Imported Upstream version 16.07-rc1
[deb_dpdk.git] / drivers / net / cxgbe / base / t4_hw.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2014-2016 Chelsio Communications.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Chelsio Communications nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <netinet/in.h>
35
36 #include <rte_interrupts.h>
37 #include <rte_log.h>
38 #include <rte_debug.h>
39 #include <rte_pci.h>
40 #include <rte_atomic.h>
41 #include <rte_branch_prediction.h>
42 #include <rte_memory.h>
43 #include <rte_memzone.h>
44 #include <rte_tailq.h>
45 #include <rte_eal.h>
46 #include <rte_alarm.h>
47 #include <rte_ether.h>
48 #include <rte_ethdev.h>
49 #include <rte_atomic.h>
50 #include <rte_malloc.h>
51 #include <rte_random.h>
52 #include <rte_dev.h>
53 #include <rte_byteorder.h>
54
55 #include "common.h"
56 #include "t4_regs.h"
57 #include "t4_regs_values.h"
58 #include "t4fw_interface.h"
59
60 static void init_link_config(struct link_config *lc, unsigned int caps);
61
62 /**
63  * t4_read_mtu_tbl - returns the values in the HW path MTU table
64  * @adap: the adapter
65  * @mtus: where to store the MTU values
66  * @mtu_log: where to store the MTU base-2 log (may be %NULL)
67  *
68  * Reads the HW path MTU table.
69  */
70 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
71 {
72         u32 v;
73         int i;
74
75         for (i = 0; i < NMTUS; ++i) {
76                 t4_write_reg(adap, A_TP_MTU_TABLE,
77                              V_MTUINDEX(0xff) | V_MTUVALUE(i));
78                 v = t4_read_reg(adap, A_TP_MTU_TABLE);
79                 mtus[i] = G_MTUVALUE(v);
80                 if (mtu_log)
81                         mtu_log[i] = G_MTUWIDTH(v);
82         }
83 }
84
85 /**
86  * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
87  * @adap: the adapter
88  * @addr: the indirect TP register address
89  * @mask: specifies the field within the register to modify
90  * @val: new value for the field
91  *
92  * Sets a field of an indirect TP register to the given value.
93  */
94 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
95                             unsigned int mask, unsigned int val)
96 {
97         t4_write_reg(adap, A_TP_PIO_ADDR, addr);
98         val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
99         t4_write_reg(adap, A_TP_PIO_DATA, val);
100 }
101
102 /* The minimum additive increment value for the congestion control table */
103 #define CC_MIN_INCR 2U
104
105 /**
106  * t4_load_mtus - write the MTU and congestion control HW tables
107  * @adap: the adapter
108  * @mtus: the values for the MTU table
109  * @alpha: the values for the congestion control alpha parameter
110  * @beta: the values for the congestion control beta parameter
111  *
112  * Write the HW MTU table with the supplied MTUs and the high-speed
113  * congestion control table with the supplied alpha, beta, and MTUs.
114  * We write the two tables together because the additive increments
115  * depend on the MTUs.
116  */
117 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
118                   const unsigned short *alpha, const unsigned short *beta)
119 {
120         static const unsigned int avg_pkts[NCCTRL_WIN] = {
121                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
122                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
123                 28672, 40960, 57344, 81920, 114688, 163840, 229376
124         };
125
126         unsigned int i, w;
127
128         for (i = 0; i < NMTUS; ++i) {
129                 unsigned int mtu = mtus[i];
130                 unsigned int log2 = cxgbe_fls(mtu);
131
132                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
133                         log2--;
134                 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
135                              V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
136
137                 for (w = 0; w < NCCTRL_WIN; ++w) {
138                         unsigned int inc;
139
140                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
141                                   CC_MIN_INCR);
142
143                         t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
144                                      (w << 16) | (beta[w] << 13) | inc);
145                 }
146         }
147 }
148
149 /**
150  * t4_wait_op_done_val - wait until an operation is completed
151  * @adapter: the adapter performing the operation
152  * @reg: the register to check for completion
153  * @mask: a single-bit field within @reg that indicates completion
154  * @polarity: the value of the field when the operation is completed
155  * @attempts: number of check iterations
156  * @delay: delay in usecs between iterations
157  * @valp: where to store the value of the register at completion time
158  *
159  * Wait until an operation is completed by checking a bit in a register
160  * up to @attempts times.  If @valp is not NULL the value of the register
161  * at the time it indicated completion is stored there.  Returns 0 if the
162  * operation completes and -EAGAIN otherwise.
163  */
164 int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
165                         int polarity, int attempts, int delay, u32 *valp)
166 {
167         while (1) {
168                 u32 val = t4_read_reg(adapter, reg);
169
170                 if (!!(val & mask) == polarity) {
171                         if (valp)
172                                 *valp = val;
173                         return 0;
174                 }
175                 if (--attempts == 0)
176                         return -EAGAIN;
177                 if (delay)
178                         udelay(delay);
179         }
180 }
181
182 /**
183  * t4_set_reg_field - set a register field to a value
184  * @adapter: the adapter to program
185  * @addr: the register address
186  * @mask: specifies the portion of the register to modify
187  * @val: the new value for the register field
188  *
189  * Sets a register field specified by the supplied mask to the
190  * given value.
191  */
192 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
193                       u32 val)
194 {
195         u32 v = t4_read_reg(adapter, addr) & ~mask;
196
197         t4_write_reg(adapter, addr, v | val);
198         (void)t4_read_reg(adapter, addr);      /* flush */
199 }
200
201 /**
202  * t4_read_indirect - read indirectly addressed registers
203  * @adap: the adapter
204  * @addr_reg: register holding the indirect address
205  * @data_reg: register holding the value of the indirect register
206  * @vals: where the read register values are stored
207  * @nregs: how many indirect registers to read
208  * @start_idx: index of first indirect register to read
209  *
210  * Reads registers that are accessed indirectly through an address/data
211  * register pair.
212  */
213 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
214                       unsigned int data_reg, u32 *vals, unsigned int nregs,
215                       unsigned int start_idx)
216 {
217         while (nregs--) {
218                 t4_write_reg(adap, addr_reg, start_idx);
219                 *vals++ = t4_read_reg(adap, data_reg);
220                 start_idx++;
221         }
222 }
223
224 /**
225  * t4_write_indirect - write indirectly addressed registers
226  * @adap: the adapter
227  * @addr_reg: register holding the indirect addresses
228  * @data_reg: register holding the value for the indirect registers
229  * @vals: values to write
230  * @nregs: how many indirect registers to write
231  * @start_idx: address of first indirect register to write
232  *
233  * Writes a sequential block of registers that are accessed indirectly
234  * through an address/data register pair.
235  */
236 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
237                        unsigned int data_reg, const u32 *vals,
238                        unsigned int nregs, unsigned int start_idx)
239 {
240         while (nregs--) {
241                 t4_write_reg(adap, addr_reg, start_idx++);
242                 t4_write_reg(adap, data_reg, *vals++);
243         }
244 }
245
246 /**
247  * t4_report_fw_error - report firmware error
248  * @adap: the adapter
249  *
250  * The adapter firmware can indicate error conditions to the host.
251  * If the firmware has indicated an error, print out the reason for
252  * the firmware error.
253  */
254 static void t4_report_fw_error(struct adapter *adap)
255 {
256         static const char * const reason[] = {
257                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
258                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
259                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
260                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
261                 "Unexpected Event",     /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
262                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
263                 "Device Shutdown",      /* PCIE_FW_EVAL_DEVICESHUTDOWN */
264                 "Reserved",                     /* reserved */
265         };
266         u32 pcie_fw;
267
268         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
269         if (pcie_fw & F_PCIE_FW_ERR)
270                 pr_err("%s: Firmware reports adapter error: %s\n",
271                        __func__, reason[G_PCIE_FW_EVAL(pcie_fw)]);
272 }
273
274 /*
275  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
276  */
277 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
278                          u32 mbox_addr)
279 {
280         for ( ; nflit; nflit--, mbox_addr += 8)
281                 *rpl++ = htobe64(t4_read_reg64(adap, mbox_addr));
282 }
283
284 /*
285  * Handle a FW assertion reported in a mailbox.
286  */
287 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
288 {
289         struct fw_debug_cmd asrt;
290
291         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
292         pr_warn("FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
293                 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
294                 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
295 }
296
297 #define X_CIM_PF_NOACCESS 0xeeeeeeee
298
299 /*
300  * If the Host OS Driver needs locking arround accesses to the mailbox, this
301  * can be turned on via the T4_OS_NEEDS_MBOX_LOCKING CPP define ...
302  */
303 /* makes single-statement usage a bit cleaner ... */
304 #ifdef T4_OS_NEEDS_MBOX_LOCKING
305 #define T4_OS_MBOX_LOCKING(x) x
306 #else
307 #define T4_OS_MBOX_LOCKING(x) do {} while (0)
308 #endif
309
310 /**
311  * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
312  * @adap: the adapter
313  * @mbox: index of the mailbox to use
314  * @cmd: the command to write
315  * @size: command length in bytes
316  * @rpl: where to optionally store the reply
317  * @sleep_ok: if true we may sleep while awaiting command completion
318  * @timeout: time to wait for command to finish before timing out
319  *           (negative implies @sleep_ok=false)
320  *
321  * Sends the given command to FW through the selected mailbox and waits
322  * for the FW to execute the command.  If @rpl is not %NULL it is used to
323  * store the FW's reply to the command.  The command and its optional
324  * reply are of the same length.  Some FW commands like RESET and
325  * INITIALIZE can take a considerable amount of time to execute.
326  * @sleep_ok determines whether we may sleep while awaiting the response.
327  * If sleeping is allowed we use progressive backoff otherwise we spin.
328  * Note that passing in a negative @timeout is an alternate mechanism
329  * for specifying @sleep_ok=false.  This is useful when a higher level
330  * interface allows for specification of @timeout but not @sleep_ok ...
331  *
332  * Returns 0 on success or a negative errno on failure.  A
333  * failure can happen either because we are not able to execute the
334  * command or FW executes it but signals an error.  In the latter case
335  * the return value is the error code indicated by FW (negated).
336  */
337 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox,
338                             const void __attribute__((__may_alias__)) *cmd,
339                             int size, void *rpl, bool sleep_ok, int timeout)
340 {
341         /*
342          * We delay in small increments at first in an effort to maintain
343          * responsiveness for simple, fast executing commands but then back
344          * off to larger delays to a maximum retry delay.
345          */
346         static const int delay[] = {
347                 1, 1, 3, 5, 10, 10, 20, 50, 100
348         };
349
350         u32 v;
351         u64 res;
352         int i, ms;
353         unsigned int delay_idx;
354         __be64 *temp = (__be64 *)malloc(size * sizeof(char));
355         __be64 *p = temp;
356         u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
357         u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
358         u32 ctl;
359         struct mbox_entry entry;
360         u32 pcie_fw = 0;
361
362         if ((size & 15) || size > MBOX_LEN) {
363                 free(temp);
364                 return -EINVAL;
365         }
366
367         bzero(p, size);
368         memcpy(p, (const __be64 *)cmd, size);
369
370         /*
371          * If we have a negative timeout, that implies that we can't sleep.
372          */
373         if (timeout < 0) {
374                 sleep_ok = false;
375                 timeout = -timeout;
376         }
377
378 #ifdef T4_OS_NEEDS_MBOX_LOCKING
379         /*
380          * Queue ourselves onto the mailbox access list.  When our entry is at
381          * the front of the list, we have rights to access the mailbox.  So we
382          * wait [for a while] till we're at the front [or bail out with an
383          * EBUSY] ...
384          */
385         t4_os_atomic_add_tail(&entry, &adap->mbox_list, &adap->mbox_lock);
386
387         delay_idx = 0;
388         ms = delay[0];
389
390         for (i = 0; ; i += ms) {
391                 /*
392                  * If we've waited too long, return a busy indication.  This
393                  * really ought to be based on our initial position in the
394                  * mailbox access list but this is a start.  We very rarely
395                  * contend on access to the mailbox ...  Also check for a
396                  * firmware error which we'll report as a device error.
397                  */
398                 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
399                 if (i > 4 * timeout || (pcie_fw & F_PCIE_FW_ERR)) {
400                         t4_os_atomic_list_del(&entry, &adap->mbox_list,
401                                               &adap->mbox_lock);
402                         t4_report_fw_error(adap);
403                         return (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -EBUSY;
404                 }
405
406                 /*
407                  * If we're at the head, break out and start the mailbox
408                  * protocol.
409                  */
410                 if (t4_os_list_first_entry(&adap->mbox_list) == &entry)
411                         break;
412
413                 /*
414                  * Delay for a bit before checking again ...
415                  */
416                 if (sleep_ok) {
417                         ms = delay[delay_idx];  /* last element may repeat */
418                         if (delay_idx < ARRAY_SIZE(delay) - 1)
419                                 delay_idx++;
420                         msleep(ms);
421                 } else {
422                         rte_delay_ms(ms);
423                 }
424         }
425 #endif /* T4_OS_NEEDS_MBOX_LOCKING */
426
427         /*
428          * Attempt to gain access to the mailbox.
429          */
430         for (i = 0; i < 4; i++) {
431                 ctl = t4_read_reg(adap, ctl_reg);
432                 v = G_MBOWNER(ctl);
433                 if (v != X_MBOWNER_NONE)
434                         break;
435         }
436
437         /*
438          * If we were unable to gain access, dequeue ourselves from the
439          * mailbox atomic access list and report the error to our caller.
440          */
441         if (v != X_MBOWNER_PL) {
442                 T4_OS_MBOX_LOCKING(t4_os_atomic_list_del(&entry,
443                                                          &adap->mbox_list,
444                                                          &adap->mbox_lock));
445                 t4_report_fw_error(adap);
446                 return (v == X_MBOWNER_FW ? -EBUSY : -ETIMEDOUT);
447         }
448
449         /*
450          * If we gain ownership of the mailbox and there's a "valid" message
451          * in it, this is likely an asynchronous error message from the
452          * firmware.  So we'll report that and then proceed on with attempting
453          * to issue our own command ... which may well fail if the error
454          * presaged the firmware crashing ...
455          */
456         if (ctl & F_MBMSGVALID) {
457                 dev_err(adap, "found VALID command in mbox %u: "
458                         "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
459                         (unsigned long long)t4_read_reg64(adap, data_reg),
460                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
461                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
462                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
463                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
464                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
465                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
466                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
467         }
468
469         /*
470          * Copy in the new mailbox command and send it on its way ...
471          */
472         for (i = 0; i < size; i += 8, p++)
473                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
474
475         CXGBE_DEBUG_MBOX(adap, "%s: mbox %u: %016llx %016llx %016llx %016llx "
476                         "%016llx %016llx %016llx %016llx\n", __func__,  (mbox),
477                         (unsigned long long)t4_read_reg64(adap, data_reg),
478                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
479                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
480                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
481                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
482                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
483                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
484                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
485
486         t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
487         t4_read_reg(adap, ctl_reg);          /* flush write */
488
489         delay_idx = 0;
490         ms = delay[0];
491
492         /*
493          * Loop waiting for the reply; bail out if we time out or the firmware
494          * reports an error.
495          */
496         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
497         for (i = 0; i < timeout && !(pcie_fw & F_PCIE_FW_ERR); i += ms) {
498                 if (sleep_ok) {
499                         ms = delay[delay_idx];  /* last element may repeat */
500                         if (delay_idx < ARRAY_SIZE(delay) - 1)
501                                 delay_idx++;
502                         msleep(ms);
503                 } else {
504                         msleep(ms);
505                 }
506
507                 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
508                 v = t4_read_reg(adap, ctl_reg);
509                 if (v == X_CIM_PF_NOACCESS)
510                         continue;
511                 if (G_MBOWNER(v) == X_MBOWNER_PL) {
512                         if (!(v & F_MBMSGVALID)) {
513                                 t4_write_reg(adap, ctl_reg,
514                                              V_MBOWNER(X_MBOWNER_NONE));
515                                 continue;
516                         }
517
518                         CXGBE_DEBUG_MBOX(adap,
519                         "%s: mbox %u: %016llx %016llx %016llx %016llx "
520                         "%016llx %016llx %016llx %016llx\n", __func__,  (mbox),
521                         (unsigned long long)t4_read_reg64(adap, data_reg),
522                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
523                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
524                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
525                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
526                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
527                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
528                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
529
530                         CXGBE_DEBUG_MBOX(adap,
531                                 "command %#x completed in %d ms (%ssleeping)\n",
532                                 *(const u8 *)cmd,
533                                 i + ms, sleep_ok ? "" : "non-");
534
535                         res = t4_read_reg64(adap, data_reg);
536                         if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
537                                 fw_asrt(adap, data_reg);
538                                 res = V_FW_CMD_RETVAL(EIO);
539                         } else if (rpl) {
540                                 get_mbox_rpl(adap, rpl, size / 8, data_reg);
541                         }
542                         t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
543                         T4_OS_MBOX_LOCKING(
544                                 t4_os_atomic_list_del(&entry, &adap->mbox_list,
545                                                       &adap->mbox_lock));
546                         return -G_FW_CMD_RETVAL((int)res);
547                 }
548         }
549
550         /*
551          * We timed out waiting for a reply to our mailbox command.  Report
552          * the error and also check to see if the firmware reported any
553          * errors ...
554          */
555         dev_err(adap, "command %#x in mailbox %d timed out\n",
556                 *(const u8 *)cmd, mbox);
557         T4_OS_MBOX_LOCKING(t4_os_atomic_list_del(&entry,
558                                                  &adap->mbox_list,
559                                                  &adap->mbox_lock));
560         t4_report_fw_error(adap);
561         free(temp);
562         return (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
563 }
564
565 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
566                     void *rpl, bool sleep_ok)
567 {
568         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
569                                        FW_CMD_MAX_TIMEOUT);
570 }
571
572 /**
573  * t4_get_regs_len - return the size of the chips register set
574  * @adapter: the adapter
575  *
576  * Returns the size of the chip's BAR0 register space.
577  */
578 unsigned int t4_get_regs_len(struct adapter *adapter)
579 {
580         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
581
582         switch (chip_version) {
583         case CHELSIO_T5:
584                 return T5_REGMAP_SIZE;
585         }
586
587         dev_err(adapter,
588                 "Unsupported chip version %d\n", chip_version);
589         return 0;
590 }
591
592 /**
593  * t4_get_regs - read chip registers into provided buffer
594  * @adap: the adapter
595  * @buf: register buffer
596  * @buf_size: size (in bytes) of register buffer
597  *
598  * If the provided register buffer isn't large enough for the chip's
599  * full register range, the register dump will be truncated to the
600  * register buffer's size.
601  */
602 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
603 {
604         static const unsigned int t5_reg_ranges[] = {
605                 0x1008, 0x10c0,
606                 0x10cc, 0x10f8,
607                 0x1100, 0x1100,
608                 0x110c, 0x1148,
609                 0x1180, 0x1184,
610                 0x1190, 0x1194,
611                 0x11a0, 0x11a4,
612                 0x11b0, 0x11b4,
613                 0x11fc, 0x123c,
614                 0x1280, 0x173c,
615                 0x1800, 0x18fc,
616                 0x3000, 0x3028,
617                 0x3060, 0x30b0,
618                 0x30b8, 0x30d8,
619                 0x30e0, 0x30fc,
620                 0x3140, 0x357c,
621                 0x35a8, 0x35cc,
622                 0x35ec, 0x35ec,
623                 0x3600, 0x5624,
624                 0x56cc, 0x56ec,
625                 0x56f4, 0x5720,
626                 0x5728, 0x575c,
627                 0x580c, 0x5814,
628                 0x5890, 0x589c,
629                 0x58a4, 0x58ac,
630                 0x58b8, 0x58bc,
631                 0x5940, 0x59c8,
632                 0x59d0, 0x59dc,
633                 0x59fc, 0x5a18,
634                 0x5a60, 0x5a70,
635                 0x5a80, 0x5a9c,
636                 0x5b94, 0x5bfc,
637                 0x6000, 0x6020,
638                 0x6028, 0x6040,
639                 0x6058, 0x609c,
640                 0x60a8, 0x614c,
641                 0x7700, 0x7798,
642                 0x77c0, 0x78fc,
643                 0x7b00, 0x7b58,
644                 0x7b60, 0x7b84,
645                 0x7b8c, 0x7c54,
646                 0x7d00, 0x7d38,
647                 0x7d40, 0x7d80,
648                 0x7d8c, 0x7ddc,
649                 0x7de4, 0x7e04,
650                 0x7e10, 0x7e1c,
651                 0x7e24, 0x7e38,
652                 0x7e40, 0x7e44,
653                 0x7e4c, 0x7e78,
654                 0x7e80, 0x7edc,
655                 0x7ee8, 0x7efc,
656                 0x8dc0, 0x8de0,
657                 0x8df8, 0x8e04,
658                 0x8e10, 0x8e84,
659                 0x8ea0, 0x8f84,
660                 0x8fc0, 0x9058,
661                 0x9060, 0x9060,
662                 0x9068, 0x90f8,
663                 0x9400, 0x9408,
664                 0x9410, 0x9470,
665                 0x9600, 0x9600,
666                 0x9608, 0x9638,
667                 0x9640, 0x96f4,
668                 0x9800, 0x9808,
669                 0x9820, 0x983c,
670                 0x9850, 0x9864,
671                 0x9c00, 0x9c6c,
672                 0x9c80, 0x9cec,
673                 0x9d00, 0x9d6c,
674                 0x9d80, 0x9dec,
675                 0x9e00, 0x9e6c,
676                 0x9e80, 0x9eec,
677                 0x9f00, 0x9f6c,
678                 0x9f80, 0xa020,
679                 0xd004, 0xd004,
680                 0xd010, 0xd03c,
681                 0xdfc0, 0xdfe0,
682                 0xe000, 0x1106c,
683                 0x11074, 0x11088,
684                 0x1109c, 0x1117c,
685                 0x11190, 0x11204,
686                 0x19040, 0x1906c,
687                 0x19078, 0x19080,
688                 0x1908c, 0x190e8,
689                 0x190f0, 0x190f8,
690                 0x19100, 0x19110,
691                 0x19120, 0x19124,
692                 0x19150, 0x19194,
693                 0x1919c, 0x191b0,
694                 0x191d0, 0x191e8,
695                 0x19238, 0x19290,
696                 0x193f8, 0x19428,
697                 0x19430, 0x19444,
698                 0x1944c, 0x1946c,
699                 0x19474, 0x19474,
700                 0x19490, 0x194cc,
701                 0x194f0, 0x194f8,
702                 0x19c00, 0x19c08,
703                 0x19c10, 0x19c60,
704                 0x19c94, 0x19ce4,
705                 0x19cf0, 0x19d40,
706                 0x19d50, 0x19d94,
707                 0x19da0, 0x19de8,
708                 0x19df0, 0x19e10,
709                 0x19e50, 0x19e90,
710                 0x19ea0, 0x19f24,
711                 0x19f34, 0x19f34,
712                 0x19f40, 0x19f50,
713                 0x19f90, 0x19fb4,
714                 0x19fc4, 0x19fe4,
715                 0x1a000, 0x1a004,
716                 0x1a010, 0x1a06c,
717                 0x1a0b0, 0x1a0e4,
718                 0x1a0ec, 0x1a0f8,
719                 0x1a100, 0x1a108,
720                 0x1a114, 0x1a120,
721                 0x1a128, 0x1a130,
722                 0x1a138, 0x1a138,
723                 0x1a190, 0x1a1c4,
724                 0x1a1fc, 0x1a1fc,
725                 0x1e008, 0x1e00c,
726                 0x1e040, 0x1e044,
727                 0x1e04c, 0x1e04c,
728                 0x1e284, 0x1e290,
729                 0x1e2c0, 0x1e2c0,
730                 0x1e2e0, 0x1e2e0,
731                 0x1e300, 0x1e384,
732                 0x1e3c0, 0x1e3c8,
733                 0x1e408, 0x1e40c,
734                 0x1e440, 0x1e444,
735                 0x1e44c, 0x1e44c,
736                 0x1e684, 0x1e690,
737                 0x1e6c0, 0x1e6c0,
738                 0x1e6e0, 0x1e6e0,
739                 0x1e700, 0x1e784,
740                 0x1e7c0, 0x1e7c8,
741                 0x1e808, 0x1e80c,
742                 0x1e840, 0x1e844,
743                 0x1e84c, 0x1e84c,
744                 0x1ea84, 0x1ea90,
745                 0x1eac0, 0x1eac0,
746                 0x1eae0, 0x1eae0,
747                 0x1eb00, 0x1eb84,
748                 0x1ebc0, 0x1ebc8,
749                 0x1ec08, 0x1ec0c,
750                 0x1ec40, 0x1ec44,
751                 0x1ec4c, 0x1ec4c,
752                 0x1ee84, 0x1ee90,
753                 0x1eec0, 0x1eec0,
754                 0x1eee0, 0x1eee0,
755                 0x1ef00, 0x1ef84,
756                 0x1efc0, 0x1efc8,
757                 0x1f008, 0x1f00c,
758                 0x1f040, 0x1f044,
759                 0x1f04c, 0x1f04c,
760                 0x1f284, 0x1f290,
761                 0x1f2c0, 0x1f2c0,
762                 0x1f2e0, 0x1f2e0,
763                 0x1f300, 0x1f384,
764                 0x1f3c0, 0x1f3c8,
765                 0x1f408, 0x1f40c,
766                 0x1f440, 0x1f444,
767                 0x1f44c, 0x1f44c,
768                 0x1f684, 0x1f690,
769                 0x1f6c0, 0x1f6c0,
770                 0x1f6e0, 0x1f6e0,
771                 0x1f700, 0x1f784,
772                 0x1f7c0, 0x1f7c8,
773                 0x1f808, 0x1f80c,
774                 0x1f840, 0x1f844,
775                 0x1f84c, 0x1f84c,
776                 0x1fa84, 0x1fa90,
777                 0x1fac0, 0x1fac0,
778                 0x1fae0, 0x1fae0,
779                 0x1fb00, 0x1fb84,
780                 0x1fbc0, 0x1fbc8,
781                 0x1fc08, 0x1fc0c,
782                 0x1fc40, 0x1fc44,
783                 0x1fc4c, 0x1fc4c,
784                 0x1fe84, 0x1fe90,
785                 0x1fec0, 0x1fec0,
786                 0x1fee0, 0x1fee0,
787                 0x1ff00, 0x1ff84,
788                 0x1ffc0, 0x1ffc8,
789                 0x30000, 0x30030,
790                 0x30038, 0x30038,
791                 0x30040, 0x30040,
792                 0x30100, 0x30144,
793                 0x30190, 0x301a0,
794                 0x301a8, 0x301b8,
795                 0x301c4, 0x301c8,
796                 0x301d0, 0x301d0,
797                 0x30200, 0x30318,
798                 0x30400, 0x304b4,
799                 0x304c0, 0x3052c,
800                 0x30540, 0x3061c,
801                 0x30800, 0x30828,
802                 0x30834, 0x30834,
803                 0x308c0, 0x30908,
804                 0x30910, 0x309ac,
805                 0x30a00, 0x30a14,
806                 0x30a1c, 0x30a2c,
807                 0x30a44, 0x30a50,
808                 0x30a74, 0x30a74,
809                 0x30a7c, 0x30afc,
810                 0x30b08, 0x30c24,
811                 0x30d00, 0x30d00,
812                 0x30d08, 0x30d14,
813                 0x30d1c, 0x30d20,
814                 0x30d3c, 0x30d3c,
815                 0x30d48, 0x30d50,
816                 0x31200, 0x3120c,
817                 0x31220, 0x31220,
818                 0x31240, 0x31240,
819                 0x31600, 0x3160c,
820                 0x31a00, 0x31a1c,
821                 0x31e00, 0x31e20,
822                 0x31e38, 0x31e3c,
823                 0x31e80, 0x31e80,
824                 0x31e88, 0x31ea8,
825                 0x31eb0, 0x31eb4,
826                 0x31ec8, 0x31ed4,
827                 0x31fb8, 0x32004,
828                 0x32200, 0x32200,
829                 0x32208, 0x32240,
830                 0x32248, 0x32280,
831                 0x32288, 0x322c0,
832                 0x322c8, 0x322fc,
833                 0x32600, 0x32630,
834                 0x32a00, 0x32abc,
835                 0x32b00, 0x32b10,
836                 0x32b20, 0x32b30,
837                 0x32b40, 0x32b50,
838                 0x32b60, 0x32b70,
839                 0x33000, 0x33028,
840                 0x33030, 0x33048,
841                 0x33060, 0x33068,
842                 0x33070, 0x3309c,
843                 0x330f0, 0x33128,
844                 0x33130, 0x33148,
845                 0x33160, 0x33168,
846                 0x33170, 0x3319c,
847                 0x331f0, 0x33238,
848                 0x33240, 0x33240,
849                 0x33248, 0x33250,
850                 0x3325c, 0x33264,
851                 0x33270, 0x332b8,
852                 0x332c0, 0x332e4,
853                 0x332f8, 0x33338,
854                 0x33340, 0x33340,
855                 0x33348, 0x33350,
856                 0x3335c, 0x33364,
857                 0x33370, 0x333b8,
858                 0x333c0, 0x333e4,
859                 0x333f8, 0x33428,
860                 0x33430, 0x33448,
861                 0x33460, 0x33468,
862                 0x33470, 0x3349c,
863                 0x334f0, 0x33528,
864                 0x33530, 0x33548,
865                 0x33560, 0x33568,
866                 0x33570, 0x3359c,
867                 0x335f0, 0x33638,
868                 0x33640, 0x33640,
869                 0x33648, 0x33650,
870                 0x3365c, 0x33664,
871                 0x33670, 0x336b8,
872                 0x336c0, 0x336e4,
873                 0x336f8, 0x33738,
874                 0x33740, 0x33740,
875                 0x33748, 0x33750,
876                 0x3375c, 0x33764,
877                 0x33770, 0x337b8,
878                 0x337c0, 0x337e4,
879                 0x337f8, 0x337fc,
880                 0x33814, 0x33814,
881                 0x3382c, 0x3382c,
882                 0x33880, 0x3388c,
883                 0x338e8, 0x338ec,
884                 0x33900, 0x33928,
885                 0x33930, 0x33948,
886                 0x33960, 0x33968,
887                 0x33970, 0x3399c,
888                 0x339f0, 0x33a38,
889                 0x33a40, 0x33a40,
890                 0x33a48, 0x33a50,
891                 0x33a5c, 0x33a64,
892                 0x33a70, 0x33ab8,
893                 0x33ac0, 0x33ae4,
894                 0x33af8, 0x33b10,
895                 0x33b28, 0x33b28,
896                 0x33b3c, 0x33b50,
897                 0x33bf0, 0x33c10,
898                 0x33c28, 0x33c28,
899                 0x33c3c, 0x33c50,
900                 0x33cf0, 0x33cfc,
901                 0x34000, 0x34030,
902                 0x34038, 0x34038,
903                 0x34040, 0x34040,
904                 0x34100, 0x34144,
905                 0x34190, 0x341a0,
906                 0x341a8, 0x341b8,
907                 0x341c4, 0x341c8,
908                 0x341d0, 0x341d0,
909                 0x34200, 0x34318,
910                 0x34400, 0x344b4,
911                 0x344c0, 0x3452c,
912                 0x34540, 0x3461c,
913                 0x34800, 0x34828,
914                 0x34834, 0x34834,
915                 0x348c0, 0x34908,
916                 0x34910, 0x349ac,
917                 0x34a00, 0x34a14,
918                 0x34a1c, 0x34a2c,
919                 0x34a44, 0x34a50,
920                 0x34a74, 0x34a74,
921                 0x34a7c, 0x34afc,
922                 0x34b08, 0x34c24,
923                 0x34d00, 0x34d00,
924                 0x34d08, 0x34d14,
925                 0x34d1c, 0x34d20,
926                 0x34d3c, 0x34d3c,
927                 0x34d48, 0x34d50,
928                 0x35200, 0x3520c,
929                 0x35220, 0x35220,
930                 0x35240, 0x35240,
931                 0x35600, 0x3560c,
932                 0x35a00, 0x35a1c,
933                 0x35e00, 0x35e20,
934                 0x35e38, 0x35e3c,
935                 0x35e80, 0x35e80,
936                 0x35e88, 0x35ea8,
937                 0x35eb0, 0x35eb4,
938                 0x35ec8, 0x35ed4,
939                 0x35fb8, 0x36004,
940                 0x36200, 0x36200,
941                 0x36208, 0x36240,
942                 0x36248, 0x36280,
943                 0x36288, 0x362c0,
944                 0x362c8, 0x362fc,
945                 0x36600, 0x36630,
946                 0x36a00, 0x36abc,
947                 0x36b00, 0x36b10,
948                 0x36b20, 0x36b30,
949                 0x36b40, 0x36b50,
950                 0x36b60, 0x36b70,
951                 0x37000, 0x37028,
952                 0x37030, 0x37048,
953                 0x37060, 0x37068,
954                 0x37070, 0x3709c,
955                 0x370f0, 0x37128,
956                 0x37130, 0x37148,
957                 0x37160, 0x37168,
958                 0x37170, 0x3719c,
959                 0x371f0, 0x37238,
960                 0x37240, 0x37240,
961                 0x37248, 0x37250,
962                 0x3725c, 0x37264,
963                 0x37270, 0x372b8,
964                 0x372c0, 0x372e4,
965                 0x372f8, 0x37338,
966                 0x37340, 0x37340,
967                 0x37348, 0x37350,
968                 0x3735c, 0x37364,
969                 0x37370, 0x373b8,
970                 0x373c0, 0x373e4,
971                 0x373f8, 0x37428,
972                 0x37430, 0x37448,
973                 0x37460, 0x37468,
974                 0x37470, 0x3749c,
975                 0x374f0, 0x37528,
976                 0x37530, 0x37548,
977                 0x37560, 0x37568,
978                 0x37570, 0x3759c,
979                 0x375f0, 0x37638,
980                 0x37640, 0x37640,
981                 0x37648, 0x37650,
982                 0x3765c, 0x37664,
983                 0x37670, 0x376b8,
984                 0x376c0, 0x376e4,
985                 0x376f8, 0x37738,
986                 0x37740, 0x37740,
987                 0x37748, 0x37750,
988                 0x3775c, 0x37764,
989                 0x37770, 0x377b8,
990                 0x377c0, 0x377e4,
991                 0x377f8, 0x377fc,
992                 0x37814, 0x37814,
993                 0x3782c, 0x3782c,
994                 0x37880, 0x3788c,
995                 0x378e8, 0x378ec,
996                 0x37900, 0x37928,
997                 0x37930, 0x37948,
998                 0x37960, 0x37968,
999                 0x37970, 0x3799c,
1000                 0x379f0, 0x37a38,
1001                 0x37a40, 0x37a40,
1002                 0x37a48, 0x37a50,
1003                 0x37a5c, 0x37a64,
1004                 0x37a70, 0x37ab8,
1005                 0x37ac0, 0x37ae4,
1006                 0x37af8, 0x37b10,
1007                 0x37b28, 0x37b28,
1008                 0x37b3c, 0x37b50,
1009                 0x37bf0, 0x37c10,
1010                 0x37c28, 0x37c28,
1011                 0x37c3c, 0x37c50,
1012                 0x37cf0, 0x37cfc,
1013                 0x38000, 0x38030,
1014                 0x38038, 0x38038,
1015                 0x38040, 0x38040,
1016                 0x38100, 0x38144,
1017                 0x38190, 0x381a0,
1018                 0x381a8, 0x381b8,
1019                 0x381c4, 0x381c8,
1020                 0x381d0, 0x381d0,
1021                 0x38200, 0x38318,
1022                 0x38400, 0x384b4,
1023                 0x384c0, 0x3852c,
1024                 0x38540, 0x3861c,
1025                 0x38800, 0x38828,
1026                 0x38834, 0x38834,
1027                 0x388c0, 0x38908,
1028                 0x38910, 0x389ac,
1029                 0x38a00, 0x38a14,
1030                 0x38a1c, 0x38a2c,
1031                 0x38a44, 0x38a50,
1032                 0x38a74, 0x38a74,
1033                 0x38a7c, 0x38afc,
1034                 0x38b08, 0x38c24,
1035                 0x38d00, 0x38d00,
1036                 0x38d08, 0x38d14,
1037                 0x38d1c, 0x38d20,
1038                 0x38d3c, 0x38d3c,
1039                 0x38d48, 0x38d50,
1040                 0x39200, 0x3920c,
1041                 0x39220, 0x39220,
1042                 0x39240, 0x39240,
1043                 0x39600, 0x3960c,
1044                 0x39a00, 0x39a1c,
1045                 0x39e00, 0x39e20,
1046                 0x39e38, 0x39e3c,
1047                 0x39e80, 0x39e80,
1048                 0x39e88, 0x39ea8,
1049                 0x39eb0, 0x39eb4,
1050                 0x39ec8, 0x39ed4,
1051                 0x39fb8, 0x3a004,
1052                 0x3a200, 0x3a200,
1053                 0x3a208, 0x3a240,
1054                 0x3a248, 0x3a280,
1055                 0x3a288, 0x3a2c0,
1056                 0x3a2c8, 0x3a2fc,
1057                 0x3a600, 0x3a630,
1058                 0x3aa00, 0x3aabc,
1059                 0x3ab00, 0x3ab10,
1060                 0x3ab20, 0x3ab30,
1061                 0x3ab40, 0x3ab50,
1062                 0x3ab60, 0x3ab70,
1063                 0x3b000, 0x3b028,
1064                 0x3b030, 0x3b048,
1065                 0x3b060, 0x3b068,
1066                 0x3b070, 0x3b09c,
1067                 0x3b0f0, 0x3b128,
1068                 0x3b130, 0x3b148,
1069                 0x3b160, 0x3b168,
1070                 0x3b170, 0x3b19c,
1071                 0x3b1f0, 0x3b238,
1072                 0x3b240, 0x3b240,
1073                 0x3b248, 0x3b250,
1074                 0x3b25c, 0x3b264,
1075                 0x3b270, 0x3b2b8,
1076                 0x3b2c0, 0x3b2e4,
1077                 0x3b2f8, 0x3b338,
1078                 0x3b340, 0x3b340,
1079                 0x3b348, 0x3b350,
1080                 0x3b35c, 0x3b364,
1081                 0x3b370, 0x3b3b8,
1082                 0x3b3c0, 0x3b3e4,
1083                 0x3b3f8, 0x3b428,
1084                 0x3b430, 0x3b448,
1085                 0x3b460, 0x3b468,
1086                 0x3b470, 0x3b49c,
1087                 0x3b4f0, 0x3b528,
1088                 0x3b530, 0x3b548,
1089                 0x3b560, 0x3b568,
1090                 0x3b570, 0x3b59c,
1091                 0x3b5f0, 0x3b638,
1092                 0x3b640, 0x3b640,
1093                 0x3b648, 0x3b650,
1094                 0x3b65c, 0x3b664,
1095                 0x3b670, 0x3b6b8,
1096                 0x3b6c0, 0x3b6e4,
1097                 0x3b6f8, 0x3b738,
1098                 0x3b740, 0x3b740,
1099                 0x3b748, 0x3b750,
1100                 0x3b75c, 0x3b764,
1101                 0x3b770, 0x3b7b8,
1102                 0x3b7c0, 0x3b7e4,
1103                 0x3b7f8, 0x3b7fc,
1104                 0x3b814, 0x3b814,
1105                 0x3b82c, 0x3b82c,
1106                 0x3b880, 0x3b88c,
1107                 0x3b8e8, 0x3b8ec,
1108                 0x3b900, 0x3b928,
1109                 0x3b930, 0x3b948,
1110                 0x3b960, 0x3b968,
1111                 0x3b970, 0x3b99c,
1112                 0x3b9f0, 0x3ba38,
1113                 0x3ba40, 0x3ba40,
1114                 0x3ba48, 0x3ba50,
1115                 0x3ba5c, 0x3ba64,
1116                 0x3ba70, 0x3bab8,
1117                 0x3bac0, 0x3bae4,
1118                 0x3baf8, 0x3bb10,
1119                 0x3bb28, 0x3bb28,
1120                 0x3bb3c, 0x3bb50,
1121                 0x3bbf0, 0x3bc10,
1122                 0x3bc28, 0x3bc28,
1123                 0x3bc3c, 0x3bc50,
1124                 0x3bcf0, 0x3bcfc,
1125                 0x3c000, 0x3c030,
1126                 0x3c038, 0x3c038,
1127                 0x3c040, 0x3c040,
1128                 0x3c100, 0x3c144,
1129                 0x3c190, 0x3c1a0,
1130                 0x3c1a8, 0x3c1b8,
1131                 0x3c1c4, 0x3c1c8,
1132                 0x3c1d0, 0x3c1d0,
1133                 0x3c200, 0x3c318,
1134                 0x3c400, 0x3c4b4,
1135                 0x3c4c0, 0x3c52c,
1136                 0x3c540, 0x3c61c,
1137                 0x3c800, 0x3c828,
1138                 0x3c834, 0x3c834,
1139                 0x3c8c0, 0x3c908,
1140                 0x3c910, 0x3c9ac,
1141                 0x3ca00, 0x3ca14,
1142                 0x3ca1c, 0x3ca2c,
1143                 0x3ca44, 0x3ca50,
1144                 0x3ca74, 0x3ca74,
1145                 0x3ca7c, 0x3cafc,
1146                 0x3cb08, 0x3cc24,
1147                 0x3cd00, 0x3cd00,
1148                 0x3cd08, 0x3cd14,
1149                 0x3cd1c, 0x3cd20,
1150                 0x3cd3c, 0x3cd3c,
1151                 0x3cd48, 0x3cd50,
1152                 0x3d200, 0x3d20c,
1153                 0x3d220, 0x3d220,
1154                 0x3d240, 0x3d240,
1155                 0x3d600, 0x3d60c,
1156                 0x3da00, 0x3da1c,
1157                 0x3de00, 0x3de20,
1158                 0x3de38, 0x3de3c,
1159                 0x3de80, 0x3de80,
1160                 0x3de88, 0x3dea8,
1161                 0x3deb0, 0x3deb4,
1162                 0x3dec8, 0x3ded4,
1163                 0x3dfb8, 0x3e004,
1164                 0x3e200, 0x3e200,
1165                 0x3e208, 0x3e240,
1166                 0x3e248, 0x3e280,
1167                 0x3e288, 0x3e2c0,
1168                 0x3e2c8, 0x3e2fc,
1169                 0x3e600, 0x3e630,
1170                 0x3ea00, 0x3eabc,
1171                 0x3eb00, 0x3eb10,
1172                 0x3eb20, 0x3eb30,
1173                 0x3eb40, 0x3eb50,
1174                 0x3eb60, 0x3eb70,
1175                 0x3f000, 0x3f028,
1176                 0x3f030, 0x3f048,
1177                 0x3f060, 0x3f068,
1178                 0x3f070, 0x3f09c,
1179                 0x3f0f0, 0x3f128,
1180                 0x3f130, 0x3f148,
1181                 0x3f160, 0x3f168,
1182                 0x3f170, 0x3f19c,
1183                 0x3f1f0, 0x3f238,
1184                 0x3f240, 0x3f240,
1185                 0x3f248, 0x3f250,
1186                 0x3f25c, 0x3f264,
1187                 0x3f270, 0x3f2b8,
1188                 0x3f2c0, 0x3f2e4,
1189                 0x3f2f8, 0x3f338,
1190                 0x3f340, 0x3f340,
1191                 0x3f348, 0x3f350,
1192                 0x3f35c, 0x3f364,
1193                 0x3f370, 0x3f3b8,
1194                 0x3f3c0, 0x3f3e4,
1195                 0x3f3f8, 0x3f428,
1196                 0x3f430, 0x3f448,
1197                 0x3f460, 0x3f468,
1198                 0x3f470, 0x3f49c,
1199                 0x3f4f0, 0x3f528,
1200                 0x3f530, 0x3f548,
1201                 0x3f560, 0x3f568,
1202                 0x3f570, 0x3f59c,
1203                 0x3f5f0, 0x3f638,
1204                 0x3f640, 0x3f640,
1205                 0x3f648, 0x3f650,
1206                 0x3f65c, 0x3f664,
1207                 0x3f670, 0x3f6b8,
1208                 0x3f6c0, 0x3f6e4,
1209                 0x3f6f8, 0x3f738,
1210                 0x3f740, 0x3f740,
1211                 0x3f748, 0x3f750,
1212                 0x3f75c, 0x3f764,
1213                 0x3f770, 0x3f7b8,
1214                 0x3f7c0, 0x3f7e4,
1215                 0x3f7f8, 0x3f7fc,
1216                 0x3f814, 0x3f814,
1217                 0x3f82c, 0x3f82c,
1218                 0x3f880, 0x3f88c,
1219                 0x3f8e8, 0x3f8ec,
1220                 0x3f900, 0x3f928,
1221                 0x3f930, 0x3f948,
1222                 0x3f960, 0x3f968,
1223                 0x3f970, 0x3f99c,
1224                 0x3f9f0, 0x3fa38,
1225                 0x3fa40, 0x3fa40,
1226                 0x3fa48, 0x3fa50,
1227                 0x3fa5c, 0x3fa64,
1228                 0x3fa70, 0x3fab8,
1229                 0x3fac0, 0x3fae4,
1230                 0x3faf8, 0x3fb10,
1231                 0x3fb28, 0x3fb28,
1232                 0x3fb3c, 0x3fb50,
1233                 0x3fbf0, 0x3fc10,
1234                 0x3fc28, 0x3fc28,
1235                 0x3fc3c, 0x3fc50,
1236                 0x3fcf0, 0x3fcfc,
1237                 0x40000, 0x4000c,
1238                 0x40040, 0x40050,
1239                 0x40060, 0x40068,
1240                 0x4007c, 0x4008c,
1241                 0x40094, 0x400b0,
1242                 0x400c0, 0x40144,
1243                 0x40180, 0x4018c,
1244                 0x40200, 0x40254,
1245                 0x40260, 0x40264,
1246                 0x40270, 0x40288,
1247                 0x40290, 0x40298,
1248                 0x402ac, 0x402c8,
1249                 0x402d0, 0x402e0,
1250                 0x402f0, 0x402f0,
1251                 0x40300, 0x4033c,
1252                 0x403f8, 0x403fc,
1253                 0x41304, 0x413c4,
1254                 0x41400, 0x4140c,
1255                 0x41414, 0x4141c,
1256                 0x41480, 0x414d0,
1257                 0x44000, 0x44054,
1258                 0x4405c, 0x44078,
1259                 0x440c0, 0x44174,
1260                 0x44180, 0x441ac,
1261                 0x441b4, 0x441b8,
1262                 0x441c0, 0x44254,
1263                 0x4425c, 0x44278,
1264                 0x442c0, 0x44374,
1265                 0x44380, 0x443ac,
1266                 0x443b4, 0x443b8,
1267                 0x443c0, 0x44454,
1268                 0x4445c, 0x44478,
1269                 0x444c0, 0x44574,
1270                 0x44580, 0x445ac,
1271                 0x445b4, 0x445b8,
1272                 0x445c0, 0x44654,
1273                 0x4465c, 0x44678,
1274                 0x446c0, 0x44774,
1275                 0x44780, 0x447ac,
1276                 0x447b4, 0x447b8,
1277                 0x447c0, 0x44854,
1278                 0x4485c, 0x44878,
1279                 0x448c0, 0x44974,
1280                 0x44980, 0x449ac,
1281                 0x449b4, 0x449b8,
1282                 0x449c0, 0x449fc,
1283                 0x45000, 0x45004,
1284                 0x45010, 0x45030,
1285                 0x45040, 0x45060,
1286                 0x45068, 0x45068,
1287                 0x45080, 0x45084,
1288                 0x450a0, 0x450b0,
1289                 0x45200, 0x45204,
1290                 0x45210, 0x45230,
1291                 0x45240, 0x45260,
1292                 0x45268, 0x45268,
1293                 0x45280, 0x45284,
1294                 0x452a0, 0x452b0,
1295                 0x460c0, 0x460e4,
1296                 0x47000, 0x4703c,
1297                 0x47044, 0x4708c,
1298                 0x47200, 0x47250,
1299                 0x47400, 0x47408,
1300                 0x47414, 0x47420,
1301                 0x47600, 0x47618,
1302                 0x47800, 0x47814,
1303                 0x48000, 0x4800c,
1304                 0x48040, 0x48050,
1305                 0x48060, 0x48068,
1306                 0x4807c, 0x4808c,
1307                 0x48094, 0x480b0,
1308                 0x480c0, 0x48144,
1309                 0x48180, 0x4818c,
1310                 0x48200, 0x48254,
1311                 0x48260, 0x48264,
1312                 0x48270, 0x48288,
1313                 0x48290, 0x48298,
1314                 0x482ac, 0x482c8,
1315                 0x482d0, 0x482e0,
1316                 0x482f0, 0x482f0,
1317                 0x48300, 0x4833c,
1318                 0x483f8, 0x483fc,
1319                 0x49304, 0x493c4,
1320                 0x49400, 0x4940c,
1321                 0x49414, 0x4941c,
1322                 0x49480, 0x494d0,
1323                 0x4c000, 0x4c054,
1324                 0x4c05c, 0x4c078,
1325                 0x4c0c0, 0x4c174,
1326                 0x4c180, 0x4c1ac,
1327                 0x4c1b4, 0x4c1b8,
1328                 0x4c1c0, 0x4c254,
1329                 0x4c25c, 0x4c278,
1330                 0x4c2c0, 0x4c374,
1331                 0x4c380, 0x4c3ac,
1332                 0x4c3b4, 0x4c3b8,
1333                 0x4c3c0, 0x4c454,
1334                 0x4c45c, 0x4c478,
1335                 0x4c4c0, 0x4c574,
1336                 0x4c580, 0x4c5ac,
1337                 0x4c5b4, 0x4c5b8,
1338                 0x4c5c0, 0x4c654,
1339                 0x4c65c, 0x4c678,
1340                 0x4c6c0, 0x4c774,
1341                 0x4c780, 0x4c7ac,
1342                 0x4c7b4, 0x4c7b8,
1343                 0x4c7c0, 0x4c854,
1344                 0x4c85c, 0x4c878,
1345                 0x4c8c0, 0x4c974,
1346                 0x4c980, 0x4c9ac,
1347                 0x4c9b4, 0x4c9b8,
1348                 0x4c9c0, 0x4c9fc,
1349                 0x4d000, 0x4d004,
1350                 0x4d010, 0x4d030,
1351                 0x4d040, 0x4d060,
1352                 0x4d068, 0x4d068,
1353                 0x4d080, 0x4d084,
1354                 0x4d0a0, 0x4d0b0,
1355                 0x4d200, 0x4d204,
1356                 0x4d210, 0x4d230,
1357                 0x4d240, 0x4d260,
1358                 0x4d268, 0x4d268,
1359                 0x4d280, 0x4d284,
1360                 0x4d2a0, 0x4d2b0,
1361                 0x4e0c0, 0x4e0e4,
1362                 0x4f000, 0x4f03c,
1363                 0x4f044, 0x4f08c,
1364                 0x4f200, 0x4f250,
1365                 0x4f400, 0x4f408,
1366                 0x4f414, 0x4f420,
1367                 0x4f600, 0x4f618,
1368                 0x4f800, 0x4f814,
1369                 0x50000, 0x50084,
1370                 0x50090, 0x500cc,
1371                 0x50400, 0x50400,
1372                 0x50800, 0x50884,
1373                 0x50890, 0x508cc,
1374                 0x50c00, 0x50c00,
1375                 0x51000, 0x5101c,
1376                 0x51300, 0x51308,
1377         };
1378
1379         u32 *buf_end = (u32 *)((char *)buf + buf_size);
1380         const unsigned int *reg_ranges;
1381         int reg_ranges_size, range;
1382         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
1383
1384         /* Select the right set of register ranges to dump depending on the
1385          * adapter chip type.
1386          */
1387         switch (chip_version) {
1388         case CHELSIO_T5:
1389                 reg_ranges = t5_reg_ranges;
1390                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
1391                 break;
1392
1393         default:
1394                 dev_err(adap,
1395                         "Unsupported chip version %d\n", chip_version);
1396                 return;
1397         }
1398
1399         /* Clear the register buffer and insert the appropriate register
1400          * values selected by the above register ranges.
1401          */
1402         memset(buf, 0, buf_size);
1403         for (range = 0; range < reg_ranges_size; range += 2) {
1404                 unsigned int reg = reg_ranges[range];
1405                 unsigned int last_reg = reg_ranges[range + 1];
1406                 u32 *bufp = (u32 *)((char *)buf + reg);
1407
1408                 /* Iterate across the register range filling in the register
1409                  * buffer but don't write past the end of the register buffer.
1410                  */
1411                 while (reg <= last_reg && bufp < buf_end) {
1412                         *bufp++ = t4_read_reg(adap, reg);
1413                         reg += sizeof(u32);
1414                 }
1415         }
1416 }
1417
1418 /* EEPROM reads take a few tens of us while writes can take a bit over 5 ms. */
1419 #define EEPROM_DELAY            10              /* 10us per poll spin */
1420 #define EEPROM_MAX_POLL         5000            /* x 5000 == 50ms */
1421
1422 #define EEPROM_STAT_ADDR        0x7bfc
1423
1424 /**
1425  * Small utility function to wait till any outstanding VPD Access is complete.
1426  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
1427  * VPD Access in flight.  This allows us to handle the problem of having a
1428  * previous VPD Access time out and prevent an attempt to inject a new VPD
1429  * Request before any in-flight VPD request has completed.
1430  */
1431 static int t4_seeprom_wait(struct adapter *adapter)
1432 {
1433         unsigned int base = adapter->params.pci.vpd_cap_addr;
1434         int max_poll;
1435
1436         /* If no VPD Access is in flight, we can just return success right
1437          * away.
1438          */
1439         if (!adapter->vpd_busy)
1440                 return 0;
1441
1442         /* Poll the VPD Capability Address/Flag register waiting for it
1443          * to indicate that the operation is complete.
1444          */
1445         max_poll = EEPROM_MAX_POLL;
1446         do {
1447                 u16 val;
1448
1449                 udelay(EEPROM_DELAY);
1450                 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
1451
1452                 /* If the operation is complete, mark the VPD as no longer
1453                  * busy and return success.
1454                  */
1455                 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
1456                         adapter->vpd_busy = 0;
1457                         return 0;
1458                 }
1459         } while (--max_poll);
1460
1461         /* Failure!  Note that we leave the VPD Busy status set in order to
1462          * avoid pushing a new VPD Access request into the VPD Capability till
1463          * the current operation eventually succeeds.  It's a bug to issue a
1464          * new request when an existing request is in flight and will result
1465          * in corrupt hardware state.
1466          */
1467         return -ETIMEDOUT;
1468 }
1469
1470 /**
1471  * t4_seeprom_read - read a serial EEPROM location
1472  * @adapter: adapter to read
1473  * @addr: EEPROM virtual address
1474  * @data: where to store the read data
1475  *
1476  * Read a 32-bit word from a location in serial EEPROM using the card's PCI
1477  * VPD capability.  Note that this function must be called with a virtual
1478  * address.
1479  */
1480 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
1481 {
1482         unsigned int base = adapter->params.pci.vpd_cap_addr;
1483         int ret;
1484
1485         /* VPD Accesses must alway be 4-byte aligned!
1486          */
1487         if (addr >= EEPROMVSIZE || (addr & 3))
1488                 return -EINVAL;
1489
1490         /* Wait for any previous operation which may still be in flight to
1491          * complete.
1492          */
1493         ret = t4_seeprom_wait(adapter);
1494         if (ret) {
1495                 dev_err(adapter, "VPD still busy from previous operation\n");
1496                 return ret;
1497         }
1498
1499         /* Issue our new VPD Read request, mark the VPD as being busy and wait
1500          * for our request to complete.  If it doesn't complete, note the
1501          * error and return it to our caller.  Note that we do not reset the
1502          * VPD Busy status!
1503          */
1504         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
1505         adapter->vpd_busy = 1;
1506         adapter->vpd_flag = PCI_VPD_ADDR_F;
1507         ret = t4_seeprom_wait(adapter);
1508         if (ret) {
1509                 dev_err(adapter, "VPD read of address %#x failed\n", addr);
1510                 return ret;
1511         }
1512
1513         /* Grab the returned data, swizzle it into our endianness and
1514          * return success.
1515          */
1516         t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
1517         *data = le32_to_cpu(*data);
1518         return 0;
1519 }
1520
1521 /**
1522  * t4_seeprom_write - write a serial EEPROM location
1523  * @adapter: adapter to write
1524  * @addr: virtual EEPROM address
1525  * @data: value to write
1526  *
1527  * Write a 32-bit word to a location in serial EEPROM using the card's PCI
1528  * VPD capability.  Note that this function must be called with a virtual
1529  * address.
1530  */
1531 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
1532 {
1533         unsigned int base = adapter->params.pci.vpd_cap_addr;
1534         int ret;
1535         u32 stats_reg;
1536         int max_poll;
1537
1538         /* VPD Accesses must alway be 4-byte aligned!
1539          */
1540         if (addr >= EEPROMVSIZE || (addr & 3))
1541                 return -EINVAL;
1542
1543         /* Wait for any previous operation which may still be in flight to
1544          * complete.
1545          */
1546         ret = t4_seeprom_wait(adapter);
1547         if (ret) {
1548                 dev_err(adapter, "VPD still busy from previous operation\n");
1549                 return ret;
1550         }
1551
1552         /* Issue our new VPD Read request, mark the VPD as being busy and wait
1553          * for our request to complete.  If it doesn't complete, note the
1554          * error and return it to our caller.  Note that we do not reset the
1555          * VPD Busy status!
1556          */
1557         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
1558                              cpu_to_le32(data));
1559         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
1560                              (u16)addr | PCI_VPD_ADDR_F);
1561         adapter->vpd_busy = 1;
1562         adapter->vpd_flag = 0;
1563         ret = t4_seeprom_wait(adapter);
1564         if (ret) {
1565                 dev_err(adapter, "VPD write of address %#x failed\n", addr);
1566                 return ret;
1567         }
1568
1569         /* Reset PCI_VPD_DATA register after a transaction and wait for our
1570          * request to complete. If it doesn't complete, return error.
1571          */
1572         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
1573         max_poll = EEPROM_MAX_POLL;
1574         do {
1575                 udelay(EEPROM_DELAY);
1576                 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
1577         } while ((stats_reg & 0x1) && --max_poll);
1578         if (!max_poll)
1579                 return -ETIMEDOUT;
1580
1581         /* Return success! */
1582         return 0;
1583 }
1584
1585 /**
1586  * t4_seeprom_wp - enable/disable EEPROM write protection
1587  * @adapter: the adapter
1588  * @enable: whether to enable or disable write protection
1589  *
1590  * Enables or disables write protection on the serial EEPROM.
1591  */
1592 int t4_seeprom_wp(struct adapter *adapter, int enable)
1593 {
1594         return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
1595 }
1596
1597 /**
1598  * t4_config_rss_range - configure a portion of the RSS mapping table
1599  * @adapter: the adapter
1600  * @mbox: mbox to use for the FW command
1601  * @viid: virtual interface whose RSS subtable is to be written
1602  * @start: start entry in the table to write
1603  * @n: how many table entries to write
1604  * @rspq: values for the "response queue" (Ingress Queue) lookup table
1605  * @nrspq: number of values in @rspq
1606  *
1607  * Programs the selected part of the VI's RSS mapping table with the
1608  * provided values.  If @nrspq < @n the supplied values are used repeatedly
1609  * until the full table range is populated.
1610  *
1611  * The caller must ensure the values in @rspq are in the range allowed for
1612  * @viid.
1613  */
1614 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
1615                         int start, int n, const u16 *rspq, unsigned int nrspq)
1616 {
1617         int ret;
1618         const u16 *rsp = rspq;
1619         const u16 *rsp_end = rspq + nrspq;
1620         struct fw_rss_ind_tbl_cmd cmd;
1621
1622         memset(&cmd, 0, sizeof(cmd));
1623         cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
1624                                      F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
1625                                      V_FW_RSS_IND_TBL_CMD_VIID(viid));
1626         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1627
1628         /*
1629          * Each firmware RSS command can accommodate up to 32 RSS Ingress
1630          * Queue Identifiers.  These Ingress Queue IDs are packed three to
1631          * a 32-bit word as 10-bit values with the upper remaining 2 bits
1632          * reserved.
1633          */
1634         while (n > 0) {
1635                 int nq = min(n, 32);
1636                 int nq_packed = 0;
1637                 __be32 *qp = &cmd.iq0_to_iq2;
1638
1639                 /*
1640                  * Set up the firmware RSS command header to send the next
1641                  * "nq" Ingress Queue IDs to the firmware.
1642                  */
1643                 cmd.niqid = cpu_to_be16(nq);
1644                 cmd.startidx = cpu_to_be16(start);
1645
1646                 /*
1647                  * "nq" more done for the start of the next loop.
1648                  */
1649                 start += nq;
1650                 n -= nq;
1651
1652                 /*
1653                  * While there are still Ingress Queue IDs to stuff into the
1654                  * current firmware RSS command, retrieve them from the
1655                  * Ingress Queue ID array and insert them into the command.
1656                  */
1657                 while (nq > 0) {
1658                         /*
1659                          * Grab up to the next 3 Ingress Queue IDs (wrapping
1660                          * around the Ingress Queue ID array if necessary) and
1661                          * insert them into the firmware RSS command at the
1662                          * current 3-tuple position within the commad.
1663                          */
1664                         u16 qbuf[3];
1665                         u16 *qbp = qbuf;
1666                         int nqbuf = min(3, nq);
1667
1668                         nq -= nqbuf;
1669                         qbuf[0] = 0;
1670                         qbuf[1] = 0;
1671                         qbuf[2] = 0;
1672                         while (nqbuf && nq_packed < 32) {
1673                                 nqbuf--;
1674                                 nq_packed++;
1675                                 *qbp++ = *rsp++;
1676                                 if (rsp >= rsp_end)
1677                                         rsp = rspq;
1678                         }
1679                         *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
1680                                             V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
1681                                             V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
1682                 }
1683
1684                 /*
1685                  * Send this portion of the RRS table update to the firmware;
1686                  * bail out on any errors.
1687                  */
1688                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
1689                 if (ret)
1690                         return ret;
1691         }
1692
1693         return 0;
1694 }
1695
1696 /**
1697  * t4_config_vi_rss - configure per VI RSS settings
1698  * @adapter: the adapter
1699  * @mbox: mbox to use for the FW command
1700  * @viid: the VI id
1701  * @flags: RSS flags
1702  * @defq: id of the default RSS queue for the VI.
1703  *
1704  * Configures VI-specific RSS properties.
1705  */
1706 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
1707                      unsigned int flags, unsigned int defq)
1708 {
1709         struct fw_rss_vi_config_cmd c;
1710
1711         memset(&c, 0, sizeof(c));
1712         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
1713                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
1714                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
1715         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
1716         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
1717                         V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
1718         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
1719 }
1720
1721 /**
1722  * init_cong_ctrl - initialize congestion control parameters
1723  * @a: the alpha values for congestion control
1724  * @b: the beta values for congestion control
1725  *
1726  * Initialize the congestion control parameters.
1727  */
1728 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
1729 {
1730         int i;
1731
1732         for (i = 0; i < 9; i++) {
1733                 a[i] = 1;
1734                 b[i] = 0;
1735         }
1736
1737         a[9] = 2;
1738         a[10] = 3;
1739         a[11] = 4;
1740         a[12] = 5;
1741         a[13] = 6;
1742         a[14] = 7;
1743         a[15] = 8;
1744         a[16] = 9;
1745         a[17] = 10;
1746         a[18] = 14;
1747         a[19] = 17;
1748         a[20] = 21;
1749         a[21] = 25;
1750         a[22] = 30;
1751         a[23] = 35;
1752         a[24] = 45;
1753         a[25] = 60;
1754         a[26] = 80;
1755         a[27] = 100;
1756         a[28] = 200;
1757         a[29] = 300;
1758         a[30] = 400;
1759         a[31] = 500;
1760
1761         b[9] = 1;
1762         b[10] = 1;
1763         b[11] = 2;
1764         b[12] = 2;
1765         b[13] = 3;
1766         b[14] = 3;
1767         b[15] = 3;
1768         b[16] = 3;
1769         b[17] = 4;
1770         b[18] = 4;
1771         b[19] = 4;
1772         b[20] = 4;
1773         b[21] = 4;
1774         b[22] = 5;
1775         b[23] = 5;
1776         b[24] = 5;
1777         b[25] = 5;
1778         b[26] = 5;
1779         b[27] = 5;
1780         b[28] = 6;
1781         b[29] = 6;
1782         b[30] = 7;
1783         b[31] = 7;
1784 }
1785
1786 #define INIT_CMD(var, cmd, rd_wr) do { \
1787         (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
1788                         F_FW_CMD_REQUEST | F_FW_CMD_##rd_wr); \
1789         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
1790 } while (0)
1791
1792 int t4_get_core_clock(struct adapter *adapter, struct vpd_params *p)
1793 {
1794         u32 cclk_param, cclk_val;
1795         int ret;
1796
1797         /*
1798          * Ask firmware for the Core Clock since it knows how to translate the
1799          * Reference Clock ('V2') VPD field into a Core Clock value ...
1800          */
1801         cclk_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1802                       V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
1803         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
1804                               1, &cclk_param, &cclk_val);
1805         if (ret) {
1806                 dev_err(adapter, "%s: error in fetching from coreclock - %d\n",
1807                         __func__, ret);
1808                 return ret;
1809         }
1810
1811         p->cclk = cclk_val;
1812         dev_debug(adapter, "%s: p->cclk = %u\n", __func__, p->cclk);
1813         return 0;
1814 }
1815
1816 /* serial flash and firmware constants and flash config file constants */
1817 enum {
1818         SF_ATTEMPTS = 10,             /* max retries for SF operations */
1819
1820         /* flash command opcodes */
1821         SF_PROG_PAGE    = 2,          /* program page */
1822         SF_WR_DISABLE   = 4,          /* disable writes */
1823         SF_RD_STATUS    = 5,          /* read status register */
1824         SF_WR_ENABLE    = 6,          /* enable writes */
1825         SF_RD_DATA_FAST = 0xb,        /* read flash */
1826         SF_RD_ID        = 0x9f,       /* read ID */
1827         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
1828 };
1829
1830 /**
1831  * sf1_read - read data from the serial flash
1832  * @adapter: the adapter
1833  * @byte_cnt: number of bytes to read
1834  * @cont: whether another operation will be chained
1835  * @lock: whether to lock SF for PL access only
1836  * @valp: where to store the read data
1837  *
1838  * Reads up to 4 bytes of data from the serial flash.  The location of
1839  * the read needs to be specified prior to calling this by issuing the
1840  * appropriate commands to the serial flash.
1841  */
1842 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
1843                     int lock, u32 *valp)
1844 {
1845         int ret;
1846
1847         if (!byte_cnt || byte_cnt > 4)
1848                 return -EINVAL;
1849         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
1850                 return -EBUSY;
1851         t4_write_reg(adapter, A_SF_OP,
1852                      V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
1853         ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
1854         if (!ret)
1855                 *valp = t4_read_reg(adapter, A_SF_DATA);
1856         return ret;
1857 }
1858
1859 /**
1860  * sf1_write - write data to the serial flash
1861  * @adapter: the adapter
1862  * @byte_cnt: number of bytes to write
1863  * @cont: whether another operation will be chained
1864  * @lock: whether to lock SF for PL access only
1865  * @val: value to write
1866  *
1867  * Writes up to 4 bytes of data to the serial flash.  The location of
1868  * the write needs to be specified prior to calling this by issuing the
1869  * appropriate commands to the serial flash.
1870  */
1871 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
1872                      int lock, u32 val)
1873 {
1874         if (!byte_cnt || byte_cnt > 4)
1875                 return -EINVAL;
1876         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
1877                 return -EBUSY;
1878         t4_write_reg(adapter, A_SF_DATA, val);
1879         t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
1880                      V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
1881         return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
1882 }
1883
1884 /**
1885  * t4_read_flash - read words from serial flash
1886  * @adapter: the adapter
1887  * @addr: the start address for the read
1888  * @nwords: how many 32-bit words to read
1889  * @data: where to store the read data
1890  * @byte_oriented: whether to store data as bytes or as words
1891  *
1892  * Read the specified number of 32-bit words from the serial flash.
1893  * If @byte_oriented is set the read data is stored as a byte array
1894  * (i.e., big-endian), otherwise as 32-bit words in the platform's
1895  * natural endianness.
1896  */
1897 int t4_read_flash(struct adapter *adapter, unsigned int addr,
1898                   unsigned int nwords, u32 *data, int byte_oriented)
1899 {
1900         int ret;
1901
1902         if (((addr + nwords * sizeof(u32)) > adapter->params.sf_size) ||
1903             (addr & 3))
1904                 return -EINVAL;
1905
1906         addr = rte_constant_bswap32(addr) | SF_RD_DATA_FAST;
1907
1908         ret = sf1_write(adapter, 4, 1, 0, addr);
1909         if (ret != 0)
1910                 return ret;
1911
1912         ret = sf1_read(adapter, 1, 1, 0, data);
1913         if (ret != 0)
1914                 return ret;
1915
1916         for ( ; nwords; nwords--, data++) {
1917                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
1918                 if (nwords == 1)
1919                         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
1920                 if (ret)
1921                         return ret;
1922                 if (byte_oriented)
1923                         *data = cpu_to_be32(*data);
1924         }
1925         return 0;
1926 }
1927
1928 /**
1929  * t4_get_fw_version - read the firmware version
1930  * @adapter: the adapter
1931  * @vers: where to place the version
1932  *
1933  * Reads the FW version from flash.
1934  */
1935 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
1936 {
1937         return t4_read_flash(adapter, FLASH_FW_START +
1938                              offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
1939 }
1940
1941 /**
1942  * t4_get_tp_version - read the TP microcode version
1943  * @adapter: the adapter
1944  * @vers: where to place the version
1945  *
1946  * Reads the TP microcode version from flash.
1947  */
1948 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
1949 {
1950         return t4_read_flash(adapter, FLASH_FW_START +
1951                              offsetof(struct fw_hdr, tp_microcode_ver),
1952                              1, vers, 0);
1953 }
1954
1955 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
1956                 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
1957                 FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
1958
1959 /**
1960  * t4_link_l1cfg - apply link configuration to MAC/PHY
1961  * @phy: the PHY to setup
1962  * @mac: the MAC to setup
1963  * @lc: the requested link configuration
1964  *
1965  * Set up a port's MAC and PHY according to a desired link configuration.
1966  * - If the PHY can auto-negotiate first decide what to advertise, then
1967  *   enable/disable auto-negotiation as desired, and reset.
1968  * - If the PHY does not auto-negotiate just reset it.
1969  * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1970  *   otherwise do it later based on the outcome of auto-negotiation.
1971  */
1972 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
1973                   struct link_config *lc)
1974 {
1975         struct fw_port_cmd c;
1976         unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
1977
1978         lc->link_ok = 0;
1979         if (lc->requested_fc & PAUSE_RX)
1980                 fc |= FW_PORT_CAP_FC_RX;
1981         if (lc->requested_fc & PAUSE_TX)
1982                 fc |= FW_PORT_CAP_FC_TX;
1983
1984         memset(&c, 0, sizeof(c));
1985         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
1986                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
1987                                      V_FW_PORT_CMD_PORTID(port));
1988         c.action_to_len16 =
1989                 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
1990                             FW_LEN16(c));
1991
1992         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1993                 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
1994                                              fc);
1995                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1996         } else if (lc->autoneg == AUTONEG_DISABLE) {
1997                 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
1998                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1999         } else {
2000                 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
2001         }
2002
2003         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2004 }
2005
2006 /**
2007  * t4_flash_cfg_addr - return the address of the flash configuration file
2008  * @adapter: the adapter
2009  *
2010  * Return the address within the flash where the Firmware Configuration
2011  * File is stored, or an error if the device FLASH is too small to contain
2012  * a Firmware Configuration File.
2013  */
2014 int t4_flash_cfg_addr(struct adapter *adapter)
2015 {
2016         /*
2017          * If the device FLASH isn't large enough to hold a Firmware
2018          * Configuration File, return an error.
2019          */
2020         if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
2021                 return -ENOSPC;
2022
2023         return FLASH_CFG_START;
2024 }
2025
2026 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
2027
2028 /**
2029  * t4_intr_enable - enable interrupts
2030  * @adapter: the adapter whose interrupts should be enabled
2031  *
2032  * Enable PF-specific interrupts for the calling function and the top-level
2033  * interrupt concentrator for global interrupts.  Interrupts are already
2034  * enabled at each module, here we just enable the roots of the interrupt
2035  * hierarchies.
2036  *
2037  * Note: this function should be called only when the driver manages
2038  * non PF-specific interrupts from the various HW modules.  Only one PCI
2039  * function at a time should be doing this.
2040  */
2041 void t4_intr_enable(struct adapter *adapter)
2042 {
2043         u32 val = 0;
2044         u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));
2045
2046         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
2047                 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
2048         t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
2049                      F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
2050                      F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
2051                      F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
2052                      F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
2053                      F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
2054                      F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
2055         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
2056         t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
2057 }
2058
2059 /**
2060  * t4_intr_disable - disable interrupts
2061  * @adapter: the adapter whose interrupts should be disabled
2062  *
2063  * Disable interrupts.  We only disable the top-level interrupt
2064  * concentrators.  The caller must be a PCI function managing global
2065  * interrupts.
2066  */
2067 void t4_intr_disable(struct adapter *adapter)
2068 {
2069         u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));
2070
2071         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
2072         t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
2073 }
2074
2075 /**
2076  * t4_get_port_type_description - return Port Type string description
2077  * @port_type: firmware Port Type enumeration
2078  */
2079 const char *t4_get_port_type_description(enum fw_port_type port_type)
2080 {
2081         static const char * const port_type_description[] = {
2082                 "Fiber_XFI",
2083                 "Fiber_XAUI",
2084                 "BT_SGMII",
2085                 "BT_XFI",
2086                 "BT_XAUI",
2087                 "KX4",
2088                 "CX4",
2089                 "KX",
2090                 "KR",
2091                 "SFP",
2092                 "BP_AP",
2093                 "BP4_AP",
2094                 "QSFP_10G",
2095                 "QSA",
2096                 "QSFP",
2097                 "BP40_BA",
2098         };
2099
2100         if (port_type < ARRAY_SIZE(port_type_description))
2101                 return port_type_description[port_type];
2102         return "UNKNOWN";
2103 }
2104
2105 /**
2106  * t4_get_mps_bg_map - return the buffer groups associated with a port
2107  * @adap: the adapter
2108  * @idx: the port index
2109  *
2110  * Returns a bitmap indicating which MPS buffer groups are associated
2111  * with the given port.  Bit i is set if buffer group i is used by the
2112  * port.
2113  */
2114 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
2115 {
2116         u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
2117
2118         if (n == 0)
2119                 return idx == 0 ? 0xf : 0;
2120         if (n == 1)
2121                 return idx < 2 ? (3 << (2 * idx)) : 0;
2122         return 1 << idx;
2123 }
2124
2125 /**
2126  * t4_get_port_stats - collect port statistics
2127  * @adap: the adapter
2128  * @idx: the port index
2129  * @p: the stats structure to fill
2130  *
2131  * Collect statistics related to the given port from HW.
2132  */
2133 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
2134 {
2135         u32 bgmap = t4_get_mps_bg_map(adap, idx);
2136
2137 #define GET_STAT(name) \
2138         t4_read_reg64(adap, \
2139                       (is_t4(adap->params.chip) ? \
2140                        PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) :\
2141                        T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
2142 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
2143
2144         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
2145         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
2146         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
2147         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
2148         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
2149         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
2150         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
2151         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
2152         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
2153         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
2154         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
2155         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
2156         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
2157         p->tx_drop             = GET_STAT(TX_PORT_DROP);
2158         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
2159         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
2160         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
2161         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
2162         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
2163         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
2164         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
2165         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
2166         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
2167
2168         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
2169         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
2170         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
2171         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
2172         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
2173         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
2174         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
2175         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
2176         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
2177         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
2178         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
2179         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
2180         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
2181         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
2182         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
2183         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
2184         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
2185         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
2186         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
2187         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
2188         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
2189         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
2190         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
2191         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
2192         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
2193         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
2194         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
2195         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
2196         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
2197         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
2198         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
2199         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
2200         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
2201         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
2202         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
2203
2204 #undef GET_STAT
2205 #undef GET_STAT_COM
2206 }
2207
2208 /**
2209  * t4_get_port_stats_offset - collect port stats relative to a previous snapshot
2210  * @adap: The adapter
2211  * @idx: The port
2212  * @stats: Current stats to fill
2213  * @offset: Previous stats snapshot
2214  */
2215 void t4_get_port_stats_offset(struct adapter *adap, int idx,
2216                               struct port_stats *stats,
2217                               struct port_stats *offset)
2218 {
2219         u64 *s, *o;
2220         unsigned int i;
2221
2222         t4_get_port_stats(adap, idx, stats);
2223         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
2224              i < (sizeof(struct port_stats) / sizeof(u64));
2225              i++, s++, o++)
2226                 *s -= *o;
2227 }
2228
2229 /**
2230  * t4_clr_port_stats - clear port statistics
2231  * @adap: the adapter
2232  * @idx: the port index
2233  *
2234  * Clear HW statistics for the given port.
2235  */
2236 void t4_clr_port_stats(struct adapter *adap, int idx)
2237 {
2238         unsigned int i;
2239         u32 bgmap = t4_get_mps_bg_map(adap, idx);
2240         u32 port_base_addr;
2241
2242         if (is_t4(adap->params.chip))
2243                 port_base_addr = PORT_BASE(idx);
2244         else
2245                 port_base_addr = T5_PORT_BASE(idx);
2246
2247         for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
2248              i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
2249                 t4_write_reg(adap, port_base_addr + i, 0);
2250         for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
2251              i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
2252                 t4_write_reg(adap, port_base_addr + i, 0);
2253         for (i = 0; i < 4; i++)
2254                 if (bgmap & (1 << i)) {
2255                         t4_write_reg(adap,
2256                                      A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L +
2257                                      i * 8, 0);
2258                         t4_write_reg(adap,
2259                                      A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L +
2260                                      i * 8, 0);
2261                 }
2262 }
2263
2264 /**
2265  * t4_fw_hello - establish communication with FW
2266  * @adap: the adapter
2267  * @mbox: mailbox to use for the FW command
2268  * @evt_mbox: mailbox to receive async FW events
2269  * @master: specifies the caller's willingness to be the device master
2270  * @state: returns the current device state (if non-NULL)
2271  *
2272  * Issues a command to establish communication with FW.  Returns either
2273  * an error (negative integer) or the mailbox of the Master PF.
2274  */
2275 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
2276                 enum dev_master master, enum dev_state *state)
2277 {
2278         int ret;
2279         struct fw_hello_cmd c;
2280         u32 v;
2281         unsigned int master_mbox;
2282         int retries = FW_CMD_HELLO_RETRIES;
2283
2284 retry:
2285         memset(&c, 0, sizeof(c));
2286         INIT_CMD(c, HELLO, WRITE);
2287         c.err_to_clearinit = cpu_to_be32(
2288                         V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
2289                         V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
2290                         V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
2291                                                 M_FW_HELLO_CMD_MBMASTER) |
2292                         V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
2293                         V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
2294                         F_FW_HELLO_CMD_CLEARINIT);
2295
2296         /*
2297          * Issue the HELLO command to the firmware.  If it's not successful
2298          * but indicates that we got a "busy" or "timeout" condition, retry
2299          * the HELLO until we exhaust our retry limit.  If we do exceed our
2300          * retry limit, check to see if the firmware left us any error
2301          * information and report that if so ...
2302          */
2303         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2304         if (ret != FW_SUCCESS) {
2305                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
2306                         goto retry;
2307                 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
2308                         t4_report_fw_error(adap);
2309                 return ret;
2310         }
2311
2312         v = be32_to_cpu(c.err_to_clearinit);
2313         master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
2314         if (state) {
2315                 if (v & F_FW_HELLO_CMD_ERR)
2316                         *state = DEV_STATE_ERR;
2317                 else if (v & F_FW_HELLO_CMD_INIT)
2318                         *state = DEV_STATE_INIT;
2319                 else
2320                         *state = DEV_STATE_UNINIT;
2321         }
2322
2323         /*
2324          * If we're not the Master PF then we need to wait around for the
2325          * Master PF Driver to finish setting up the adapter.
2326          *
2327          * Note that we also do this wait if we're a non-Master-capable PF and
2328          * there is no current Master PF; a Master PF may show up momentarily
2329          * and we wouldn't want to fail pointlessly.  (This can happen when an
2330          * OS loads lots of different drivers rapidly at the same time).  In
2331          * this case, the Master PF returned by the firmware will be
2332          * M_PCIE_FW_MASTER so the test below will work ...
2333          */
2334         if ((v & (F_FW_HELLO_CMD_ERR | F_FW_HELLO_CMD_INIT)) == 0 &&
2335             master_mbox != mbox) {
2336                 int waiting = FW_CMD_HELLO_TIMEOUT;
2337
2338                 /*
2339                  * Wait for the firmware to either indicate an error or
2340                  * initialized state.  If we see either of these we bail out
2341                  * and report the issue to the caller.  If we exhaust the
2342                  * "hello timeout" and we haven't exhausted our retries, try
2343                  * again.  Otherwise bail with a timeout error.
2344                  */
2345                 for (;;) {
2346                         u32 pcie_fw;
2347
2348                         msleep(50);
2349                         waiting -= 50;
2350
2351                         /*
2352                          * If neither Error nor Initialialized are indicated
2353                          * by the firmware keep waiting till we exaust our
2354                          * timeout ... and then retry if we haven't exhausted
2355                          * our retries ...
2356                          */
2357                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
2358                         if (!(pcie_fw & (F_PCIE_FW_ERR | F_PCIE_FW_INIT))) {
2359                                 if (waiting <= 0) {
2360                                         if (retries-- > 0)
2361                                                 goto retry;
2362
2363                                         return -ETIMEDOUT;
2364                                 }
2365                                 continue;
2366                         }
2367
2368                         /*
2369                          * We either have an Error or Initialized condition
2370                          * report errors preferentially.
2371                          */
2372                         if (state) {
2373                                 if (pcie_fw & F_PCIE_FW_ERR)
2374                                         *state = DEV_STATE_ERR;
2375                                 else if (pcie_fw & F_PCIE_FW_INIT)
2376                                         *state = DEV_STATE_INIT;
2377                         }
2378
2379                         /*
2380                          * If we arrived before a Master PF was selected and
2381                          * there's not a valid Master PF, grab its identity
2382                          * for our caller.
2383                          */
2384                         if (master_mbox == M_PCIE_FW_MASTER &&
2385                             (pcie_fw & F_PCIE_FW_MASTER_VLD))
2386                                 master_mbox = G_PCIE_FW_MASTER(pcie_fw);
2387                         break;
2388                 }
2389         }
2390
2391         return master_mbox;
2392 }
2393
2394 /**
2395  * t4_fw_bye - end communication with FW
2396  * @adap: the adapter
2397  * @mbox: mailbox to use for the FW command
2398  *
2399  * Issues a command to terminate communication with FW.
2400  */
2401 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
2402 {
2403         struct fw_bye_cmd c;
2404
2405         memset(&c, 0, sizeof(c));
2406         INIT_CMD(c, BYE, WRITE);
2407         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2408 }
2409
2410 /**
2411  * t4_fw_reset - issue a reset to FW
2412  * @adap: the adapter
2413  * @mbox: mailbox to use for the FW command
2414  * @reset: specifies the type of reset to perform
2415  *
2416  * Issues a reset command of the specified type to FW.
2417  */
2418 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
2419 {
2420         struct fw_reset_cmd c;
2421
2422         memset(&c, 0, sizeof(c));
2423         INIT_CMD(c, RESET, WRITE);
2424         c.val = cpu_to_be32(reset);
2425         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2426 }
2427
2428 /**
2429  * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
2430  * @adap: the adapter
2431  * @mbox: mailbox to use for the FW RESET command (if desired)
2432  * @force: force uP into RESET even if FW RESET command fails
2433  *
2434  * Issues a RESET command to firmware (if desired) with a HALT indication
2435  * and then puts the microprocessor into RESET state.  The RESET command
2436  * will only be issued if a legitimate mailbox is provided (mbox <=
2437  * M_PCIE_FW_MASTER).
2438  *
2439  * This is generally used in order for the host to safely manipulate the
2440  * adapter without fear of conflicting with whatever the firmware might
2441  * be doing.  The only way out of this state is to RESTART the firmware
2442  * ...
2443  */
2444 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
2445 {
2446         int ret = 0;
2447
2448         /*
2449          * If a legitimate mailbox is provided, issue a RESET command
2450          * with a HALT indication.
2451          */
2452         if (mbox <= M_PCIE_FW_MASTER) {
2453                 struct fw_reset_cmd c;
2454
2455                 memset(&c, 0, sizeof(c));
2456                 INIT_CMD(c, RESET, WRITE);
2457                 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
2458                 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
2459                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2460         }
2461
2462         /*
2463          * Normally we won't complete the operation if the firmware RESET
2464          * command fails but if our caller insists we'll go ahead and put the
2465          * uP into RESET.  This can be useful if the firmware is hung or even
2466          * missing ...  We'll have to take the risk of putting the uP into
2467          * RESET without the cooperation of firmware in that case.
2468          *
2469          * We also force the firmware's HALT flag to be on in case we bypassed
2470          * the firmware RESET command above or we're dealing with old firmware
2471          * which doesn't have the HALT capability.  This will serve as a flag
2472          * for the incoming firmware to know that it's coming out of a HALT
2473          * rather than a RESET ... if it's new enough to understand that ...
2474          */
2475         if (ret == 0 || force) {
2476                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
2477                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
2478                                  F_PCIE_FW_HALT);
2479         }
2480
2481         /*
2482          * And we always return the result of the firmware RESET command
2483          * even when we force the uP into RESET ...
2484          */
2485         return ret;
2486 }
2487
2488 /**
2489  * t4_fw_restart - restart the firmware by taking the uP out of RESET
2490  * @adap: the adapter
2491  * @mbox: mailbox to use for the FW RESET command (if desired)
2492  * @reset: if we want to do a RESET to restart things
2493  *
2494  * Restart firmware previously halted by t4_fw_halt().  On successful
2495  * return the previous PF Master remains as the new PF Master and there
2496  * is no need to issue a new HELLO command, etc.
2497  *
2498  * We do this in two ways:
2499  *
2500  * 1. If we're dealing with newer firmware we'll simply want to take
2501  *    the chip's microprocessor out of RESET.  This will cause the
2502  *    firmware to start up from its start vector.  And then we'll loop
2503  *    until the firmware indicates it's started again (PCIE_FW.HALT
2504  *    reset to 0) or we timeout.
2505  *
2506  * 2. If we're dealing with older firmware then we'll need to RESET
2507  *    the chip since older firmware won't recognize the PCIE_FW.HALT
2508  *    flag and automatically RESET itself on startup.
2509  */
2510 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
2511 {
2512         if (reset) {
2513                 /*
2514                  * Since we're directing the RESET instead of the firmware
2515                  * doing it automatically, we need to clear the PCIE_FW.HALT
2516                  * bit.
2517                  */
2518                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
2519
2520                 /*
2521                  * If we've been given a valid mailbox, first try to get the
2522                  * firmware to do the RESET.  If that works, great and we can
2523                  * return success.  Otherwise, if we haven't been given a
2524                  * valid mailbox or the RESET command failed, fall back to
2525                  * hitting the chip with a hammer.
2526                  */
2527                 if (mbox <= M_PCIE_FW_MASTER) {
2528                         t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
2529                         msleep(100);
2530                         if (t4_fw_reset(adap, mbox,
2531                                         F_PIORST | F_PIORSTMODE) == 0)
2532                                 return 0;
2533                 }
2534
2535                 t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
2536                 msleep(2000);
2537         } else {
2538                 int ms;
2539
2540                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
2541                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
2542                         if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
2543                                 return FW_SUCCESS;
2544                         msleep(100);
2545                         ms += 100;
2546                 }
2547                 return -ETIMEDOUT;
2548         }
2549         return 0;
2550 }
2551
2552 /**
2553  * t4_fixup_host_params_compat - fix up host-dependent parameters
2554  * @adap: the adapter
2555  * @page_size: the host's Base Page Size
2556  * @cache_line_size: the host's Cache Line Size
2557  * @chip_compat: maintain compatibility with designated chip
2558  *
2559  * Various registers in the chip contain values which are dependent on the
2560  * host's Base Page and Cache Line Sizes.  This function will fix all of
2561  * those registers with the appropriate values as passed in ...
2562  *
2563  * @chip_compat is used to limit the set of changes that are made
2564  * to be compatible with the indicated chip release.  This is used by
2565  * drivers to maintain compatibility with chip register settings when
2566  * the drivers haven't [yet] been updated with new chip support.
2567  */
2568 int t4_fixup_host_params_compat(struct adapter *adap,
2569                                 unsigned int page_size,
2570                                 unsigned int cache_line_size,
2571                                 enum chip_type chip_compat)
2572 {
2573         unsigned int page_shift = cxgbe_fls(page_size) - 1;
2574         unsigned int sge_hps = page_shift - 10;
2575         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
2576         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
2577         unsigned int fl_align_log = cxgbe_fls(fl_align) - 1;
2578
2579         t4_write_reg(adap, A_SGE_HOST_PAGE_SIZE,
2580                      V_HOSTPAGESIZEPF0(sge_hps) |
2581                      V_HOSTPAGESIZEPF1(sge_hps) |
2582                      V_HOSTPAGESIZEPF2(sge_hps) |
2583                      V_HOSTPAGESIZEPF3(sge_hps) |
2584                      V_HOSTPAGESIZEPF4(sge_hps) |
2585                      V_HOSTPAGESIZEPF5(sge_hps) |
2586                      V_HOSTPAGESIZEPF6(sge_hps) |
2587                      V_HOSTPAGESIZEPF7(sge_hps));
2588
2589         if (is_t4(adap->params.chip) || is_t4(chip_compat))
2590                 t4_set_reg_field(adap, A_SGE_CONTROL,
2591                                  V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
2592                                  F_EGRSTATUSPAGESIZE,
2593                                  V_INGPADBOUNDARY(fl_align_log -
2594                                                   X_INGPADBOUNDARY_SHIFT) |
2595                                 V_EGRSTATUSPAGESIZE(stat_len != 64));
2596         else {
2597                 /*
2598                  * T5 introduced the separation of the Free List Padding and
2599                  * Packing Boundaries.  Thus, we can select a smaller Padding
2600                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
2601                  * Bandwidth, and use a Packing Boundary which is large enough
2602                  * to avoid false sharing between CPUs, etc.
2603                  *
2604                  * For the PCI Link, the smaller the Padding Boundary the
2605                  * better.  For the Memory Controller, a smaller Padding
2606                  * Boundary is better until we cross under the Memory Line
2607                  * Size (the minimum unit of transfer to/from Memory).  If we
2608                  * have a Padding Boundary which is smaller than the Memory
2609                  * Line Size, that'll involve a Read-Modify-Write cycle on the
2610                  * Memory Controller which is never good.  For T5 the smallest
2611                  * Padding Boundary which we can select is 32 bytes which is
2612                  * larger than any known Memory Controller Line Size so we'll
2613                  * use that.
2614                  */
2615
2616                 /*
2617                  * N.B. T5 has a different interpretation of the "0" value for
2618                  * the Packing Boundary.  This corresponds to 16 bytes instead
2619                  * of the expected 32 bytes.  We never have a Packing Boundary
2620                  * less than 32 bytes so we can't use that special value but
2621                  * on the other hand, if we wanted 32 bytes, the best we can
2622                  * really do is 64 bytes ...
2623                  */
2624                 if (fl_align <= 32) {
2625                         fl_align = 64;
2626                         fl_align_log = 6;
2627                 }
2628                 t4_set_reg_field(adap, A_SGE_CONTROL,
2629                                  V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
2630                                  F_EGRSTATUSPAGESIZE,
2631                                  V_INGPADBOUNDARY(X_INGPCIEBOUNDARY_32B) |
2632                                  V_EGRSTATUSPAGESIZE(stat_len != 64));
2633                 t4_set_reg_field(adap, A_SGE_CONTROL2,
2634                                  V_INGPACKBOUNDARY(M_INGPACKBOUNDARY),
2635                                  V_INGPACKBOUNDARY(fl_align_log -
2636                                                    X_INGPACKBOUNDARY_SHIFT));
2637         }
2638
2639         /*
2640          * Adjust various SGE Free List Host Buffer Sizes.
2641          *
2642          * The first four entries are:
2643          *
2644          *   0: Host Page Size
2645          *   1: 64KB
2646          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
2647          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
2648          *
2649          * For the single-MTU buffers in unpacked mode we need to include
2650          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
2651          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
2652          * Padding boundary.  All of these are accommodated in the Factory
2653          * Default Firmware Configuration File but we need to adjust it for
2654          * this host's cache line size.
2655          */
2656         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE0, page_size);
2657         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE2,
2658                      (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE2) + fl_align - 1)
2659                      & ~(fl_align - 1));
2660         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE3,
2661                      (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE3) + fl_align - 1)
2662                      & ~(fl_align - 1));
2663
2664         t4_write_reg(adap, A_ULP_RX_TDDP_PSZ, V_HPZ0(page_shift - 12));
2665
2666         return 0;
2667 }
2668
2669 /**
2670  * t4_fixup_host_params - fix up host-dependent parameters (T4 compatible)
2671  * @adap: the adapter
2672  * @page_size: the host's Base Page Size
2673  * @cache_line_size: the host's Cache Line Size
2674  *
2675  * Various registers in T4 contain values which are dependent on the
2676  * host's Base Page and Cache Line Sizes.  This function will fix all of
2677  * those registers with the appropriate values as passed in ...
2678  *
2679  * This routine makes changes which are compatible with T4 chips.
2680  */
2681 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
2682                          unsigned int cache_line_size)
2683 {
2684         return t4_fixup_host_params_compat(adap, page_size, cache_line_size,
2685                                            T4_LAST_REV);
2686 }
2687
2688 /**
2689  * t4_fw_initialize - ask FW to initialize the device
2690  * @adap: the adapter
2691  * @mbox: mailbox to use for the FW command
2692  *
2693  * Issues a command to FW to partially initialize the device.  This
2694  * performs initialization that generally doesn't depend on user input.
2695  */
2696 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
2697 {
2698         struct fw_initialize_cmd c;
2699
2700         memset(&c, 0, sizeof(c));
2701         INIT_CMD(c, INITIALIZE, WRITE);
2702         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2703 }
2704
2705 /**
2706  * t4_query_params_rw - query FW or device parameters
2707  * @adap: the adapter
2708  * @mbox: mailbox to use for the FW command
2709  * @pf: the PF
2710  * @vf: the VF
2711  * @nparams: the number of parameters
2712  * @params: the parameter names
2713  * @val: the parameter values
2714  * @rw: Write and read flag
2715  *
2716  * Reads the value of FW or device parameters.  Up to 7 parameters can be
2717  * queried at once.
2718  */
2719 static int t4_query_params_rw(struct adapter *adap, unsigned int mbox,
2720                               unsigned int pf, unsigned int vf,
2721                               unsigned int nparams, const u32 *params,
2722                               u32 *val, int rw)
2723 {
2724         unsigned int i;
2725         int ret;
2726         struct fw_params_cmd c;
2727         __be32 *p = &c.param[0].mnem;
2728
2729         if (nparams > 7)
2730                 return -EINVAL;
2731
2732         memset(&c, 0, sizeof(c));
2733         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
2734                                   F_FW_CMD_REQUEST | F_FW_CMD_READ |
2735                                   V_FW_PARAMS_CMD_PFN(pf) |
2736                                   V_FW_PARAMS_CMD_VFN(vf));
2737         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2738
2739         for (i = 0; i < nparams; i++) {
2740                 *p++ = cpu_to_be32(*params++);
2741                 if (rw)
2742                         *p = cpu_to_be32(*(val + i));
2743                 p++;
2744         }
2745
2746         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2747         if (ret == 0)
2748                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
2749                         *val++ = be32_to_cpu(*p);
2750         return ret;
2751 }
2752
2753 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
2754                     unsigned int vf, unsigned int nparams, const u32 *params,
2755                     u32 *val)
2756 {
2757         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
2758 }
2759
2760 /**
2761  * t4_set_params_timeout - sets FW or device parameters
2762  * @adap: the adapter
2763  * @mbox: mailbox to use for the FW command
2764  * @pf: the PF
2765  * @vf: the VF
2766  * @nparams: the number of parameters
2767  * @params: the parameter names
2768  * @val: the parameter values
2769  * @timeout: the timeout time
2770  *
2771  * Sets the value of FW or device parameters.  Up to 7 parameters can be
2772  * specified at once.
2773  */
2774 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
2775                           unsigned int pf, unsigned int vf,
2776                           unsigned int nparams, const u32 *params,
2777                           const u32 *val, int timeout)
2778 {
2779         struct fw_params_cmd c;
2780         __be32 *p = &c.param[0].mnem;
2781
2782         if (nparams > 7)
2783                 return -EINVAL;
2784
2785         memset(&c, 0, sizeof(c));
2786         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
2787                                   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2788                                   V_FW_PARAMS_CMD_PFN(pf) |
2789                                   V_FW_PARAMS_CMD_VFN(vf));
2790         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2791
2792         while (nparams--) {
2793                 *p++ = cpu_to_be32(*params++);
2794                 *p++ = cpu_to_be32(*val++);
2795         }
2796
2797         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
2798 }
2799
2800 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
2801                   unsigned int vf, unsigned int nparams, const u32 *params,
2802                   const u32 *val)
2803 {
2804         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
2805                                      FW_CMD_MAX_TIMEOUT);
2806 }
2807
2808 /**
2809  * t4_alloc_vi_func - allocate a virtual interface
2810  * @adap: the adapter
2811  * @mbox: mailbox to use for the FW command
2812  * @port: physical port associated with the VI
2813  * @pf: the PF owning the VI
2814  * @vf: the VF owning the VI
2815  * @nmac: number of MAC addresses needed (1 to 5)
2816  * @mac: the MAC addresses of the VI
2817  * @rss_size: size of RSS table slice associated with this VI
2818  * @portfunc: which Port Application Function MAC Address is desired
2819  * @idstype: Intrusion Detection Type
2820  *
2821  * Allocates a virtual interface for the given physical port.  If @mac is
2822  * not %NULL it contains the MAC addresses of the VI as assigned by FW.
2823  * @mac should be large enough to hold @nmac Ethernet addresses, they are
2824  * stored consecutively so the space needed is @nmac * 6 bytes.
2825  * Returns a negative error number or the non-negative VI id.
2826  */
2827 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
2828                      unsigned int port, unsigned int pf, unsigned int vf,
2829                      unsigned int nmac, u8 *mac, unsigned int *rss_size,
2830                      unsigned int portfunc, unsigned int idstype)
2831 {
2832         int ret;
2833         struct fw_vi_cmd c;
2834
2835         memset(&c, 0, sizeof(c));
2836         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
2837                                   F_FW_CMD_WRITE | F_FW_CMD_EXEC |
2838                                   V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
2839         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
2840         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
2841                                      V_FW_VI_CMD_FUNC(portfunc));
2842         c.portid_pkd = V_FW_VI_CMD_PORTID(port);
2843         c.nmac = nmac - 1;
2844
2845         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2846         if (ret)
2847                 return ret;
2848
2849         if (mac) {
2850                 memcpy(mac, c.mac, sizeof(c.mac));
2851                 switch (nmac) {
2852                 case 5:
2853                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
2854                         /* FALLTHROUGH */
2855                 case 4:
2856                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
2857                         /* FALLTHROUGH */
2858                 case 3:
2859                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
2860                         /* FALLTHROUGH */
2861                 case 2:
2862                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
2863                         /* FALLTHROUGH */
2864                 }
2865         }
2866         if (rss_size)
2867                 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
2868         return G_FW_VI_CMD_VIID(cpu_to_be16(c.type_to_viid));
2869 }
2870
2871 /**
2872  * t4_alloc_vi - allocate an [Ethernet Function] virtual interface
2873  * @adap: the adapter
2874  * @mbox: mailbox to use for the FW command
2875  * @port: physical port associated with the VI
2876  * @pf: the PF owning the VI
2877  * @vf: the VF owning the VI
2878  * @nmac: number of MAC addresses needed (1 to 5)
2879  * @mac: the MAC addresses of the VI
2880  * @rss_size: size of RSS table slice associated with this VI
2881  *
2882  * Backwards compatible and convieniance routine to allocate a Virtual
2883  * Interface with a Ethernet Port Application Function and Intrustion
2884  * Detection System disabled.
2885  */
2886 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
2887                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
2888                 unsigned int *rss_size)
2889 {
2890         return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
2891                                 FW_VI_FUNC_ETH, 0);
2892 }
2893
2894 /**
2895  * t4_free_vi - free a virtual interface
2896  * @adap: the adapter
2897  * @mbox: mailbox to use for the FW command
2898  * @pf: the PF owning the VI
2899  * @vf: the VF owning the VI
2900  * @viid: virtual interface identifiler
2901  *
2902  * Free a previously allocated virtual interface.
2903  */
2904 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
2905                unsigned int vf, unsigned int viid)
2906 {
2907         struct fw_vi_cmd c;
2908
2909         memset(&c, 0, sizeof(c));
2910         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
2911                                   F_FW_CMD_EXEC | V_FW_VI_CMD_PFN(pf) |
2912                                   V_FW_VI_CMD_VFN(vf));
2913         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
2914         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
2915
2916         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
2917 }
2918
2919 /**
2920  * t4_set_rxmode - set Rx properties of a virtual interface
2921  * @adap: the adapter
2922  * @mbox: mailbox to use for the FW command
2923  * @viid: the VI id
2924  * @mtu: the new MTU or -1
2925  * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
2926  * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
2927  * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
2928  * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
2929  *          -1 no change
2930  * @sleep_ok: if true we may sleep while awaiting command completion
2931  *
2932  * Sets Rx properties of a virtual interface.
2933  */
2934 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
2935                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
2936                   bool sleep_ok)
2937 {
2938         struct fw_vi_rxmode_cmd c;
2939
2940         /* convert to FW values */
2941         if (mtu < 0)
2942                 mtu = M_FW_VI_RXMODE_CMD_MTU;
2943         if (promisc < 0)
2944                 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
2945         if (all_multi < 0)
2946                 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
2947         if (bcast < 0)
2948                 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
2949         if (vlanex < 0)
2950                 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
2951
2952         memset(&c, 0, sizeof(c));
2953         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
2954                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2955                                    V_FW_VI_RXMODE_CMD_VIID(viid));
2956         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2957         c.mtu_to_vlanexen = cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
2958                             V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
2959                             V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
2960                             V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
2961                             V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
2962         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
2963 }
2964
2965 /**
2966  * t4_change_mac - modifies the exact-match filter for a MAC address
2967  * @adap: the adapter
2968  * @mbox: mailbox to use for the FW command
2969  * @viid: the VI id
2970  * @idx: index of existing filter for old value of MAC address, or -1
2971  * @addr: the new MAC address value
2972  * @persist: whether a new MAC allocation should be persistent
2973  * @add_smt: if true also add the address to the HW SMT
2974  *
2975  * Modifies an exact-match filter and sets it to the new MAC address if
2976  * @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
2977  * latter case the address is added persistently if @persist is %true.
2978  *
2979  * Note that in general it is not possible to modify the value of a given
2980  * filter so the generic way to modify an address filter is to free the one
2981  * being used by the old address value and allocate a new filter for the
2982  * new address value.
2983  *
2984  * Returns a negative error number or the index of the filter with the new
2985  * MAC value.  Note that this index may differ from @idx.
2986  */
2987 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
2988                   int idx, const u8 *addr, bool persist, bool add_smt)
2989 {
2990         int ret, mode;
2991         struct fw_vi_mac_cmd c;
2992         struct fw_vi_mac_exact *p = c.u.exact;
2993         int max_mac_addr = adap->params.arch.mps_tcam_size;
2994
2995         if (idx < 0)                             /* new allocation */
2996                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
2997         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
2998
2999         memset(&c, 0, sizeof(c));
3000         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
3001                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3002                                    V_FW_VI_MAC_CMD_VIID(viid));
3003         c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
3004         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
3005                                       V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
3006                                       V_FW_VI_MAC_CMD_IDX(idx));
3007         memcpy(p->macaddr, addr, sizeof(p->macaddr));
3008
3009         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3010         if (ret == 0) {
3011                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
3012                 if (ret >= max_mac_addr)
3013                         ret = -ENOMEM;
3014         }
3015         return ret;
3016 }
3017
3018 /**
3019  * t4_enable_vi_params - enable/disable a virtual interface
3020  * @adap: the adapter
3021  * @mbox: mailbox to use for the FW command
3022  * @viid: the VI id
3023  * @rx_en: 1=enable Rx, 0=disable Rx
3024  * @tx_en: 1=enable Tx, 0=disable Tx
3025  * @dcb_en: 1=enable delivery of Data Center Bridging messages.
3026  *
3027  * Enables/disables a virtual interface.  Note that setting DCB Enable
3028  * only makes sense when enabling a Virtual Interface ...
3029  */
3030 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
3031                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
3032 {
3033         struct fw_vi_enable_cmd c;
3034
3035         memset(&c, 0, sizeof(c));
3036         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
3037                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3038                                    V_FW_VI_ENABLE_CMD_VIID(viid));
3039         c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
3040                                      V_FW_VI_ENABLE_CMD_EEN(tx_en) |
3041                                      V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
3042                                      FW_LEN16(c));
3043         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3044 }
3045
3046 /**
3047  * t4_enable_vi - enable/disable a virtual interface
3048  * @adap: the adapter
3049  * @mbox: mailbox to use for the FW command
3050  * @viid: the VI id
3051  * @rx_en: 1=enable Rx, 0=disable Rx
3052  * @tx_en: 1=enable Tx, 0=disable Tx
3053  *
3054  * Enables/disables a virtual interface.  Note that setting DCB Enable
3055  * only makes sense when enabling a Virtual Interface ...
3056  */
3057 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
3058                  bool rx_en, bool tx_en)
3059 {
3060         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
3061 }
3062
3063 /**
3064  * t4_iq_start_stop - enable/disable an ingress queue and its FLs
3065  * @adap: the adapter
3066  * @mbox: mailbox to use for the FW command
3067  * @start: %true to enable the queues, %false to disable them
3068  * @pf: the PF owning the queues
3069  * @vf: the VF owning the queues
3070  * @iqid: ingress queue id
3071  * @fl0id: FL0 queue id or 0xffff if no attached FL0
3072  * @fl1id: FL1 queue id or 0xffff if no attached FL1
3073  *
3074  * Starts or stops an ingress queue and its associated FLs, if any.
3075  */
3076 int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
3077                      unsigned int pf, unsigned int vf, unsigned int iqid,
3078                      unsigned int fl0id, unsigned int fl1id)
3079 {
3080         struct fw_iq_cmd c;
3081
3082         memset(&c, 0, sizeof(c));
3083         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3084                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
3085                                   V_FW_IQ_CMD_VFN(vf));
3086         c.alloc_to_len16 = cpu_to_be32(V_FW_IQ_CMD_IQSTART(start) |
3087                                        V_FW_IQ_CMD_IQSTOP(!start) |
3088                                        FW_LEN16(c));
3089         c.iqid = cpu_to_be16(iqid);
3090         c.fl0id = cpu_to_be16(fl0id);
3091         c.fl1id = cpu_to_be16(fl1id);
3092         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3093 }
3094
3095 /**
3096  * t4_iq_free - free an ingress queue and its FLs
3097  * @adap: the adapter
3098  * @mbox: mailbox to use for the FW command
3099  * @pf: the PF owning the queues
3100  * @vf: the VF owning the queues
3101  * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
3102  * @iqid: ingress queue id
3103  * @fl0id: FL0 queue id or 0xffff if no attached FL0
3104  * @fl1id: FL1 queue id or 0xffff if no attached FL1
3105  *
3106  * Frees an ingress queue and its associated FLs, if any.
3107  */
3108 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
3109                unsigned int vf, unsigned int iqtype, unsigned int iqid,
3110                unsigned int fl0id, unsigned int fl1id)
3111 {
3112         struct fw_iq_cmd c;
3113
3114         memset(&c, 0, sizeof(c));
3115         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3116                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
3117                                   V_FW_IQ_CMD_VFN(vf));
3118         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
3119         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
3120         c.iqid = cpu_to_be16(iqid);
3121         c.fl0id = cpu_to_be16(fl0id);
3122         c.fl1id = cpu_to_be16(fl1id);
3123         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3124 }
3125
3126 /**
3127  * t4_eth_eq_free - free an Ethernet egress queue
3128  * @adap: the adapter
3129  * @mbox: mailbox to use for the FW command
3130  * @pf: the PF owning the queue
3131  * @vf: the VF owning the queue
3132  * @eqid: egress queue id
3133  *
3134  * Frees an Ethernet egress queue.
3135  */
3136 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
3137                    unsigned int vf, unsigned int eqid)
3138 {
3139         struct fw_eq_eth_cmd c;
3140
3141         memset(&c, 0, sizeof(c));
3142         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
3143                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3144                                   V_FW_EQ_ETH_CMD_PFN(pf) |
3145                                   V_FW_EQ_ETH_CMD_VFN(vf));
3146         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
3147         c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
3148         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3149 }
3150
3151 /**
3152  * t4_handle_fw_rpl - process a FW reply message
3153  * @adap: the adapter
3154  * @rpl: start of the FW message
3155  *
3156  * Processes a FW message, such as link state change messages.
3157  */
3158 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
3159 {
3160         u8 opcode = *(const u8 *)rpl;
3161
3162         /*
3163          * This might be a port command ... this simplifies the following
3164          * conditionals ...  We can get away with pre-dereferencing
3165          * action_to_len16 because it's in the first 16 bytes and all messages
3166          * will be at least that long.
3167          */
3168         const struct fw_port_cmd *p = (const void *)rpl;
3169         unsigned int action =
3170                 G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
3171
3172         if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
3173                 /* link/module state change message */
3174                 int speed = 0, fc = 0, i;
3175                 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
3176                 struct port_info *pi = NULL;
3177                 struct link_config *lc;
3178                 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
3179                 int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
3180                 u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
3181
3182                 if (stat & F_FW_PORT_CMD_RXPAUSE)
3183                         fc |= PAUSE_RX;
3184                 if (stat & F_FW_PORT_CMD_TXPAUSE)
3185                         fc |= PAUSE_TX;
3186                 if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
3187                         speed = ETH_SPEED_NUM_100M;
3188                 else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
3189                         speed = ETH_SPEED_NUM_1G;
3190                 else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
3191                         speed = ETH_SPEED_NUM_10G;
3192                 else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
3193                         speed = ETH_SPEED_NUM_40G;
3194
3195                 for_each_port(adap, i) {
3196                         pi = adap2pinfo(adap, i);
3197                         if (pi->tx_chan == chan)
3198                                 break;
3199                 }
3200                 lc = &pi->link_cfg;
3201
3202                 if (mod != pi->mod_type) {
3203                         pi->mod_type = mod;
3204                         t4_os_portmod_changed(adap, i);
3205                 }
3206                 if (link_ok != lc->link_ok || speed != lc->speed ||
3207                     fc != lc->fc) {                    /* something changed */
3208                         if (!link_ok && lc->link_ok) {
3209                                 static const char * const reason[] = {
3210                                         "Link Down",
3211                                         "Remote Fault",
3212                                         "Auto-negotiation Failure",
3213                                         "Reserved",
3214                                         "Insufficient Airflow",
3215                                         "Unable To Determine Reason",
3216                                         "No RX Signal Detected",
3217                                         "Reserved",
3218                                 };
3219                                 unsigned int rc = G_FW_PORT_CMD_LINKDNRC(stat);
3220
3221                                 dev_warn(adap, "Port %d link down, reason: %s\n",
3222                                          chan, reason[rc]);
3223                         }
3224                         lc->link_ok = link_ok;
3225                         lc->speed = speed;
3226                         lc->fc = fc;
3227                         lc->supported = be16_to_cpu(p->u.info.pcap);
3228                 }
3229         } else {
3230                 dev_warn(adap, "Unknown firmware reply %d\n", opcode);
3231                 return -EINVAL;
3232         }
3233         return 0;
3234 }
3235
3236 void t4_reset_link_config(struct adapter *adap, int idx)
3237 {
3238         struct port_info *pi = adap2pinfo(adap, idx);
3239         struct link_config *lc = &pi->link_cfg;
3240
3241         lc->link_ok = 0;
3242         lc->requested_speed = 0;
3243         lc->requested_fc = 0;
3244         lc->speed = 0;
3245         lc->fc = 0;
3246 }
3247
3248 /**
3249  * init_link_config - initialize a link's SW state
3250  * @lc: structure holding the link state
3251  * @caps: link capabilities
3252  *
3253  * Initializes the SW state maintained for each link, including the link's
3254  * capabilities and default speed/flow-control/autonegotiation settings.
3255  */
3256 static void init_link_config(struct link_config *lc,
3257                              unsigned int caps)
3258 {
3259         lc->supported = caps;
3260         lc->requested_speed = 0;
3261         lc->speed = 0;
3262         lc->requested_fc = 0;
3263         lc->fc = 0;
3264         if (lc->supported & FW_PORT_CAP_ANEG) {
3265                 lc->advertising = lc->supported & ADVERT_MASK;
3266                 lc->autoneg = AUTONEG_ENABLE;
3267         } else {
3268                 lc->advertising = 0;
3269                 lc->autoneg = AUTONEG_DISABLE;
3270         }
3271 }
3272
3273 /**
3274  * t4_wait_dev_ready - wait till to reads of registers work
3275  *
3276  * Right after the device is RESET is can take a small amount of time
3277  * for it to respond to register reads.  Until then, all reads will
3278  * return either 0xff...ff or 0xee...ee.  Return an error if reads
3279  * don't work within a reasonable time frame.
3280  */
3281 static int t4_wait_dev_ready(struct adapter *adapter)
3282 {
3283         u32 whoami;
3284
3285         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
3286
3287         if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS)
3288                 return 0;
3289
3290         msleep(500);
3291         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
3292         return (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS
3293                         ? 0 : -EIO);
3294 }
3295
3296 struct flash_desc {
3297         u32 vendor_and_model_id;
3298         u32 size_mb;
3299 };
3300
3301 int t4_get_flash_params(struct adapter *adapter)
3302 {
3303         /*
3304          * Table for non-Numonix supported flash parts.  Numonix parts are left
3305          * to the preexisting well-tested code.  All flash parts have 64KB
3306          * sectors.
3307          */
3308         static struct flash_desc supported_flash[] = {
3309                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
3310         };
3311
3312         int ret;
3313         unsigned int i;
3314         u32 info = 0;
3315
3316         ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
3317         if (!ret)
3318                 ret = sf1_read(adapter, 3, 0, 1, &info);
3319         t4_write_reg(adapter, A_SF_OP, 0);               /* unlock SF */
3320         if (ret < 0)
3321                 return ret;
3322
3323         for (i = 0; i < ARRAY_SIZE(supported_flash); ++i)
3324                 if (supported_flash[i].vendor_and_model_id == info) {
3325                         adapter->params.sf_size = supported_flash[i].size_mb;
3326                         adapter->params.sf_nsec =
3327                                 adapter->params.sf_size / SF_SEC_SIZE;
3328                         return 0;
3329                 }
3330
3331         if ((info & 0xff) != 0x20)             /* not a Numonix flash */
3332                 return -EINVAL;
3333         info >>= 16;                           /* log2 of size */
3334         if (info >= 0x14 && info < 0x18)
3335                 adapter->params.sf_nsec = 1 << (info - 16);
3336         else if (info == 0x18)
3337                 adapter->params.sf_nsec = 64;
3338         else
3339                 return -EINVAL;
3340         adapter->params.sf_size = 1 << info;
3341
3342         /*
3343          * We should reject adapters with FLASHes which are too small. So, emit
3344          * a warning.
3345          */
3346         if (adapter->params.sf_size < FLASH_MIN_SIZE) {
3347                 dev_warn(adapter, "WARNING!!! FLASH size %#x < %#x!!!\n",
3348                          adapter->params.sf_size, FLASH_MIN_SIZE);
3349         }
3350
3351         return 0;
3352 }
3353
3354 static void set_pcie_completion_timeout(struct adapter *adapter,
3355                                         u8 range)
3356 {
3357         u32 pcie_cap;
3358         u16 val;
3359
3360         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
3361         if (pcie_cap) {
3362                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
3363                 val &= 0xfff0;
3364                 val |= range;
3365                 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
3366         }
3367 }
3368
3369 /**
3370  * t4_prep_adapter - prepare SW and HW for operation
3371  * @adapter: the adapter
3372  *
3373  * Initialize adapter SW state for the various HW modules, set initial
3374  * values for some adapter tunables, take PHYs out of reset, and
3375  * initialize the MDIO interface.
3376  */
3377 int t4_prep_adapter(struct adapter *adapter)
3378 {
3379         int ret, ver;
3380         u32 pl_rev;
3381
3382         ret = t4_wait_dev_ready(adapter);
3383         if (ret < 0)
3384                 return ret;
3385
3386         pl_rev = G_REV(t4_read_reg(adapter, A_PL_REV));
3387         adapter->params.pci.device_id = adapter->pdev->id.device_id;
3388         adapter->params.pci.vendor_id = adapter->pdev->id.vendor_id;
3389
3390         /*
3391          * WE DON'T NEED adapter->params.chip CODE ONCE PL_REV CONTAINS
3392          * ADAPTER (VERSION << 4 | REVISION)
3393          */
3394         ver = CHELSIO_PCI_ID_VER(adapter->params.pci.device_id);
3395         adapter->params.chip = 0;
3396         switch (ver) {
3397         case CHELSIO_T5:
3398                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
3399                 adapter->params.arch.sge_fl_db = F_DBPRIO | F_DBTYPE;
3400                 adapter->params.arch.mps_tcam_size =
3401                                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
3402                 adapter->params.arch.mps_rplc_size = 128;
3403                 adapter->params.arch.nchan = NCHAN;
3404                 adapter->params.arch.vfcount = 128;
3405                 break;
3406         default:
3407                 dev_err(adapter, "%s: Device %d is not supported\n",
3408                         __func__, adapter->params.pci.device_id);
3409                 return -EINVAL;
3410         }
3411
3412         adapter->params.pci.vpd_cap_addr =
3413                 t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
3414
3415         ret = t4_get_flash_params(adapter);
3416         if (ret < 0)
3417                 return ret;
3418
3419         adapter->params.cim_la_size = CIMLA_SIZE;
3420
3421         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
3422
3423         /*
3424          * Default port and clock for debugging in case we can't reach FW.
3425          */
3426         adapter->params.nports = 1;
3427         adapter->params.portvec = 1;
3428         adapter->params.vpd.cclk = 50000;
3429
3430         /* Set pci completion timeout value to 4 seconds. */
3431         set_pcie_completion_timeout(adapter, 0xd);
3432         return 0;
3433 }
3434
3435 /**
3436  * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
3437  * @adapter: the adapter
3438  * @qid: the Queue ID
3439  * @qtype: the Ingress or Egress type for @qid
3440  * @pbar2_qoffset: BAR2 Queue Offset
3441  * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
3442  *
3443  * Returns the BAR2 SGE Queue Registers information associated with the
3444  * indicated Absolute Queue ID.  These are passed back in return value
3445  * pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
3446  * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
3447  *
3448  * This may return an error which indicates that BAR2 SGE Queue
3449  * registers aren't available.  If an error is not returned, then the
3450  * following values are returned:
3451  *
3452  *   *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
3453  *   *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
3454  *
3455  * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
3456  * require the "Inferred Queue ID" ability may be used.  E.g. the
3457  * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
3458  * then these "Inferred Queue ID" register may not be used.
3459  */
3460 int t4_bar2_sge_qregs(struct adapter *adapter, unsigned int qid,
3461                       enum t4_bar2_qtype qtype, u64 *pbar2_qoffset,
3462                       unsigned int *pbar2_qid)
3463 {
3464         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
3465         u64 bar2_page_offset, bar2_qoffset;
3466         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
3467
3468         /*
3469          * T4 doesn't support BAR2 SGE Queue registers.
3470          */
3471         if (is_t4(adapter->params.chip))
3472                 return -EINVAL;
3473
3474         /*
3475          * Get our SGE Page Size parameters.
3476          */
3477         page_shift = adapter->params.sge.hps + 10;
3478         page_size = 1 << page_shift;
3479
3480         /*
3481          * Get the right Queues per Page parameters for our Queue.
3482          */
3483         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS ?
3484                               adapter->params.sge.eq_qpp :
3485                               adapter->params.sge.iq_qpp);
3486         qpp_mask = (1 << qpp_shift) - 1;
3487
3488         /*
3489          * Calculate the basics of the BAR2 SGE Queue register area:
3490          *  o The BAR2 page the Queue registers will be in.
3491          *  o The BAR2 Queue ID.
3492          *  o The BAR2 Queue ID Offset into the BAR2 page.
3493          */
3494         bar2_page_offset = ((qid >> qpp_shift) << page_shift);
3495         bar2_qid = qid & qpp_mask;
3496         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
3497
3498         /*
3499          * If the BAR2 Queue ID Offset is less than the Page Size, then the
3500          * hardware will infer the Absolute Queue ID simply from the writes to
3501          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
3502          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
3503          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
3504          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
3505          * from the BAR2 Page and BAR2 Queue ID.
3506          *
3507          * One important censequence of this is that some BAR2 SGE registers
3508          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
3509          * there.  But other registers synthesize the SGE Queue ID purely
3510          * from the writes to the registers -- the Write Combined Doorbell
3511          * Buffer is a good example.  These BAR2 SGE Registers are only
3512          * available for those BAR2 SGE Register areas where the SGE Absolute
3513          * Queue ID can be inferred from simple writes.
3514          */
3515         bar2_qoffset = bar2_page_offset;
3516         bar2_qinferred = (bar2_qid_offset < page_size);
3517         if (bar2_qinferred) {
3518                 bar2_qoffset += bar2_qid_offset;
3519                 bar2_qid = 0;
3520         }
3521
3522         *pbar2_qoffset = bar2_qoffset;
3523         *pbar2_qid = bar2_qid;
3524         return 0;
3525 }
3526
3527 /**
3528  * t4_init_sge_params - initialize adap->params.sge
3529  * @adapter: the adapter
3530  *
3531  * Initialize various fields of the adapter's SGE Parameters structure.
3532  */
3533 int t4_init_sge_params(struct adapter *adapter)
3534 {
3535         struct sge_params *sge_params = &adapter->params.sge;
3536         u32 hps, qpp;
3537         unsigned int s_hps, s_qpp;
3538
3539         /*
3540          * Extract the SGE Page Size for our PF.
3541          */
3542         hps = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
3543         s_hps = (S_HOSTPAGESIZEPF0 + (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) *
3544                  adapter->pf);
3545         sge_params->hps = ((hps >> s_hps) & M_HOSTPAGESIZEPF0);
3546
3547         /*
3548          * Extract the SGE Egress and Ingess Queues Per Page for our PF.
3549          */
3550         s_qpp = (S_QUEUESPERPAGEPF0 +
3551                  (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf);
3552         qpp = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
3553         sge_params->eq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
3554         qpp = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
3555         sge_params->iq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
3556
3557         return 0;
3558 }
3559
3560 /**
3561  * t4_init_tp_params - initialize adap->params.tp
3562  * @adap: the adapter
3563  *
3564  * Initialize various fields of the adapter's TP Parameters structure.
3565  */
3566 int t4_init_tp_params(struct adapter *adap)
3567 {
3568         int chan;
3569         u32 v;
3570
3571         v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
3572         adap->params.tp.tre = G_TIMERRESOLUTION(v);
3573         adap->params.tp.dack_re = G_DELAYEDACKRESOLUTION(v);
3574
3575         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
3576         for (chan = 0; chan < NCHAN; chan++)
3577                 adap->params.tp.tx_modq[chan] = chan;
3578
3579         /*
3580          * Cache the adapter's Compressed Filter Mode and global Incress
3581          * Configuration.
3582          */
3583         t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3584                          &adap->params.tp.vlan_pri_map, 1, A_TP_VLAN_PRI_MAP);
3585         t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3586                          &adap->params.tp.ingress_config, 1,
3587                          A_TP_INGRESS_CONFIG);
3588
3589         /*
3590          * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
3591          * shift positions of several elements of the Compressed Filter Tuple
3592          * for this adapter which we need frequently ...
3593          */
3594         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
3595         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
3596         adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
3597         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
3598                                                                F_PROTOCOL);
3599
3600         /*
3601          * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
3602          * represents the presense of an Outer VLAN instead of a VNIC ID.
3603          */
3604         if ((adap->params.tp.ingress_config & F_VNIC) == 0)
3605                 adap->params.tp.vnic_shift = -1;
3606
3607         return 0;
3608 }
3609
3610 /**
3611  * t4_filter_field_shift - calculate filter field shift
3612  * @adap: the adapter
3613  * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
3614  *
3615  * Return the shift position of a filter field within the Compressed
3616  * Filter Tuple.  The filter field is specified via its selection bit
3617  * within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
3618  */
3619 int t4_filter_field_shift(const struct adapter *adap, unsigned int filter_sel)
3620 {
3621         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
3622         unsigned int sel;
3623         int field_shift;
3624
3625         if ((filter_mode & filter_sel) == 0)
3626                 return -1;
3627
3628         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
3629                 switch (filter_mode & sel) {
3630                 case F_FCOE:
3631                         field_shift += W_FT_FCOE;
3632                         break;
3633                 case F_PORT:
3634                         field_shift += W_FT_PORT;
3635                         break;
3636                 case F_VNIC_ID:
3637                         field_shift += W_FT_VNIC_ID;
3638                         break;
3639                 case F_VLAN:
3640                         field_shift += W_FT_VLAN;
3641                         break;
3642                 case F_TOS:
3643                         field_shift += W_FT_TOS;
3644                         break;
3645                 case F_PROTOCOL:
3646                         field_shift += W_FT_PROTOCOL;
3647                         break;
3648                 case F_ETHERTYPE:
3649                         field_shift += W_FT_ETHERTYPE;
3650                         break;
3651                 case F_MACMATCH:
3652                         field_shift += W_FT_MACMATCH;
3653                         break;
3654                 case F_MPSHITTYPE:
3655                         field_shift += W_FT_MPSHITTYPE;
3656                         break;
3657                 case F_FRAGMENTATION:
3658                         field_shift += W_FT_FRAGMENTATION;
3659                         break;
3660                 }
3661         }
3662         return field_shift;
3663 }
3664
3665 int t4_init_rss_mode(struct adapter *adap, int mbox)
3666 {
3667         int i, ret;
3668         struct fw_rss_vi_config_cmd rvc;
3669
3670         memset(&rvc, 0, sizeof(rvc));
3671
3672         for_each_port(adap, i) {
3673                 struct port_info *p = adap2pinfo(adap, i);
3674
3675                 rvc.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
3676                                        F_FW_CMD_REQUEST | F_FW_CMD_READ |
3677                                        V_FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
3678                 rvc.retval_len16 = htonl(FW_LEN16(rvc));
3679                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
3680                 if (ret)
3681                         return ret;
3682                 p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
3683         }
3684         return 0;
3685 }
3686
3687 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
3688 {
3689         u8 addr[6];
3690         int ret, i, j = 0;
3691         struct fw_port_cmd c;
3692
3693         memset(&c, 0, sizeof(c));
3694
3695         for_each_port(adap, i) {
3696                 unsigned int rss_size = 0;
3697                 struct port_info *p = adap2pinfo(adap, i);
3698
3699                 while ((adap->params.portvec & (1 << j)) == 0)
3700                         j++;
3701
3702                 c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3703                                              F_FW_CMD_REQUEST | F_FW_CMD_READ |
3704                                              V_FW_PORT_CMD_PORTID(j));
3705                 c.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(
3706                                                 FW_PORT_ACTION_GET_PORT_INFO) |
3707                                                 FW_LEN16(c));
3708                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3709                 if (ret)
3710                         return ret;
3711
3712                 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
3713                 if (ret < 0)
3714                         return ret;
3715
3716                 p->viid = ret;
3717                 p->tx_chan = j;
3718                 p->rss_size = rss_size;
3719                 t4_os_set_hw_addr(adap, i, addr);
3720
3721                 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
3722                 p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
3723                                 G_FW_PORT_CMD_MDIOADDR(ret) : -1;
3724                 p->port_type = G_FW_PORT_CMD_PTYPE(ret);
3725                 p->mod_type = FW_PORT_MOD_TYPE_NA;
3726
3727                 init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
3728                 j++;
3729         }
3730         return 0;
3731 }