boundary to incorporate the PCI-E Maximum Payload Size.  We
3768                  * get best performance when the Packing Boundary is a
3769                  * multiple of the Maximum Payload Size.
3770                  */
3771                 pack_align = fl_align;
3772                 pcie_cap = t4_os_find_pci_capability(adap, PCI_CAP_ID_EXP);
3773                 if (pcie_cap) {
3774                         unsigned int mps, mps_log;
3775                         u16 devctl;
3776
3777                         /* The PCIe Device Control Maximum Payload Size field
3778                          * [bits 7:5] encodes sizes as powers of 2 starting at
3779                          * 128 bytes.
3780                          */
3781                         t4_os_pci_read_cfg2(adap, pcie_cap + PCI_EXP_DEVCTL,
3782                                             &devctl);
3783                         mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
3784                         mps = 1 << mps_log;
3785                         if (mps > pack_align)
3786                                 pack_align = mps;
3787                 }
3788
3789                 /*
3790                  * N.B. T5 has a different interpretation of the "0" value for
3791                  * the Packing Boundary.  This corresponds to 16 bytes instead
3792                  * of the expected 32 bytes.  We never have a Packing Boundary
3793                  * less than 32 bytes so we can't use that special value but
3794                  * on the other hand, if we wanted 32 bytes, the best we can
3795                  * really do is 64 bytes ...
3796                  */
3797                 if (pack_align <= 16) {
3798                         ingpack = X_INGPACKBOUNDARY_16B;
3799                         fl_align = 16;
3800                 } else if (pack_align == 32) {
3801                         ingpack = X_INGPACKBOUNDARY_64B;
3802                         fl_align = 64;
3803                 } else {
3804                         unsigned int pack_align_log = cxgbe_fls(pack_align) - 1;
3805
3806                         ingpack = pack_align_log - X_INGPACKBOUNDARY_SHIFT;
3807                         fl_align = pack_align;
3808                 }
3809
3810                 /* Use the smallest Ingress Padding which isn't smaller than
3811                  * the Memory Controller Read/Write Size.  We'll take that as
3812                  * being 8 bytes since we don't know of any system with a
3813                  * wider Memory Controller Bus Width.
3814                  */
3815                 if (is_t5(adap->params.chip))
3816                         ingpad = X_INGPADBOUNDARY_32B;
3817                 else
3818                         ingpad = X_T6_INGPADBOUNDARY_8B;
3819                 t4_set_reg_field(adap, A_SGE_CONTROL,
3820                                  V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
3821                                  F_EGRSTATUSPAGESIZE,
3822                                  V_INGPADBOUNDARY(ingpad) |
3823                                  V_EGRSTATUSPAGESIZE(stat_len != 64));
3824                 t4_set_reg_field(adap, A_SGE_CONTROL2,
3825                                  V_INGPACKBOUNDARY(M_INGPACKBOUNDARY),
3826                                  V_INGPACKBOUNDARY(ingpack));
3827         }
3828
3829         /*
3830          * Adjust various SGE Free List Host Buffer Sizes.
3831          *
3832          * The first four entries are:
3833          *
3834          *   0: Host Page Size
3835          *   1: 64KB
3836          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
3837          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
3838          *
3839          * For the single-MTU buffers in unpacked mode we need to include
3840          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
3841          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
3842          * Padding boundary.  All of these are accommodated in the Factory
3843          * Default Firmware Configuration File but we need to adjust it for
3844          * this host's cache line size.
3845          */
3846         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE0, page_size);
3847         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE2,
3848                      (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE2) + fl_align - 1)
3849                      & ~(fl_align - 1));
3850         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE3,
3851                      (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE3) + fl_align - 1)
3852                      & ~(fl_align - 1));
3853
3854         t4_write_reg(adap, A_ULP_RX_TDDP_PSZ, V_HPZ0(page_shift - 12));
3855
3856         return 0;
3857 }
3858
3859 /**
3860  * t4_fixup_host_params - fix up host-dependent parameters (T4 compatible)
3861  * @adap: the adapter
3862  * @page_size: the host's Base Page Size
3863  * @cache_line_size: the host's Cache Line Size
3864  *
3865  * Various registers in T4 contain values which are dependent on the
3866  * host's Base Page and Cache Line Sizes.  This function will fix all of
3867  * those registers with the appropriate values as passed in ...
3868  *
3869  * This routine makes changes which are compatible with T4 chips.
3870  */
3871 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
3872                          unsigned int cache_line_size)
3873 {
3874         return t4_fixup_host_params_compat(adap, page_size, cache_line_size,
3875                                            T4_LAST_REV);
3876 }
3877
3878 /**
3879  * t4_fw_initialize - ask FW to initialize the device
3880  * @adap: the adapter
3881  * @mbox: mailbox to use for the FW command
3882  *
3883  * Issues a command to FW to partially initialize the device.  This
3884  * performs initialization that generally doesn't depend on user input.
3885  */
3886 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
3887 {
3888         struct fw_initialize_cmd c;
3889
3890         memset(&c, 0, sizeof(c));
3891         INIT_CMD(c, INITIALIZE, WRITE);
3892         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3893 }
3894
3895 /**
3896  * t4_query_params_rw - query FW or device parameters
3897  * @adap: the adapter
3898  * @mbox: mailbox to use for the FW command
3899  * @pf: the PF
3900  * @vf: the VF
3901  * @nparams: the number of parameters
3902  * @params: the parameter names
3903  * @val: the parameter values
3904  * @rw: Write and read flag
3905  *
3906  * Reads the value of FW or device parameters.  Up to 7 parameters can be
3907  * queried at once.
3908  */
3909 static int t4_query_params_rw(struct adapter *adap, unsigned int mbox,
3910                               unsigned int pf, unsigned int vf,
3911                               unsigned int nparams, const u32 *params,
3912                               u32 *val, int rw)
3913 {
3914         unsigned int i;
3915         int ret;
3916         struct fw_params_cmd c;
3917         __be32 *p = &c.param[0].mnem;
3918
3919         if (nparams > 7)
3920                 return -EINVAL;
3921
3922         memset(&c, 0, sizeof(c));
3923         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3924                                   F_FW_CMD_REQUEST | F_FW_CMD_READ |
3925                                   V_FW_PARAMS_CMD_PFN(pf) |
3926                                   V_FW_PARAMS_CMD_VFN(vf));
3927         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3928
3929         for (i = 0; i < nparams; i++) {
3930                 *p++ = cpu_to_be32(*params++);
3931                 if (rw)
3932                         *p = cpu_to_be32(*(val + i));
3933                 p++;
3934         }
3935
3936         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3937         if (ret == 0)
3938                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
3939                         *val++ = be32_to_cpu(*p);
3940         return ret;
3941 }
3942
3943 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3944                     unsigned int vf, unsigned int nparams, const u32 *params,
3945                     u32 *val)
3946 {
3947         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
3948 }
3949
3950 /**
3951  * t4_set_params_timeout - sets FW or device parameters
3952  * @adap: the adapter
3953  * @mbox: mailbox to use for the FW command
3954  * @pf: the PF
3955  * @vf: the VF
3956  * @nparams: the number of parameters
3957  * @params: the parameter names
3958  * @val: the parameter values
3959  * @timeout: the timeout time
3960  *
3961  * Sets the value of FW or device parameters.  Up to 7 parameters can be
3962  * specified at once.
3963  */
3964 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
3965                           unsigned int pf, unsigned int vf,
3966                           unsigned int nparams, const u32 *params,
3967                           const u32 *val, int timeout)
3968 {
3969         struct fw_params_cmd c;
3970         __be32 *p = &c.param[0].mnem;
3971
3972         if (nparams > 7)
3973                 return -EINVAL;
3974
3975         memset(&c, 0, sizeof(c));
3976         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3977                                   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3978                                   V_FW_PARAMS_CMD_PFN(pf) |
3979                                   V_FW_PARAMS_CMD_VFN(vf));
3980         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3981
3982         while (nparams--) {
3983                 *p++ = cpu_to_be32(*params++);
3984                 *p++ = cpu_to_be32(*val++);
3985         }
3986
3987         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
3988 }
3989
3990 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3991                   unsigned int vf, unsigned int nparams, const u32 *params,
3992                   const u32 *val)
3993 {
3994         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
3995                                      FW_CMD_MAX_TIMEOUT);
3996 }
3997
3998 /**
3999  * t4_alloc_vi_func - allocate a virtual interface
4000  * @adap: the adapter
4001  * @mbox: mailbox to use for the FW command
4002  * @port: physical port associated with the VI
4003  * @pf: the PF owning the VI
4004  * @vf: the VF owning the VI
4005  * @nmac: number of MAC addresses needed (1 to 5)
4006  * @mac: the MAC addresses of the VI
4007  * @rss_size: size of RSS table slice associated with this VI
4008  * @portfunc: which Port Application Function MAC Address is desired
4009  * @idstype: Intrusion Detection Type
4010  *
4011  * Allocates a virtual interface for the given physical port.  If @mac is
4012  * not %NULL it contains the MAC addresses of the VI as assigned by FW.
4013  * @mac should be large enough to hold @nmac Ethernet addresses, they are
4014  * stored consecutively so the space needed is @nmac * 6 bytes.
4015  * Returns a negative error number or the non-negative VI id.
4016  */
4017 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
4018                      unsigned int port, unsigned int pf, unsigned int vf,
4019                      unsigned int nmac, u8 *mac, unsigned int *rss_size,
4020                      unsigned int portfunc, unsigned int idstype)
4021 {
4022         int ret;
4023         struct fw_vi_cmd c;
4024
4025         memset(&c, 0, sizeof(c));
4026         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
4027                                   F_FW_CMD_WRITE | F_FW_CMD_EXEC |
4028                                   V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
4029         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
4030         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
4031                                      V_FW_VI_CMD_FUNC(portfunc));
4032         c.portid_pkd = V_FW_VI_CMD_PORTID(port);
4033         c.nmac = nmac - 1;
4034
4035         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4036         if (ret)
4037                 return ret;
4038
4039         if (mac) {
4040                 memcpy(mac, c.mac, sizeof(c.mac));
4041                 switch (nmac) {
4042                 case 5:
4043                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
4044                         /* FALLTHROUGH */
4045                 case 4:
4046                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
4047                         /* FALLTHROUGH */
4048                 case 3:
4049                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
4050                         /* FALLTHROUGH */
4051                 case 2:
4052                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
4053                         /* FALLTHROUGH */
4054                 }
4055         }
4056         if (rss_size)
4057                 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
4058         return G_FW_VI_CMD_VIID(cpu_to_be16(c.type_to_viid));
4059 }
4060
4061 /**
4062  * t4_alloc_vi - allocate an [Ethernet Function] virtual interface
4063  * @adap: the adapter
4064  * @mbox: mailbox to use for the FW command
4065  * @port: physical port associated with the VI
4066  * @pf: the PF owning the VI
4067  * @vf: the VF owning the VI
4068  * @nmac: number of MAC addresses needed (1 to 5)
4069  * @mac: the MAC addresses of the VI
4070  * @rss_size: size of RSS table slice associated with this VI
4071  *
4072  * Backwards compatible and convieniance routine to allocate a Virtual
4073  * Interface with a Ethernet Port Application Function and Intrustion
4074  * Detection System disabled.
4075  */
4076 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
4077                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
4078                 unsigned int *rss_size)
4079 {
4080         return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
4081                                 FW_VI_FUNC_ETH, 0);
4082 }
4083
4084 /**
4085  * t4_free_vi - free a virtual interface
4086  * @adap: the adapter
4087  * @mbox: mailbox to use for the FW command
4088  * @pf: the PF owning the VI
4089  * @vf: the VF owning the VI
4090  * @viid: virtual interface identifiler
4091  *
4092  * Free a previously allocated virtual interface.
4093  */
4094 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
4095                unsigned int vf, unsigned int viid)
4096 {
4097         struct fw_vi_cmd c;
4098
4099         memset(&c, 0, sizeof(c));
4100         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
4101                                   F_FW_CMD_EXEC);
4102         if (is_pf4(adap))
4103                 c.op_to_vfn |= cpu_to_be32(V_FW_VI_CMD_PFN(pf) |
4104                                            V_FW_VI_CMD_VFN(vf));
4105         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
4106         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
4107
4108         if (is_pf4(adap))
4109                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4110         else
4111                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4112 }
4113
4114 /**
4115  * t4_set_rxmode - set Rx properties of a virtual interface
4116  * @adap: the adapter
4117  * @mbox: mailbox to use for the FW command
4118  * @viid: the VI id
4119  * @mtu: the new MTU or -1
4120  * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
4121  * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
4122  * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
4123  * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
4124  *          -1 no change
4125  * @sleep_ok: if true we may sleep while awaiting command completion
4126  *
4127  * Sets Rx properties of a virtual interface.
4128  */
4129 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
4130                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
4131                   bool sleep_ok)
4132 {
4133         struct fw_vi_rxmode_cmd c;
4134
4135         /* convert to FW values */
4136         if (mtu < 0)
4137                 mtu = M_FW_VI_RXMODE_CMD_MTU;
4138         if (promisc < 0)
4139                 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
4140         if (all_multi < 0)
4141                 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
4142         if (bcast < 0)
4143                 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
4144         if (vlanex < 0)
4145                 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
4146
4147         memset(&c, 0, sizeof(c));
4148         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
4149                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4150                                    V_FW_VI_RXMODE_CMD_VIID(viid));
4151         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4152         c.mtu_to_vlanexen = cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
4153                             V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
4154                             V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
4155                             V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
4156                             V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
4157         if (is_pf4(adap))
4158                 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL,
4159                                        sleep_ok);
4160         else
4161                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4162 }
4163
4164 /**
4165  *      t4_alloc_raw_mac_filt - Adds a raw mac entry in mps tcam
4166  *      @adap: the adapter
4167  *      @viid: the VI id
4168  *      @mac: the MAC address
4169  *      @mask: the mask
4170  *      @idx: index at which to add this entry
4171  *      @port_id: the port index
4172  *      @lookup_type: MAC address for inner (1) or outer (0) header
4173  *      @sleep_ok: call is allowed to sleep
4174  *
4175  *      Adds the mac entry at the specified index using raw mac interface.
4176  *
4177  *      Returns a negative error number or the allocated index for this mac.
4178  */
4179 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
4180                           const u8 *addr, const u8 *mask, unsigned int idx,
4181                           u8 lookup_type, u8 port_id, bool sleep_ok)
4182 {
4183         int ret = 0;
4184         struct fw_vi_mac_cmd c;
4185         struct fw_vi_mac_raw *p = &c.u.raw;
4186         u32 val;
4187
4188         memset(&c, 0, sizeof(c));
4189         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
4190                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4191                                    V_FW_VI_MAC_CMD_VIID(viid));
4192         val = V_FW_CMD_LEN16(1) |
4193               V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
4194         c.freemacs_to_len16 = cpu_to_be32(val);
4195
4196         /* Specify that this is an inner mac address */
4197         p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
4198
4199         /* Lookup Type. Outer header: 0, Inner header: 1 */
4200         p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
4201                                    V_DATAPORTNUM(port_id));
4202         /* Lookup mask and port mask */
4203         p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
4204                                     V_DATAPORTNUM(M_DATAPORTNUM));
4205
4206         /* Copy the address and the mask */
4207         memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
4208         memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
4209
4210         ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
4211         if (ret == 0) {
4212                 ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
4213                 if (ret != (int)idx)
4214                         ret = -ENOMEM;
4215         }
4216
4217         return ret;
4218 }
4219
4220 /**
4221  *      t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
4222  *      @adap: the adapter
4223  *      @viid: the VI id
4224  *      @addr: the MAC address
4225  *      @mask: the mask
4226  *      @idx: index of the entry in mps tcam
4227  *      @lookup_type: MAC address for inner (1) or outer (0) header
4228  *      @port_id: the port index
4229  *      @sleep_ok: call is allowed to sleep
4230  *
4231  *      Removes the mac entry at the specified index using raw mac interface.
4232  *
4233  *      Returns a negative error number on failure.
4234  */
4235 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
4236                          const u8 *addr, const u8 *mask, unsigned int idx,
4237                          u8 lookup_type, u8 port_id, bool sleep_ok)
4238 {
4239         struct fw_vi_mac_cmd c;
4240         struct fw_vi_mac_raw *p = &c.u.raw;
4241         u32 raw;
4242
4243         memset(&c, 0, sizeof(c));
4244         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
4245                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4246                                    V_FW_CMD_EXEC(0) |
4247                                    V_FW_VI_MAC_CMD_VIID(viid));
4248         raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
4249         c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
4250                                           raw |
4251                                           V_FW_CMD_LEN16(1));
4252
4253         p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
4254                                      FW_VI_MAC_ID_BASED_FREE);
4255
4256         /* Lookup Type. Outer header: 0, Inner header: 1 */
4257         p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
4258                                    V_DATAPORTNUM(port_id));
4259         /* Lookup mask and port mask */
4260         p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
4261                                     V_DATAPORTNUM(M_DATAPORTNUM));
4262
4263         /* Copy the address and the mask */
4264         memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
4265         memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
4266
4267         return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
4268 }
4269
4270 /**
4271  * t4_change_mac - modifies the exact-match filter for a MAC address
4272  * @adap: the adapter
4273  * @mbox: mailbox to use for the FW command
4274  * @viid: the VI id
4275  * @idx: index of existing filter for old value of MAC address, or -1
4276  * @addr: the new MAC address value
4277  * @persist: whether a new MAC allocation should be persistent
4278  * @add_smt: if true also add the address to the HW SMT
4279  *
4280  * Modifies an exact-match filter and sets it to the new MAC address if
4281  * @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
4282  * latter case the address is added persistently if @persist is %true.
4283  *
4284  * Note that in general it is not possible to modify the value of a given
4285  * filter so the generic way to modify an address filter is to free the one
4286  * being used by the old address value and allocate a new filter for the
4287  * new address value.
4288  *
4289  * Returns a negative error number or the index of the filter with the new
4290  * MAC value.  Note that this index may differ from @idx.
4291  */
4292 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
4293                   int idx, const u8 *addr, bool persist, bool add_smt)
4294 {
4295         int ret, mode;
4296         struct fw_vi_mac_cmd c;
4297         struct fw_vi_mac_exact *p = c.u.exact;
4298         int max_mac_addr = adap->params.arch.mps_tcam_size;
4299
4300         if (idx < 0)                             /* new allocation */
4301                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
4302         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
4303
4304         memset(&c, 0, sizeof(c));
4305         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
4306                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4307                                    V_FW_VI_MAC_CMD_VIID(viid));
4308         c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
4309         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
4310                                       V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
4311                                       V_FW_VI_MAC_CMD_IDX(idx));
4312         memcpy(p->macaddr, addr, sizeof(p->macaddr));
4313
4314         if (is_pf4(adap))
4315                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4316         else
4317                 ret = t4vf_wr_mbox(adap, &c, sizeof(c), &c);
4318         if (ret == 0) {
4319                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
4320                 if (ret >= max_mac_addr)
4321                         ret = -ENOMEM;
4322         }
4323         return ret;
4324 }
4325
4326 /**
4327  * t4_enable_vi_params - enable/disable a virtual interface
4328  * @adap: the adapter
4329  * @mbox: mailbox to use for the FW command
4330  * @viid: the VI id
4331  * @rx_en: 1=enable Rx, 0=disable Rx
4332  * @tx_en: 1=enable Tx, 0=disable Tx
4333  * @dcb_en: 1=enable delivery of Data Center Bridging messages.
4334  *
4335  * Enables/disables a virtual interface.  Note that setting DCB Enable
4336  * only makes sense when enabling a Virtual Interface ...
4337  */
4338 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
4339                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
4340 {
4341         struct fw_vi_enable_cmd c;
4342
4343         memset(&c, 0, sizeof(c));
4344         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
4345                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4346                                    V_FW_VI_ENABLE_CMD_VIID(viid));
4347         c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
4348                                      V_FW_VI_ENABLE_CMD_EEN(tx_en) |
4349                                      V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
4350                                      FW_LEN16(c));
4351         if (is_pf4(adap))
4352                 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
4353         else
4354                 return t4vf_wr_mbox_ns(adap, &c, sizeof(c), NULL);
4355 }
4356
4357 /**
4358  * t4_enable_vi - enable/disable a virtual interface
4359  * @adap: the adapter
4360  * @mbox: mailbox to use for the FW command
4361  * @viid: the VI id
4362  * @rx_en: 1=enable Rx, 0=disable Rx
4363  * @tx_en: 1=enable Tx, 0=disable Tx
4364  *
4365  * Enables/disables a virtual interface.  Note that setting DCB Enable
4366  * only makes sense when enabling a Virtual Interface ...
4367  */
4368 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
4369                  bool rx_en, bool tx_en)
4370 {
4371         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
4372 }
4373
4374 /**
4375  * t4_iq_start_stop - enable/disable an ingress queue and its FLs
4376  * @adap: the adapter
4377  * @mbox: mailbox to use for the FW command
4378  * @start: %true to enable the queues, %false to disable them
4379  * @pf: the PF owning the queues
4380  * @vf: the VF owning the queues
4381  * @iqid: ingress queue id
4382  * @fl0id: FL0 queue id or 0xffff if no attached FL0
4383  * @fl1id: FL1 queue id or 0xffff if no attached FL1
4384  *
4385  * Starts or stops an ingress queue and its associated FLs, if any.
4386  */
4387 int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
4388                      unsigned int pf, unsigned int vf, unsigned int iqid,
4389                      unsigned int fl0id, unsigned int fl1id)
4390 {
4391         struct fw_iq_cmd c;
4392
4393         memset(&c, 0, sizeof(c));
4394         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
4395                                   F_FW_CMD_EXEC);
4396         c.alloc_to_len16 = cpu_to_be32(V_FW_IQ_CMD_IQSTART(start) |
4397                                        V_FW_IQ_CMD_IQSTOP(!start) |
4398                                        FW_LEN16(c));
4399         c.iqid = cpu_to_be16(iqid);
4400         c.fl0id = cpu_to_be16(fl0id);
4401         c.fl1id = cpu_to_be16(fl1id);
4402         if (is_pf4(adap)) {
4403                 c.op_to_vfn |= cpu_to_be32(V_FW_IQ_CMD_PFN(pf) |
4404                                            V_FW_IQ_CMD_VFN(vf));
4405                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4406         } else {
4407                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4408         }
4409 }
4410
4411 /**
4412  * t4_iq_free - free an ingress queue and its FLs
4413  * @adap: the adapter
4414  * @mbox: mailbox to use for the FW command
4415  * @pf: the PF owning the queues
4416  * @vf: the VF owning the queues
4417  * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
4418  * @iqid: ingress queue id
4419  * @fl0id: FL0 queue id or 0xffff if no attached FL0
4420  * @fl1id: FL1 queue id or 0xffff if no attached FL1
4421  *
4422  * Frees an ingress queue and its associated FLs, if any.
4423  */
4424 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4425                unsigned int vf, unsigned int iqtype, unsigned int iqid,
4426                unsigned int fl0id, unsigned int fl1id)
4427 {
4428         struct fw_iq_cmd c;
4429
4430         memset(&c, 0, sizeof(c));
4431         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
4432                                   F_FW_CMD_EXEC);
4433         if (is_pf4(adap))
4434                 c.op_to_vfn |= cpu_to_be32(V_FW_IQ_CMD_PFN(pf) |
4435                                            V_FW_IQ_CMD_VFN(vf));
4436         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
4437         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
4438         c.iqid = cpu_to_be16(iqid);
4439         c.fl0id = cpu_to_be16(fl0id);
4440         c.fl1id = cpu_to_be16(fl1id);
4441         if (is_pf4(adap))
4442                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4443         else
4444                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4445 }
4446
4447 /**
4448  * t4_eth_eq_free - free an Ethernet egress queue
4449  * @adap: the adapter
4450  * @mbox: mailbox to use for the FW command
4451  * @pf: the PF owning the queue
4452  * @vf: the VF owning the queue
4453  * @eqid: egress queue id
4454  *
4455  * Frees an Ethernet egress queue.
4456  */
4457 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4458                    unsigned int vf, unsigned int eqid)
4459 {
4460         struct fw_eq_eth_cmd c;
4461
4462         memset(&c, 0, sizeof(c));
4463         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
4464                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC);
4465         if (is_pf4(adap))
4466                 c.op_to_vfn |= cpu_to_be32(V_FW_IQ_CMD_PFN(pf) |
4467                                            V_FW_IQ_CMD_VFN(vf));
4468         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
4469         c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
4470         if (is_pf4(adap))
4471                 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4472         else
4473                 return t4vf_wr_mbox(adap, &c, sizeof(c), NULL);
4474 }
4475
4476 /**
4477  * t4_link_down_rc_str - return a string for a Link Down Reason Code
4478  * @link_down_rc: Link Down Reason Code
4479  *
4480  * Returns a string representation of the Link Down Reason Code.
4481  */
4482 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
4483 {
4484         static const char * const reason[] = {
4485                 "Link Down",
4486                 "Remote Fault",
4487                 "Auto-negotiation Failure",
4488                 "Reserved",
4489                 "Insufficient Airflow",
4490                 "Unable To Determine Reason",
4491                 "No RX Signal Detected",
4492                 "Reserved",
4493         };
4494
4495         if (link_down_rc >= ARRAY_SIZE(reason))
4496                 return "Bad Reason Code";
4497
4498         return reason[link_down_rc];
4499 }
4500
4501 /* Return the highest speed set in the port capabilities, in Mb/s. */
4502 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
4503 {
4504 #define TEST_SPEED_RETURN(__caps_speed, __speed) \
4505         do { \
4506                 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
4507                         return __speed; \
4508         } while (0)
4509
4510         TEST_SPEED_RETURN(100G, 100000);
4511         TEST_SPEED_RETURN(50G,   50000);
4512         TEST_SPEED_RETURN(40G,   40000);
4513         TEST_SPEED_RETURN(25G,   25000);
4514         TEST_SPEED_RETURN(10G,   10000);
4515         TEST_SPEED_RETURN(1G,     1000);
4516         TEST_SPEED_RETURN(100M,    100);
4517
4518 #undef TEST_SPEED_RETURN
4519
4520         return 0;
4521 }
4522
4523 /**
4524  * t4_handle_get_port_info - process a FW reply message
4525  * @pi: the port info
4526  * @rpl: start of the FW message
4527  *
4528  * Processes a GET_PORT_INFO FW reply message.
4529  */
4530 static void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
4531 {
4532         const struct fw_port_cmd *cmd = (const void *)rpl;
4533         int action = G_FW_PORT_CMD_ACTION(be32_to_cpu(cmd->action_to_len16));
4534         fw_port_cap32_t pcaps, acaps, linkattr;
4535         struct link_config *lc = &pi->link_cfg;
4536         struct adapter *adapter = pi->adapter;
4537         enum fw_port_module_type mod_type;
4538         enum fw_port_type port_type;
4539         unsigned int speed, fc, fec;
4540         int link_ok, linkdnrc;
4541
4542         /* Extract the various fields from the Port Information message.
4543          */
4544         switch (action) {
4545         case FW_PORT_ACTION_GET_PORT_INFO: {
4546                 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
4547
4548                 link_ok = (lstatus & F_FW_PORT_CMD_LSTATUS) != 0;
4549                 linkdnrc = G_FW_PORT_CMD_LINKDNRC(lstatus);
4550                 port_type = G_FW_PORT_CMD_PTYPE(lstatus);
4551                 mod_type = G_FW_PORT_CMD_MODTYPE(lstatus);
4552                 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
4553                 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
4554
4555                 /* Unfortunately the format of the Link Status in the old
4556                  * 16-bit Port Information message isn't the same as the
4557                  * 16-bit Port Capabilities bitfield used everywhere else ...
4558                  */
4559                 linkattr = 0;
4560                 if (lstatus & F_FW_PORT_CMD_RXPAUSE)
4561                         linkattr |= FW_PORT_CAP32_FC_RX;
4562                 if (lstatus & F_FW_PORT_CMD_TXPAUSE)
4563                         linkattr |= FW_PORT_CAP32_FC_TX;
4564                 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
4565                         linkattr |= FW_PORT_CAP32_SPEED_100M;
4566                 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
4567                         linkattr |= FW_PORT_CAP32_SPEED_1G;
4568                 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
4569                         linkattr |= FW_PORT_CAP32_SPEED_10G;
4570                 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
4571                         linkattr |= FW_PORT_CAP32_SPEED_25G;
4572                 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
4573                         linkattr |= FW_PORT_CAP32_SPEED_40G;
4574                 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
4575                         linkattr |= FW_PORT_CAP32_SPEED_100G;
4576
4577                 break;
4578                 }
4579
4580         case FW_PORT_ACTION_GET_PORT_INFO32: {
4581                 u32 lstatus32 =
4582                         be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
4583
4584                 link_ok = (lstatus32 & F_FW_PORT_CMD_LSTATUS32) != 0;
4585                 linkdnrc = G_FW_PORT_CMD_LINKDNRC32(lstatus32);
4586                 port_type = G_FW_PORT_CMD_PORTTYPE32(lstatus32);
4587                 mod_type = G_FW_PORT_CMD_MODTYPE32(lstatus32);
4588                 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
4589                 acaps = be32_to_cpu(cmd->u.info32.acaps32);
4590                 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
4591                 break;
4592                 }
4593
4594         default:
4595                 dev_warn(adapter, "Handle Port Information: Bad Command/Action %#x\n",
4596                          be32_to_cpu(cmd->action_to_len16));
4597                 return;
4598         }
4599
4600         fec = fwcap_to_cc_fec(acaps);
4601
4602         fc = fwcap_to_cc_pause(linkattr);
4603         speed = fwcap_to_speed(linkattr);
4604
4605         if (mod_type != pi->mod_type) {
4606                 lc->auto_fec = fec;
4607                 pi->port_type = port_type;
4608                 pi->mod_type = mod_type;
4609                 t4_os_portmod_changed(adapter, pi->pidx);
4610         }
4611         if (link_ok != lc->link_ok || speed != lc->speed ||
4612             fc != lc->fc || fec != lc->fec) { /* something changed */
4613                 if (!link_ok && lc->link_ok) {
4614                         lc->link_down_rc = linkdnrc;
4615                         dev_warn(adap, "Port %d link down, reason: %s\n",
4616                                  pi->tx_chan, t4_link_down_rc_str(linkdnrc));
4617                 }
4618                 lc->link_ok = link_ok;
4619                 lc->speed = speed;
4620                 lc->fc = fc;
4621                 lc->fec = fec;
4622                 lc->pcaps = pcaps;
4623                 lc->acaps = acaps & ADVERT_MASK;
4624
4625                 if (lc->acaps & FW_PORT_CAP32_ANEG) {
4626                         lc->autoneg = AUTONEG_ENABLE;
4627                 } else {
4628                         /* When Autoneg is disabled, user needs to set
4629                          * single speed.
4630                          * Similar to cxgb4_ethtool.c: set_link_ksettings
4631                          */
4632                         lc->acaps = 0;
4633                         lc->requested_speed = fwcap_to_speed(acaps);
4634                         lc->autoneg = AUTONEG_DISABLE;
4635                 }
4636         }
4637 }
4638
4639 /**
4640  * t4_ctrl_eq_free - free a control egress queue
4641  * @adap: the adapter
4642  * @mbox: mailbox to use for the FW command
4643  * @pf: the PF owning the queue
4644  * @vf: the VF owning the queue
4645  * @eqid: egress queue id
4646  *
4647  * Frees a control egress queue.
4648  */
4649 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4650                     unsigned int vf, unsigned int eqid)
4651 {
4652         struct fw_eq_ctrl_cmd c;
4653
4654         memset(&c, 0, sizeof(c));
4655         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
4656                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4657                                   V_FW_EQ_CTRL_CMD_PFN(pf) |
4658                                   V_FW_EQ_CTRL_CMD_VFN(vf));
4659         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
4660         c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
4661         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4662 }
4663
4664 /**
4665  * t4_handle_fw_rpl - process a FW reply message
4666  * @adap: the adapter
4667  * @rpl: start of the FW message
4668  *
4669  * Processes a FW message, such as link state change messages.
4670  */
4671 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
4672 {
4673         u8 opcode = *(const u8 *)rpl;
4674
4675         /*
4676          * This might be a port command ... this simplifies the following
4677          * conditionals ...  We can get away with pre-dereferencing
4678          * action_to_len16 because it's in the first 16 bytes and all messages
4679          * will be at least that long.
4680          */
4681         const struct fw_port_cmd *p = (const void *)rpl;
4682         unsigned int action =
4683                 G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
4684
4685         if (opcode == FW_PORT_CMD &&
4686             (action == FW_PORT_ACTION_GET_PORT_INFO ||
4687              action == FW_PORT_ACTION_GET_PORT_INFO32)) {
4688                 /* link/module state change message */
4689                 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
4690                 struct port_info *pi = NULL;
4691                 int i;
4692
4693                 for_each_port(adap, i) {
4694                         pi = adap2pinfo(adap, i);
4695                         if (pi->tx_chan == chan)
4696                                 break;
4697                 }
4698
4699                 t4_handle_get_port_info(pi, rpl);
4700         } else {
4701                 dev_warn(adap, "Unknown firmware reply %d\n", opcode);
4702                 return -EINVAL;
4703         }
4704         return 0;
4705 }
4706
4707 void t4_reset_link_config(struct adapter *adap, int idx)
4708 {
4709         struct port_info *pi = adap2pinfo(adap, idx);
4710         struct link_config *lc = &pi->link_cfg;
4711
4712         lc->link_ok = 0;
4713         lc->requested_speed = 0;
4714         lc->requested_fc = 0;
4715         lc->speed = 0;
4716         lc->fc = 0;
4717 }
4718
4719 /**
4720  * init_link_config - initialize a link's SW state
4721  * @lc: structure holding the link state
4722  * @pcaps: link Port Capabilities
4723  * @acaps: link current Advertised Port Capabilities
4724  *
4725  * Initializes the SW state maintained for each link, including the link's
4726  * capabilities and default speed/flow-control/autonegotiation settings.
4727  */
4728 void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
4729                       fw_port_cap32_t acaps)
4730 {
4731         lc->pcaps = pcaps;
4732         lc->requested_speed = 0;
4733         lc->speed = 0;
4734         lc->requested_fc = 0;
4735         lc->fc = 0;
4736
4737         /**
4738          * For Forward Error Control, we default to whatever the Firmware
4739          * tells us the Link is currently advertising.
4740          */
4741         lc->auto_fec = fwcap_to_cc_fec(acaps);
4742         lc->requested_fec = FEC_AUTO;
4743         lc->fec = lc->auto_fec;
4744
4745         if (lc->pcaps & FW_PORT_CAP32_ANEG) {
4746                 lc->acaps = lc->pcaps & ADVERT_MASK;
4747                 lc->autoneg = AUTONEG_ENABLE;
4748                 lc->requested_fc |= PAUSE_AUTONEG;
4749         } else {
4750                 lc->acaps = 0;
4751                 lc->autoneg = AUTONEG_DISABLE;
4752         }
4753 }
4754
4755 /**
4756  * t4_wait_dev_ready - wait till to reads of registers work
4757  *
4758  * Right after the device is RESET is can take a small amount of time
4759  * for it to respond to register reads.  Until then, all reads will
4760  * return either 0xff...ff or 0xee...ee.  Return an error if reads
4761  * don't work within a reasonable time frame.
4762  */
4763 static int t4_wait_dev_ready(struct adapter *adapter)
4764 {
4765         u32 whoami;
4766
4767         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4768
4769         if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS)
4770                 return 0;
4771
4772         msleep(500);
4773         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4774         if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS)
4775                 return 0;
4776
4777         dev_err(adapter, "Device didn't become ready for access, whoami = %#x\n",
4778                 whoami);
4779         return -EIO;
4780 }
4781
4782 struct flash_desc {
4783         u32 vendor_and_model_id;
4784         u32 size_mb;
4785 };
4786
4787 int t4_get_flash_params(struct adapter *adapter)
4788 {
4789         /*
4790          * Table for non-standard supported Flash parts.  Note, all Flash
4791          * parts must have 64KB sectors.
4792          */
4793         static struct flash_desc supported_flash[] = {
4794                 { 0x00150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
4795         };
4796
4797         int ret;
4798         u32 flashid = 0;
4799         unsigned int part, manufacturer;
4800         unsigned int density, size = 0;
4801
4802         /**
4803          * Issue a Read ID Command to the Flash part.  We decode supported
4804          * Flash parts and their sizes from this.  There's a newer Query
4805          * Command which can retrieve detailed geometry information but
4806          * many Flash parts don't support it.
4807          */
4808         ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
4809         if (!ret)
4810                 ret = sf1_read(adapter, 3, 0, 1, &flashid);
4811         t4_write_reg(adapter, A_SF_OP, 0);               /* unlock SF */
4812         if (ret < 0)
4813                 return ret;
4814
4815         /**
4816          * Check to see if it's one of our non-standard supported Flash parts.
4817          */
4818         for (part = 0; part < ARRAY_SIZE(supported_flash); part++) {
4819                 if (supported_flash[part].vendor_and_model_id == flashid) {
4820                         adapter->params.sf_size =
4821                                 supported_flash[part].size_mb;
4822                         adapter->params.sf_nsec =
4823                                 adapter->params.sf_size / SF_SEC_SIZE;
4824                         goto found;
4825                 }
4826         }
4827
4828         /**
4829          * Decode Flash part size.  The code below looks repetative with
4830          * common encodings, but that's not guaranteed in the JEDEC
4831          * specification for the Read JADEC ID command.  The only thing that
4832          * we're guaranteed by the JADEC specification is where the
4833          * Manufacturer ID is in the returned result.  After that each
4834          * Manufacturer ~could~ encode things completely differently.
4835          * Note, all Flash parts must have 64KB sectors.
4836          */
4837         manufacturer = flashid & 0xff;
4838         switch (manufacturer) {
4839         case 0x20: { /* Micron/Numonix */
4840                 /**
4841                  * This Density -> Size decoding table is taken from Micron
4842                  * Data Sheets.
4843                  */
4844                 density = (flashid >> 16) & 0xff;
4845                 switch (density) {
4846                 case 0x14:
4847                         size = 1 << 20; /* 1MB */
4848                         break;
4849                 case 0x15:
4850                         size = 1 << 21; /* 2MB */
4851                         break;
4852                 case 0x16:
4853                         size = 1 << 22; /* 4MB */
4854                         break;
4855                 case 0x17:
4856                         size = 1 << 23; /* 8MB */
4857                         break;
4858                 case 0x18:
4859                         size = 1 << 24; /* 16MB */
4860                         break;
4861                 case 0x19:
4862                         size = 1 << 25; /* 32MB */
4863                         break;
4864                 case 0x20:
4865                         size = 1 << 26; /* 64MB */
4866                         break;
4867                 case 0x21:
4868                         size = 1 << 27; /* 128MB */
4869                         break;
4870                 case 0x22:
4871                         size = 1 << 28; /* 256MB */
4872                         break;
4873                 }
4874                 break;
4875         }
4876
4877         case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
4878                 /**
4879                  * This Density -> Size decoding table is taken from ISSI
4880                  * Data Sheets.
4881                  */
4882                 density = (flashid >> 16) & 0xff;
4883                 switch (density) {
4884                 case 0x16:
4885                         size = 1 << 25; /* 32MB */
4886                         break;
4887                 case 0x17:
4888                         size = 1 << 26; /* 64MB */
4889                         break;
4890                 }
4891                 break;
4892         }
4893
4894         case 0xc2: { /* Macronix */
4895                 /**
4896                  * This Density -> Size decoding table is taken from Macronix
4897                  * Data Sheets.
4898                  */
4899                 density = (flashid >> 16) & 0xff;
4900                 switch (density) {
4901                 case 0x17:
4902                         size = 1 << 23; /* 8MB */
4903                         break;
4904                 case 0x18:
4905                         size = 1 << 24; /* 16MB */
4906                         break;
4907                 }
4908                 break;
4909         }
4910
4911         case 0xef: { /* Winbond */
4912                 /**
4913                  * This Density -> Size decoding table is taken from Winbond
4914                  * Data Sheets.
4915                  */
4916                 density = (flashid >> 16) & 0xff;
4917                 switch (density) {
4918                 case 0x17:
4919                         size = 1 << 23; /* 8MB */
4920                         break;
4921                 case 0x18:
4922                         size = 1 << 24; /* 16MB */
4923                         break;
4924                 }
4925                 break;
4926         }
4927         }
4928
4929         /* If we didn't recognize the FLASH part, that's no real issue: the
4930          * Hardware/Software contract says that Hardware will _*ALWAYS*_
4931          * use a FLASH part which is at least 4MB in size and has 64KB
4932          * sectors.  The unrecognized FLASH part is likely to be much larger
4933          * than 4MB, but that's all we really need.
4934          */
4935         if (size == 0) {
4936                 dev_warn(adapter,
4937                          "Unknown Flash Part, ID = %#x, assuming 4MB\n",
4938                          flashid);
4939                 size = 1 << 22;
4940         }
4941
4942         /**
4943          * Store decoded Flash size and fall through into vetting code.
4944          */
4945         adapter->params.sf_size = size;
4946         adapter->params.sf_nsec = size / SF_SEC_SIZE;
4947
4948 found:
4949         /*
4950          * We should reject adapters with FLASHes which are too small. So, emit
4951          * a warning.
4952          */
4953         if (adapter->params.sf_size < FLASH_MIN_SIZE)
4954                 dev_warn(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
4955                          flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
4956
4957         return 0;
4958 }
4959
4960 static void set_pcie_completion_timeout(struct adapter *adapter,
4961                                         u8 range)
4962 {
4963         u32 pcie_cap;
4964         u16 val;
4965
4966         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
4967         if (pcie_cap) {
4968                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
4969                 val &= 0xfff0;
4970                 val |= range;
4971                 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
4972         }
4973 }
4974
4975 /**
4976  * t4_get_chip_type - Determine chip type from device ID
4977  * @adap: the adapter
4978  * @ver: adapter version
4979  */
4980 int t4_get_chip_type(struct adapter *adap, int ver)
4981 {
4982         enum chip_type chip = 0;
4983         u32 pl_rev = G_REV(t4_read_reg(adap, A_PL_REV));
4984
4985         /* Retrieve adapter's device ID */
4986         switch (ver) {
4987         case CHELSIO_T5:
4988                 chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4989                 break;
4990         case CHELSIO_T6:
4991                 chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4992                 break;
4993         default:
4994                 dev_err(adap, "Device %d is not supported\n",
4995                         adap->params.pci.device_id);
4996                 return -EINVAL;
4997         }
4998
4999         return chip;
5000 }
5001
5002 /**
5003  * t4_prep_adapter - prepare SW and HW for operation
5004  * @adapter: the adapter
5005  *
5006  * Initialize adapter SW state for the various HW modules, set initial
5007  * values for some adapter tunables, take PHYs out of reset, and
5008  * initialize the MDIO interface.
5009  */
5010 int t4_prep_adapter(struct adapter *adapter)
5011 {
5012         int ret, ver;
5013         u32 pl_rev;
5014
5015         ret = t4_wait_dev_ready(adapter);
5016         if (ret < 0)
5017                 return ret;
5018
5019         pl_rev = G_REV(t4_read_reg(adapter, A_PL_REV));
5020         adapter->params.pci.device_id = adapter->pdev->id.device_id;
5021         adapter->params.pci.vendor_id = adapter->pdev->id.vendor_id;
5022
5023         /*
5024          * WE DON'T NEED adapter->params.chip CODE ONCE PL_REV CONTAINS
5025          * ADAPTER (VERSION << 4 | REVISION)
5026          */
5027         ver = CHELSIO_PCI_ID_VER(adapter->params.pci.device_id);
5028         adapter->params.chip = 0;
5029         switch (ver) {
5030         case CHELSIO_T5:
5031                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5032                 adapter->params.arch.sge_fl_db = F_DBPRIO | F_DBTYPE;
5033                 adapter->params.arch.mps_tcam_size =
5034                                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
5035                 adapter->params.arch.mps_rplc_size = 128;
5036                 adapter->params.arch.nchan = NCHAN;
5037                 adapter->params.arch.vfcount = 128;
5038                 break;
5039         case CHELSIO_T6:
5040                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5041                 adapter->params.arch.sge_fl_db = 0;
5042                 adapter->params.arch.mps_tcam_size =
5043                                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
5044                 adapter->params.arch.mps_rplc_size = 256;
5045                 adapter->params.arch.nchan = 2;
5046                 adapter->params.arch.vfcount = 256;
5047                 break;
5048         default:
5049                 dev_err(adapter, "%s: Device %d is not supported\n",
5050                         __func__, adapter->params.pci.device_id);
5051                 return -EINVAL;
5052         }
5053
5054         adapter->params.pci.vpd_cap_addr =
5055                 t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
5056
5057         ret = t4_get_flash_params(adapter);
5058         if (ret < 0) {
5059                 dev_err(adapter, "Unable to retrieve Flash Parameters, ret = %d\n",
5060                         -ret);
5061                 return ret;
5062         }
5063
5064         adapter->params.cim_la_size = CIMLA_SIZE;
5065
5066         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
5067
5068         /*
5069          * Default port and clock for debugging in case we can't reach FW.
5070          */
5071         adapter->params.nports = 1;
5072         adapter->params.portvec = 1;
5073         adapter->params.vpd.cclk = 50000;
5074
5075         /* Set pci completion timeout value to 4 seconds. */
5076         set_pcie_completion_timeout(adapter, 0xd);
5077         return 0;
5078 }
5079
5080 /**
5081  * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
5082  * @adapter: the adapter
5083  * @qid: the Queue ID
5084  * @qtype: the Ingress or Egress type for @qid
5085  * @pbar2_qoffset: BAR2 Queue Offset
5086  * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
5087  *
5088  * Returns the BAR2 SGE Queue Registers information associated with the
5089  * indicated Absolute Queue ID.  These are passed back in return value
5090  * pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
5091  * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
5092  *
5093  * This may return an error which indicates that BAR2 SGE Queue
5094  * registers aren't available.  If an error is not returned, then the
5095  * following values are returned:
5096  *
5097  *   *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
5098  *   *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
5099  *
5100  * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
5101  * require the "Inferred Queue ID" ability may be used.  E.g. the
5102  * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
5103  * then these "Inferred Queue ID" register may not be used.
5104  */
5105 int t4_bar2_sge_qregs(struct adapter *adapter, unsigned int qid,
5106                       enum t4_bar2_qtype qtype, u64 *pbar2_qoffset,
5107                       unsigned int *pbar2_qid)
5108 {
5109         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
5110         u64 bar2_page_offset, bar2_qoffset;
5111         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
5112
5113         /*
5114          * T4 doesn't support BAR2 SGE Queue registers.
5115          */
5116         if (is_t4(adapter->params.chip))
5117                 return -EINVAL;
5118
5119         /*
5120          * Get our SGE Page Size parameters.
5121          */
5122         page_shift = adapter->params.sge.hps + 10;
5123         page_size = 1 << page_shift;
5124
5125         /*
5126          * Get the right Queues per Page parameters for our Queue.
5127          */
5128         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS ?
5129                               adapter->params.sge.eq_qpp :
5130                               adapter->params.sge.iq_qpp);
5131         qpp_mask = (1 << qpp_shift) - 1;
5132
5133         /*
5134          * Calculate the basics of the BAR2 SGE Queue register area:
5135          *  o The BAR2 page the Queue registers will be in.
5136          *  o The BAR2 Queue ID.
5137          *  o The BAR2 Queue ID Offset into the BAR2 page.
5138          */
5139         bar2_page_offset = ((qid >> qpp_shift) << page_shift);
5140         bar2_qid = qid & qpp_mask;
5141         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
5142
5143         /*
5144          * If the BAR2 Queue ID Offset is less than the Page Size, then the
5145          * hardware will infer the Absolute Queue ID simply from the writes to
5146          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
5147          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
5148          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
5149          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
5150          * from the BAR2 Page and BAR2 Queue ID.
5151          *
5152          * One important censequence of this is that some BAR2 SGE registers
5153          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
5154          * there.  But other registers synthesize the SGE Queue ID purely
5155          * from the writes to the registers -- the Write Combined Doorbell
5156          * Buffer is a good example.  These BAR2 SGE Registers are only
5157          * available for those BAR2 SGE Register areas where the SGE Absolute
5158          * Queue ID can be inferred from simple writes.
5159          */
5160         bar2_qoffset = bar2_page_offset;
5161         bar2_qinferred = (bar2_qid_offset < page_size);
5162         if (bar2_qinferred) {
5163                 bar2_qoffset += bar2_qid_offset;
5164                 bar2_qid = 0;
5165         }
5166
5167         *pbar2_qoffset = bar2_qoffset;
5168         *pbar2_qid = bar2_qid;
5169         return 0;
5170 }
5171
5172 /**
5173  * t4_init_sge_params - initialize adap->params.sge
5174  * @adapter: the adapter
5175  *
5176  * Initialize various fields of the adapter's SGE Parameters structure.
5177  */
5178 int t4_init_sge_params(struct adapter *adapter)
5179 {
5180         struct sge_params *sge_params = &adapter->params.sge;
5181         u32 hps, qpp;
5182         unsigned int s_hps, s_qpp;
5183
5184         /*
5185          * Extract the SGE Page Size for our PF.
5186          */
5187         hps = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
5188         s_hps = (S_HOSTPAGESIZEPF0 + (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) *
5189                  adapter->pf);
5190         sge_params->hps = ((hps >> s_hps) & M_HOSTPAGESIZEPF0);
5191
5192         /*
5193          * Extract the SGE Egress and Ingess Queues Per Page for our PF.
5194          */
5195         s_qpp = (S_QUEUESPERPAGEPF0 +
5196                  (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf);
5197         qpp = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
5198         sge_params->eq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
5199         qpp = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
5200         sge_params->iq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
5201
5202         return 0;
5203 }
5204
5205 /**
5206  * t4_init_tp_params - initialize adap->params.tp
5207  * @adap: the adapter
5208  *
5209  * Initialize various fields of the adapter's TP Parameters structure.
5210  */
5211 int t4_init_tp_params(struct adapter *adap)
5212 {
5213         int chan;
5214         u32 v;
5215
5216         v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
5217         adap->params.tp.tre = G_TIMERRESOLUTION(v);
5218         adap->params.tp.dack_re = G_DELAYEDACKRESOLUTION(v);
5219
5220         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
5221         for (chan = 0; chan < NCHAN; chan++)
5222                 adap->params.tp.tx_modq[chan] = chan;
5223
5224         /*
5225          * Cache the adapter's Compressed Filter Mode and global Incress
5226          * Configuration.
5227          */
5228         t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5229                          &adap->params.tp.vlan_pri_map, 1, A_TP_VLAN_PRI_MAP);
5230         t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5231                          &adap->params.tp.ingress_config, 1,
5232                          A_TP_INGRESS_CONFIG);
5233
5234         /* For T6, cache the adapter's compressed error vector
5235          * and passing outer header info for encapsulated packets.
5236          */
5237         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
5238                 v = t4_read_reg(adap, A_TP_OUT_CONFIG);
5239                 adap->params.tp.rx_pkt_encap = (v & F_CRXPKTENC) ? 1 : 0;
5240         }
5241
5242         /*
5243          * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
5244          * shift positions of several elements of the Compressed Filter Tuple
5245          * for this adapter which we need frequently ...
5246          */
5247         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
5248         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
5249         adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
5250         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
5251                                                                F_PROTOCOL);
5252         adap->params.tp.ethertype_shift = t4_filter_field_shift(adap,
5253                                                                 F_ETHERTYPE);
5254         adap->params.tp.macmatch_shift = t4_filter_field_shift(adap,
5255                                                                F_MACMATCH);
5256
5257         /*
5258          * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
5259          * represents the presense of an Outer VLAN instead of a VNIC ID.
5260          */
5261         if ((adap->params.tp.ingress_config & F_VNIC) == 0)
5262                 adap->params.tp.vnic_shift = -1;
5263
5264         v = t4_read_reg(adap, LE_3_DB_HASH_MASK_GEN_IPV4_T6_A);
5265         adap->params.tp.hash_filter_mask = v;
5266         v = t4_read_reg(adap, LE_4_DB_HASH_MASK_GEN_IPV4_T6_A);
5267         adap->params.tp.hash_filter_mask |= ((u64)v << 32);
5268
5269         return 0;
5270 }
5271
5272 /**
5273  * t4_filter_field_shift - calculate filter field shift
5274  * @adap: the adapter
5275  * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
5276  *
5277  * Return the shift position of a filter field within the Compressed
5278  * Filter Tuple.  The filter field is specified via its selection bit
5279  * within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
5280  */
5281 int t4_filter_field_shift(const struct adapter *adap, unsigned int filter_sel)
5282 {
5283         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
5284         unsigned int sel;
5285         int field_shift;
5286
5287         if ((filter_mode & filter_sel) == 0)
5288                 return -1;
5289
5290         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
5291                 switch (filter_mode & sel) {
5292                 case F_FCOE:
5293                         field_shift += W_FT_FCOE;
5294                         break;
5295                 case F_PORT:
5296                         field_shift += W_FT_PORT;
5297                         break;
5298                 case F_VNIC_ID:
5299                         field_shift += W_FT_VNIC_ID;
5300                         break;
5301                 case F_VLAN:
5302                         field_shift += W_FT_VLAN;
5303                         break;
5304                 case F_TOS:
5305                         field_shift += W_FT_TOS;
5306                         break;
5307                 case F_PROTOCOL:
5308                         field_shift += W_FT_PROTOCOL;
5309                         break;
5310                 case F_ETHERTYPE:
5311                         field_shift += W_FT_ETHERTYPE;
5312                         break;
5313                 case F_MACMATCH:
5314                         field_shift += W_FT_MACMATCH;
5315                         break;
5316                 case F_MPSHITTYPE:
5317                         field_shift += W_FT_MPSHITTYPE;
5318                         break;
5319                 case F_FRAGMENTATION:
5320                         field_shift += W_FT_FRAGMENTATION;
5321                         break;
5322                 }
5323         }
5324         return field_shift;
5325 }
5326
5327 int t4_init_rss_mode(struct adapter *adap, int mbox)
5328 {
5329         int i, ret;
5330         struct fw_rss_vi_config_cmd rvc;
5331
5332         memset(&rvc, 0, sizeof(rvc));
5333
5334         for_each_port(adap, i) {
5335                 struct port_info *p = adap2pinfo(adap, i);
5336
5337                 rvc.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5338                                        F_FW_CMD_REQUEST | F_FW_CMD_READ |
5339                                        V_FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
5340                 rvc.retval_len16 = htonl(FW_LEN16(rvc));
5341                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
5342                 if (ret)
5343                         return ret;
5344                 p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
5345         }
5346         return 0;
5347 }
5348
5349 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
5350 {
5351         unsigned int fw_caps = adap->params.fw_caps_support;
5352         fw_port_cap32_t pcaps, acaps;
5353         enum fw_port_type port_type;
5354         struct fw_port_cmd cmd;
5355         int ret, i, j = 0;
5356         int mdio_addr;
5357         u32 action;
5358         u8 addr[6];
5359
5360         memset(&cmd, 0, sizeof(cmd));
5361
5362         for_each_port(adap, i) {
5363                 struct port_info *pi = adap2pinfo(adap, i);
5364                 unsigned int rss_size = 0;
5365
5366                 while ((adap->params.portvec & (1 << j)) == 0)
5367                         j++;
5368
5369                 /* If we haven't yet determined whether we're talking to
5370                  * Firmware which knows the new 32-bit Port Capabilities, it's
5371                  * time to find out now.  This will also tell new Firmware to
5372                  * send us Port Status Updates using the new 32-bit Port
5373                  * Capabilities version of the Port Information message.
5374                  */
5375                 if (fw_caps == FW_CAPS_UNKNOWN) {
5376                         u32 param, val, caps;
5377
5378                         caps = FW_PARAMS_PARAM_PFVF_PORT_CAPS32;
5379                         param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) |
5380                                  V_FW_PARAMS_PARAM_X(caps));
5381                         val = 1;
5382                         ret = t4_set_params(adap, mbox, pf, vf, 1, &param,
5383                                             &val);
5384                         fw_caps = ret == 0 ? FW_CAPS32 : FW_CAPS16;
5385                         adap->params.fw_caps_support = fw_caps;
5386                 }
5387
5388                 memset(&cmd, 0, sizeof(cmd));
5389                 cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
5390                                                F_FW_CMD_REQUEST |
5391                                                F_FW_CMD_READ |
5392                                                V_FW_PORT_CMD_PORTID(j));
5393                 action = fw_caps == FW_CAPS16 ? FW_PORT_ACTION_GET_PORT_INFO :
5394                                                 FW_PORT_ACTION_GET_PORT_INFO32;
5395                 cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
5396                                                   FW_LEN16(cmd));
5397                 ret = t4_wr_mbox(pi->adapter, mbox, &cmd, sizeof(cmd), &cmd);
5398                 if (ret)
5399                         return ret;
5400
5401                 /* Extract the various fields from the Port Information message.
5402                  */
5403                 if (fw_caps == FW_CAPS16) {
5404                         u32 lstatus =
5405                                 be32_to_cpu(cmd.u.info.lstatus_to_modtype);
5406
5407                         port_type = G_FW_PORT_CMD_PTYPE(lstatus);
5408                         mdio_addr = (lstatus & F_FW_PORT_CMD_MDIOCAP) ?
5409                                     (int)G_FW_PORT_CMD_MDIOADDR(lstatus) : -1;
5410                         pcaps = be16_to_cpu(cmd.u.info.pcap);
5411                         acaps = be16_to_cpu(cmd.u.info.acap);
5412                         pcaps = fwcaps16_to_caps32(pcaps);
5413                         acaps = fwcaps16_to_caps32(acaps);
5414                 } else {
5415                         u32 lstatus32 =
5416                                 be32_to_cpu(cmd.u.info32.lstatus32_to_cbllen32);
5417
5418                         port_type = G_FW_PORT_CMD_PORTTYPE32(lstatus32);
5419                         mdio_addr = (lstatus32 & F_FW_PORT_CMD_MDIOCAP32) ?
5420                                     (int)G_FW_PORT_CMD_MDIOADDR32(lstatus32) :
5421                                     -1;
5422                         pcaps = be32_to_cpu(cmd.u.info32.pcaps32);
5423                         acaps = be32_to_cpu(cmd.u.info32.acaps32);
5424                 }
5425
5426                 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
5427                 if (ret < 0)
5428                         return ret;
5429
5430                 pi->viid = ret;
5431                 pi->tx_chan = j;
5432                 pi->rss_size = rss_size;
5433                 t4_os_set_hw_addr(adap, i, addr);
5434
5435                 pi->port_type = port_type;
5436                 pi->mdio_addr = mdio_addr;
5437                 pi->mod_type = FW_PORT_MOD_TYPE_NA;
5438
5439                 init_link_config(&pi->link_cfg, pcaps, acaps);
5440                 j++;
5441         }
5442         return 0;
5443 }
5444
5445 /**
5446  * t4_memory_rw_addr - read/write adapter memory via PCIE memory window
5447  * @adap: the adapter
5448  * @win: PCI-E Memory Window to use
5449  * @addr: address within adapter memory
5450  * @len: amount of memory to transfer
5451  * @hbuf: host memory buffer
5452  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5453  *
5454  * Reads/writes an [almost] arbitrary memory region in the firmware: the
5455  * firmware memory address and host buffer must be aligned on 32-bit
5456  * boudaries; the length may be arbitrary.
5457  *
5458  * NOTES:
5459  *  1. The memory is transferred as a raw byte sequence from/to the
5460  *     firmware's memory.  If this memory contains data structures which
5461  *     contain multi-byte integers, it's the caller's responsibility to
5462  *     perform appropriate byte order conversions.
5463  *
5464  *  2. It is the Caller's responsibility to ensure that no other code
5465  *     uses the specified PCI-E Memory Window while this routine is
5466  *     using it.  This is typically done via the use of OS-specific
5467  *     locks, etc.
5468  */
5469 int t4_memory_rw_addr(struct adapter *adap, int win, u32 addr,
5470                       u32 len, void *hbuf, int dir)
5471 {
5472         u32 pos, offset, resid;
5473         u32 win_pf, mem_reg, mem_aperture, mem_base;
5474         u32 *buf;
5475
5476         /* Argument sanity checks ...*/
5477         if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
5478                 return -EINVAL;
5479         buf = (u32 *)hbuf;
5480
5481         /* It's convenient to be able to handle lengths which aren't a
5482          * multiple of 32-bits because we often end up transferring files to
5483          * the firmware.  So we'll handle that by normalizing the length here
5484          * and then handling any residual transfer at the end.
5485          */
5486         resid = len & 0x3;
5487         len -= resid;
5488
5489         /* Each PCI-E Memory Window is programmed with a window size -- or
5490          * "aperture" -- which controls the granularity of its mapping onto
5491          * adapter memory.  We need to grab that aperture in order to know
5492          * how to use the specified window.  The window is also programmed
5493          * with the base address of the Memory Window in BAR0's address
5494          * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
5495          * the address is relative to BAR0.
5496          */
5497         mem_reg = t4_read_reg(adap,
5498                               PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
5499                                                   win));
5500         mem_aperture = 1 << (G_WINDOW(mem_reg) + X_WINDOW_SHIFT);
5501         mem_base = G_PCIEOFST(mem_reg) << X_PCIEOFST_SHIFT;
5502
5503         win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->pf);
5504
5505         /* Calculate our initial PCI-E Memory Window Position and Offset into
5506          * that Window.
5507          */
5508         pos = addr & ~(mem_aperture - 1);
5509         offset = addr - pos;
5510
5511         /* Set up initial PCI-E Memory Window to cover the start of our
5512          * transfer.  (Read it back to ensure that changes propagate before we
5513          * attempt to use the new value.)
5514          */
5515         t4_write_reg(adap,
5516                      PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, win),
5517                      pos | win_pf);
5518         t4_read_reg(adap,
5519                     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, win));
5520
5521         /* Transfer data to/from the adapter as long as there's an integral
5522          * number of 32-bit transfers to complete.
5523          *
5524          * A note on Endianness issues:
5525          *
5526          * The "register" reads and writes below from/to the PCI-E Memory
5527          * Window invoke the standard adapter Big-Endian to PCI-E Link
5528          * Little-Endian "swizzel."  As a result, if we have the following
5529          * data in adapter memory:
5530          *
5531          *     Memory:  ... | b0 | b1 | b2 | b3 | ...
5532          *     Address:      i+0  i+1  i+2  i+3
5533          *
5534          * Then a read of the adapter memory via the PCI-E Memory Window
5535          * will yield:
5536          *
5537          *     x = readl(i)
5538          *         31                  0
5539          *         [ b3 | b2 | b1 | b0 ]
5540          *
5541          * If this value is stored into local memory on a Little-Endian system
5542          * it will show up correctly in local memory as:
5543          *
5544          *     ( ..., b0, b1, b2, b3, ... )
5545          *
5546          * But on a Big-Endian system, the store will show up in memory
5547          * incorrectly swizzled as:
5548          *
5549          *     ( ..., b3, b2, b1, b0, ... )
5550          *
5551          * So we need to account for this in the reads and writes to the
5552          * PCI-E Memory Window below by undoing the register read/write
5553          * swizzels.
5554          */
5555         while (len > 0) {
5556                 if (dir == T4_MEMORY_READ)
5557                         *buf++ = le32_to_cpu((__le32)t4_read_reg(adap,
5558                                                                  mem_base +
5559                                                                  offset));
5560                 else
5561                         t4_write_reg(adap, mem_base + offset,
5562                                      (u32)cpu_to_le32(*buf++));
5563                 offset += sizeof(__be32);
5564                 len -= sizeof(__be32);
5565
5566                 /* If we've reached the end of our current window aperture,
5567                  * move the PCI-E Memory Window on to the next.  Note that
5568                  * doing this here after "len" may be 0 allows us to set up
5569                  * the PCI-E Memory Window for a possible final residual
5570                  * transfer below ...
5571                  */
5572                 if (offset == mem_aperture) {
5573                         pos += mem_aperture;
5574                         offset = 0;
5575                         t4_write_reg(adap,
5576                                 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET,
5577                                                     win), pos | win_pf);
5578                         t4_read_reg(adap,
5579                                 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET,
5580                                                     win));
5581                 }
5582         }
5583
5584         /* If the original transfer had a length which wasn't a multiple of
5585          * 32-bits, now's where we need to finish off the transfer of the
5586          * residual amount.  The PCI-E Memory Window has already been moved
5587          * above (if necessary) to cover this final transfer.
5588          */
5589         if (resid) {
5590                 union {
5591                         u32 word;
5592                         char byte[4];
5593                 } last;
5594                 unsigned char *bp;
5595                 int i;
5596
5597                 if (dir == T4_MEMORY_READ) {
5598                         last.word = le32_to_cpu((__le32)t4_read_reg(adap,
5599                                                                     mem_base +
5600                                                                     offset));
5601                         for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
5602                                 bp[i] = last.byte[i];
5603                 } else {
5604                         last.word = *buf;
5605                         for (i = resid; i < 4; i++)
5606                                 last.byte[i] = 0;
5607                         t4_write_reg(adap, mem_base + offset,
5608                                      (u32)cpu_to_le32(last.word));
5609                 }
5610         }
5611
5612         return 0;
5613 }
5614
5615 /**
5616  * t4_memory_rw_mtype -read/write EDC 0, EDC 1 or MC via PCIE memory window
5617  * @adap: the adapter
5618  * @win: PCI-E Memory Window to use
5619  * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
5620  * @maddr: address within indicated memory type
5621  * @len: amount of memory to transfer
5622  * @hbuf: host memory buffer
5623  * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5624  *
5625  * Reads/writes adapter memory using t4_memory_rw_addr().  This routine
5626  * provides an (memory type, address within memory type) interface.
5627  */
5628 int t4_memory_rw_mtype(struct adapter *adap, int win, int mtype, u32 maddr,
5629                        u32 len, void *hbuf, int dir)
5630 {
5631         u32 mtype_offset;
5632         u32 edc_size, mc_size;
5633
5634         /* Offset into the region of memory which is being accessed
5635          * MEM_EDC0 = 0
5636          * MEM_EDC1 = 1
5637          * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
5638          * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
5639          */
5640         edc_size  = G_EDRAM0_SIZE(t4_read_reg(adap, A_MA_EDRAM0_BAR));
5641         if (mtype != MEM_MC1) {
5642                 mtype_offset = (mtype * (edc_size * 1024 * 1024));
5643         } else {
5644                 mc_size = G_EXT_MEM0_SIZE(t4_read_reg(adap,
5645                                                       A_MA_EXT_MEMORY0_BAR));
5646                 mtype_offset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
5647         }
5648
5649         return t4_memory_rw_addr(adap, win,
5650                                  mtype_offset + maddr, len,
5651                                  hbuf, dir);
5652 }