New upstream version 17.11.4
[deb_dpdk.git] / drivers / net / cxgbe / base / t4_hw.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2014-2017 Chelsio Communications.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Chelsio Communications nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <netinet/in.h>
35
36 #include <rte_interrupts.h>
37 #include <rte_log.h>
38 #include <rte_debug.h>
39 #include <rte_pci.h>
40 #include <rte_atomic.h>
41 #include <rte_branch_prediction.h>
42 #include <rte_memory.h>
43 #include <rte_tailq.h>
44 #include <rte_eal.h>
45 #include <rte_alarm.h>
46 #include <rte_ether.h>
47 #include <rte_ethdev.h>
48 #include <rte_malloc.h>
49 #include <rte_random.h>
50 #include <rte_dev.h>
51 #include <rte_byteorder.h>
52
53 #include "common.h"
54 #include "t4_regs.h"
55 #include "t4_regs_values.h"
56 #include "t4fw_interface.h"
57
58 static void init_link_config(struct link_config *lc, unsigned int pcaps,
59                              unsigned int acaps);
60
61 /**
62  * t4_read_mtu_tbl - returns the values in the HW path MTU table
63  * @adap: the adapter
64  * @mtus: where to store the MTU values
65  * @mtu_log: where to store the MTU base-2 log (may be %NULL)
66  *
67  * Reads the HW path MTU table.
68  */
69 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
70 {
71         u32 v;
72         int i;
73
74         for (i = 0; i < NMTUS; ++i) {
75                 t4_write_reg(adap, A_TP_MTU_TABLE,
76                              V_MTUINDEX(0xff) | V_MTUVALUE(i));
77                 v = t4_read_reg(adap, A_TP_MTU_TABLE);
78                 mtus[i] = G_MTUVALUE(v);
79                 if (mtu_log)
80                         mtu_log[i] = G_MTUWIDTH(v);
81         }
82 }
83
84 /**
85  * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
86  * @adap: the adapter
87  * @addr: the indirect TP register address
88  * @mask: specifies the field within the register to modify
89  * @val: new value for the field
90  *
91  * Sets a field of an indirect TP register to the given value.
92  */
93 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
94                             unsigned int mask, unsigned int val)
95 {
96         t4_write_reg(adap, A_TP_PIO_ADDR, addr);
97         val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
98         t4_write_reg(adap, A_TP_PIO_DATA, val);
99 }
100
101 /* The minimum additive increment value for the congestion control table */
102 #define CC_MIN_INCR 2U
103
104 /**
105  * t4_load_mtus - write the MTU and congestion control HW tables
106  * @adap: the adapter
107  * @mtus: the values for the MTU table
108  * @alpha: the values for the congestion control alpha parameter
109  * @beta: the values for the congestion control beta parameter
110  *
111  * Write the HW MTU table with the supplied MTUs and the high-speed
112  * congestion control table with the supplied alpha, beta, and MTUs.
113  * We write the two tables together because the additive increments
114  * depend on the MTUs.
115  */
116 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
117                   const unsigned short *alpha, const unsigned short *beta)
118 {
119         static const unsigned int avg_pkts[NCCTRL_WIN] = {
120                 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
121                 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
122                 28672, 40960, 57344, 81920, 114688, 163840, 229376
123         };
124
125         unsigned int i, w;
126
127         for (i = 0; i < NMTUS; ++i) {
128                 unsigned int mtu = mtus[i];
129                 unsigned int log2 = cxgbe_fls(mtu);
130
131                 if (!(mtu & ((1 << log2) >> 2)))     /* round */
132                         log2--;
133                 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
134                              V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
135
136                 for (w = 0; w < NCCTRL_WIN; ++w) {
137                         unsigned int inc;
138
139                         inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
140                                   CC_MIN_INCR);
141
142                         t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
143                                      (w << 16) | (beta[w] << 13) | inc);
144                 }
145         }
146 }
147
148 /**
149  * t4_wait_op_done_val - wait until an operation is completed
150  * @adapter: the adapter performing the operation
151  * @reg: the register to check for completion
152  * @mask: a single-bit field within @reg that indicates completion
153  * @polarity: the value of the field when the operation is completed
154  * @attempts: number of check iterations
155  * @delay: delay in usecs between iterations
156  * @valp: where to store the value of the register at completion time
157  *
158  * Wait until an operation is completed by checking a bit in a register
159  * up to @attempts times.  If @valp is not NULL the value of the register
160  * at the time it indicated completion is stored there.  Returns 0 if the
161  * operation completes and -EAGAIN otherwise.
162  */
163 int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
164                         int polarity, int attempts, int delay, u32 *valp)
165 {
166         while (1) {
167                 u32 val = t4_read_reg(adapter, reg);
168
169                 if (!!(val & mask) == polarity) {
170                         if (valp)
171                                 *valp = val;
172                         return 0;
173                 }
174                 if (--attempts == 0)
175                         return -EAGAIN;
176                 if (delay)
177                         udelay(delay);
178         }
179 }
180
181 /**
182  * t4_set_reg_field - set a register field to a value
183  * @adapter: the adapter to program
184  * @addr: the register address
185  * @mask: specifies the portion of the register to modify
186  * @val: the new value for the register field
187  *
188  * Sets a register field specified by the supplied mask to the
189  * given value.
190  */
191 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
192                       u32 val)
193 {
194         u32 v = t4_read_reg(adapter, addr) & ~mask;
195
196         t4_write_reg(adapter, addr, v | val);
197         (void)t4_read_reg(adapter, addr);      /* flush */
198 }
199
200 /**
201  * t4_read_indirect - read indirectly addressed registers
202  * @adap: the adapter
203  * @addr_reg: register holding the indirect address
204  * @data_reg: register holding the value of the indirect register
205  * @vals: where the read register values are stored
206  * @nregs: how many indirect registers to read
207  * @start_idx: index of first indirect register to read
208  *
209  * Reads registers that are accessed indirectly through an address/data
210  * register pair.
211  */
212 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
213                       unsigned int data_reg, u32 *vals, unsigned int nregs,
214                       unsigned int start_idx)
215 {
216         while (nregs--) {
217                 t4_write_reg(adap, addr_reg, start_idx);
218                 *vals++ = t4_read_reg(adap, data_reg);
219                 start_idx++;
220         }
221 }
222
223 /**
224  * t4_write_indirect - write indirectly addressed registers
225  * @adap: the adapter
226  * @addr_reg: register holding the indirect addresses
227  * @data_reg: register holding the value for the indirect registers
228  * @vals: values to write
229  * @nregs: how many indirect registers to write
230  * @start_idx: address of first indirect register to write
231  *
232  * Writes a sequential block of registers that are accessed indirectly
233  * through an address/data register pair.
234  */
235 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
236                        unsigned int data_reg, const u32 *vals,
237                        unsigned int nregs, unsigned int start_idx)
238 {
239         while (nregs--) {
240                 t4_write_reg(adap, addr_reg, start_idx++);
241                 t4_write_reg(adap, data_reg, *vals++);
242         }
243 }
244
245 /**
246  * t4_report_fw_error - report firmware error
247  * @adap: the adapter
248  *
249  * The adapter firmware can indicate error conditions to the host.
250  * If the firmware has indicated an error, print out the reason for
251  * the firmware error.
252  */
253 static void t4_report_fw_error(struct adapter *adap)
254 {
255         static const char * const reason[] = {
256                 "Crash",                        /* PCIE_FW_EVAL_CRASH */
257                 "During Device Preparation",    /* PCIE_FW_EVAL_PREP */
258                 "During Device Configuration",  /* PCIE_FW_EVAL_CONF */
259                 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
260                 "Unexpected Event",     /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
261                 "Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
262                 "Device Shutdown",      /* PCIE_FW_EVAL_DEVICESHUTDOWN */
263                 "Reserved",                     /* reserved */
264         };
265         u32 pcie_fw;
266
267         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
268         if (pcie_fw & F_PCIE_FW_ERR)
269                 pr_err("%s: Firmware reports adapter error: %s\n",
270                        __func__, reason[G_PCIE_FW_EVAL(pcie_fw)]);
271 }
272
273 /*
274  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
275  */
276 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
277                          u32 mbox_addr)
278 {
279         for ( ; nflit; nflit--, mbox_addr += 8)
280                 *rpl++ = htobe64(t4_read_reg64(adap, mbox_addr));
281 }
282
283 /*
284  * Handle a FW assertion reported in a mailbox.
285  */
286 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
287 {
288         struct fw_debug_cmd asrt;
289
290         get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
291         pr_warn("FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
292                 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
293                 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
294 }
295
296 #define X_CIM_PF_NOACCESS 0xeeeeeeee
297
298 /*
299  * If the Host OS Driver needs locking arround accesses to the mailbox, this
300  * can be turned on via the T4_OS_NEEDS_MBOX_LOCKING CPP define ...
301  */
302 /* makes single-statement usage a bit cleaner ... */
303 #ifdef T4_OS_NEEDS_MBOX_LOCKING
304 #define T4_OS_MBOX_LOCKING(x) x
305 #else
306 #define T4_OS_MBOX_LOCKING(x) do {} while (0)
307 #endif
308
309 /**
310  * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
311  * @adap: the adapter
312  * @mbox: index of the mailbox to use
313  * @cmd: the command to write
314  * @size: command length in bytes
315  * @rpl: where to optionally store the reply
316  * @sleep_ok: if true we may sleep while awaiting command completion
317  * @timeout: time to wait for command to finish before timing out
318  *           (negative implies @sleep_ok=false)
319  *
320  * Sends the given command to FW through the selected mailbox and waits
321  * for the FW to execute the command.  If @rpl is not %NULL it is used to
322  * store the FW's reply to the command.  The command and its optional
323  * reply are of the same length.  Some FW commands like RESET and
324  * INITIALIZE can take a considerable amount of time to execute.
325  * @sleep_ok determines whether we may sleep while awaiting the response.
326  * If sleeping is allowed we use progressive backoff otherwise we spin.
327  * Note that passing in a negative @timeout is an alternate mechanism
328  * for specifying @sleep_ok=false.  This is useful when a higher level
329  * interface allows for specification of @timeout but not @sleep_ok ...
330  *
331  * Returns 0 on success or a negative errno on failure.  A
332  * failure can happen either because we are not able to execute the
333  * command or FW executes it but signals an error.  In the latter case
334  * the return value is the error code indicated by FW (negated).
335  */
336 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox,
337                             const void __attribute__((__may_alias__)) *cmd,
338                             int size, void *rpl, bool sleep_ok, int timeout)
339 {
340         /*
341          * We delay in small increments at first in an effort to maintain
342          * responsiveness for simple, fast executing commands but then back
343          * off to larger delays to a maximum retry delay.
344          */
345         static const int delay[] = {
346                 1, 1, 3, 5, 10, 10, 20, 50, 100
347         };
348
349         u32 v;
350         u64 res;
351         int i, ms;
352         unsigned int delay_idx;
353         __be64 *temp = (__be64 *)malloc(size * sizeof(char));
354         __be64 *p = temp;
355         u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
356         u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
357         u32 ctl;
358         struct mbox_entry entry;
359         u32 pcie_fw = 0;
360
361         if (!temp)
362                 return -ENOMEM;
363
364         if ((size & 15) || size > MBOX_LEN) {
365                 free(temp);
366                 return -EINVAL;
367         }
368
369         bzero(p, size);
370         memcpy(p, (const __be64 *)cmd, size);
371
372         /*
373          * If we have a negative timeout, that implies that we can't sleep.
374          */
375         if (timeout < 0) {
376                 sleep_ok = false;
377                 timeout = -timeout;
378         }
379
380 #ifdef T4_OS_NEEDS_MBOX_LOCKING
381         /*
382          * Queue ourselves onto the mailbox access list.  When our entry is at
383          * the front of the list, we have rights to access the mailbox.  So we
384          * wait [for a while] till we're at the front [or bail out with an
385          * EBUSY] ...
386          */
387         t4_os_atomic_add_tail(&entry, &adap->mbox_list, &adap->mbox_lock);
388
389         delay_idx = 0;
390         ms = delay[0];
391
392         for (i = 0; ; i += ms) {
393                 /*
394                  * If we've waited too long, return a busy indication.  This
395                  * really ought to be based on our initial position in the
396                  * mailbox access list but this is a start.  We very rarely
397                  * contend on access to the mailbox ...  Also check for a
398                  * firmware error which we'll report as a device error.
399                  */
400                 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
401                 if (i > 4 * timeout || (pcie_fw & F_PCIE_FW_ERR)) {
402                         t4_os_atomic_list_del(&entry, &adap->mbox_list,
403                                               &adap->mbox_lock);
404                         t4_report_fw_error(adap);
405                         free(temp);
406                         return (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -EBUSY;
407                 }
408
409                 /*
410                  * If we're at the head, break out and start the mailbox
411                  * protocol.
412                  */
413                 if (t4_os_list_first_entry(&adap->mbox_list) == &entry)
414                         break;
415
416                 /*
417                  * Delay for a bit before checking again ...
418                  */
419                 if (sleep_ok) {
420                         ms = delay[delay_idx];  /* last element may repeat */
421                         if (delay_idx < ARRAY_SIZE(delay) - 1)
422                                 delay_idx++;
423                         msleep(ms);
424                 } else {
425                         rte_delay_ms(ms);
426                 }
427         }
428 #endif /* T4_OS_NEEDS_MBOX_LOCKING */
429
430         /*
431          * Attempt to gain access to the mailbox.
432          */
433         for (i = 0; i < 4; i++) {
434                 ctl = t4_read_reg(adap, ctl_reg);
435                 v = G_MBOWNER(ctl);
436                 if (v != X_MBOWNER_NONE)
437                         break;
438         }
439
440         /*
441          * If we were unable to gain access, dequeue ourselves from the
442          * mailbox atomic access list and report the error to our caller.
443          */
444         if (v != X_MBOWNER_PL) {
445                 T4_OS_MBOX_LOCKING(t4_os_atomic_list_del(&entry,
446                                                          &adap->mbox_list,
447                                                          &adap->mbox_lock));
448                 t4_report_fw_error(adap);
449                 free(temp);
450                 return (v == X_MBOWNER_FW ? -EBUSY : -ETIMEDOUT);
451         }
452
453         /*
454          * If we gain ownership of the mailbox and there's a "valid" message
455          * in it, this is likely an asynchronous error message from the
456          * firmware.  So we'll report that and then proceed on with attempting
457          * to issue our own command ... which may well fail if the error
458          * presaged the firmware crashing ...
459          */
460         if (ctl & F_MBMSGVALID) {
461                 dev_err(adap, "found VALID command in mbox %u: "
462                         "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
463                         (unsigned long long)t4_read_reg64(adap, data_reg),
464                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
465                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
466                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
467                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
468                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
469                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
470                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
471         }
472
473         /*
474          * Copy in the new mailbox command and send it on its way ...
475          */
476         for (i = 0; i < size; i += 8, p++)
477                 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
478
479         CXGBE_DEBUG_MBOX(adap, "%s: mbox %u: %016llx %016llx %016llx %016llx "
480                         "%016llx %016llx %016llx %016llx\n", __func__,  (mbox),
481                         (unsigned long long)t4_read_reg64(adap, data_reg),
482                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
483                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
484                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
485                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
486                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
487                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
488                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
489
490         t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
491         t4_read_reg(adap, ctl_reg);          /* flush write */
492
493         delay_idx = 0;
494         ms = delay[0];
495
496         /*
497          * Loop waiting for the reply; bail out if we time out or the firmware
498          * reports an error.
499          */
500         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
501         for (i = 0; i < timeout && !(pcie_fw & F_PCIE_FW_ERR); i += ms) {
502                 if (sleep_ok) {
503                         ms = delay[delay_idx];  /* last element may repeat */
504                         if (delay_idx < ARRAY_SIZE(delay) - 1)
505                                 delay_idx++;
506                         msleep(ms);
507                 } else {
508                         msleep(ms);
509                 }
510
511                 pcie_fw = t4_read_reg(adap, A_PCIE_FW);
512                 v = t4_read_reg(adap, ctl_reg);
513                 if (v == X_CIM_PF_NOACCESS)
514                         continue;
515                 if (G_MBOWNER(v) == X_MBOWNER_PL) {
516                         if (!(v & F_MBMSGVALID)) {
517                                 t4_write_reg(adap, ctl_reg,
518                                              V_MBOWNER(X_MBOWNER_NONE));
519                                 continue;
520                         }
521
522                         CXGBE_DEBUG_MBOX(adap,
523                         "%s: mbox %u: %016llx %016llx %016llx %016llx "
524                         "%016llx %016llx %016llx %016llx\n", __func__,  (mbox),
525                         (unsigned long long)t4_read_reg64(adap, data_reg),
526                         (unsigned long long)t4_read_reg64(adap, data_reg + 8),
527                         (unsigned long long)t4_read_reg64(adap, data_reg + 16),
528                         (unsigned long long)t4_read_reg64(adap, data_reg + 24),
529                         (unsigned long long)t4_read_reg64(adap, data_reg + 32),
530                         (unsigned long long)t4_read_reg64(adap, data_reg + 40),
531                         (unsigned long long)t4_read_reg64(adap, data_reg + 48),
532                         (unsigned long long)t4_read_reg64(adap, data_reg + 56));
533
534                         CXGBE_DEBUG_MBOX(adap,
535                                 "command %#x completed in %d ms (%ssleeping)\n",
536                                 *(const u8 *)cmd,
537                                 i + ms, sleep_ok ? "" : "non-");
538
539                         res = t4_read_reg64(adap, data_reg);
540                         if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
541                                 fw_asrt(adap, data_reg);
542                                 res = V_FW_CMD_RETVAL(EIO);
543                         } else if (rpl) {
544                                 get_mbox_rpl(adap, rpl, size / 8, data_reg);
545                         }
546                         t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
547                         T4_OS_MBOX_LOCKING(
548                                 t4_os_atomic_list_del(&entry, &adap->mbox_list,
549                                                       &adap->mbox_lock));
550                         free(temp);
551                         return -G_FW_CMD_RETVAL((int)res);
552                 }
553         }
554
555         /*
556          * We timed out waiting for a reply to our mailbox command.  Report
557          * the error and also check to see if the firmware reported any
558          * errors ...
559          */
560         dev_err(adap, "command %#x in mailbox %d timed out\n",
561                 *(const u8 *)cmd, mbox);
562         T4_OS_MBOX_LOCKING(t4_os_atomic_list_del(&entry,
563                                                  &adap->mbox_list,
564                                                  &adap->mbox_lock));
565         t4_report_fw_error(adap);
566         free(temp);
567         return (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
568 }
569
570 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
571                     void *rpl, bool sleep_ok)
572 {
573         return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
574                                        FW_CMD_MAX_TIMEOUT);
575 }
576
577 /**
578  * t4_get_regs_len - return the size of the chips register set
579  * @adapter: the adapter
580  *
581  * Returns the size of the chip's BAR0 register space.
582  */
583 unsigned int t4_get_regs_len(struct adapter *adapter)
584 {
585         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
586
587         switch (chip_version) {
588         case CHELSIO_T5:
589         case CHELSIO_T6:
590                 return T5_REGMAP_SIZE;
591         }
592
593         dev_err(adapter,
594                 "Unsupported chip version %d\n", chip_version);
595         return 0;
596 }
597
598 /**
599  * t4_get_regs - read chip registers into provided buffer
600  * @adap: the adapter
601  * @buf: register buffer
602  * @buf_size: size (in bytes) of register buffer
603  *
604  * If the provided register buffer isn't large enough for the chip's
605  * full register range, the register dump will be truncated to the
606  * register buffer's size.
607  */
608 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
609 {
610         static const unsigned int t5_reg_ranges[] = {
611                 0x1008, 0x10c0,
612                 0x10cc, 0x10f8,
613                 0x1100, 0x1100,
614                 0x110c, 0x1148,
615                 0x1180, 0x1184,
616                 0x1190, 0x1194,
617                 0x11a0, 0x11a4,
618                 0x11b0, 0x11b4,
619                 0x11fc, 0x123c,
620                 0x1280, 0x173c,
621                 0x1800, 0x18fc,
622                 0x3000, 0x3028,
623                 0x3060, 0x30b0,
624                 0x30b8, 0x30d8,
625                 0x30e0, 0x30fc,
626                 0x3140, 0x357c,
627                 0x35a8, 0x35cc,
628                 0x35ec, 0x35ec,
629                 0x3600, 0x5624,
630                 0x56cc, 0x56ec,
631                 0x56f4, 0x5720,
632                 0x5728, 0x575c,
633                 0x580c, 0x5814,
634                 0x5890, 0x589c,
635                 0x58a4, 0x58ac,
636                 0x58b8, 0x58bc,
637                 0x5940, 0x59c8,
638                 0x59d0, 0x59dc,
639                 0x59fc, 0x5a18,
640                 0x5a60, 0x5a70,
641                 0x5a80, 0x5a9c,
642                 0x5b94, 0x5bfc,
643                 0x6000, 0x6020,
644                 0x6028, 0x6040,
645                 0x6058, 0x609c,
646                 0x60a8, 0x614c,
647                 0x7700, 0x7798,
648                 0x77c0, 0x78fc,
649                 0x7b00, 0x7b58,
650                 0x7b60, 0x7b84,
651                 0x7b8c, 0x7c54,
652                 0x7d00, 0x7d38,
653                 0x7d40, 0x7d80,
654                 0x7d8c, 0x7ddc,
655                 0x7de4, 0x7e04,
656                 0x7e10, 0x7e1c,
657                 0x7e24, 0x7e38,
658                 0x7e40, 0x7e44,
659                 0x7e4c, 0x7e78,
660                 0x7e80, 0x7edc,
661                 0x7ee8, 0x7efc,
662                 0x8dc0, 0x8de0,
663                 0x8df8, 0x8e04,
664                 0x8e10, 0x8e84,
665                 0x8ea0, 0x8f84,
666                 0x8fc0, 0x9058,
667                 0x9060, 0x9060,
668                 0x9068, 0x90f8,
669                 0x9400, 0x9408,
670                 0x9410, 0x9470,
671                 0x9600, 0x9600,
672                 0x9608, 0x9638,
673                 0x9640, 0x96f4,
674                 0x9800, 0x9808,
675                 0x9820, 0x983c,
676                 0x9850, 0x9864,
677                 0x9c00, 0x9c6c,
678                 0x9c80, 0x9cec,
679                 0x9d00, 0x9d6c,
680                 0x9d80, 0x9dec,
681                 0x9e00, 0x9e6c,
682                 0x9e80, 0x9eec,
683                 0x9f00, 0x9f6c,
684                 0x9f80, 0xa020,
685                 0xd004, 0xd004,
686                 0xd010, 0xd03c,
687                 0xdfc0, 0xdfe0,
688                 0xe000, 0x1106c,
689                 0x11074, 0x11088,
690                 0x1109c, 0x1117c,
691                 0x11190, 0x11204,
692                 0x19040, 0x1906c,
693                 0x19078, 0x19080,
694                 0x1908c, 0x190e8,
695                 0x190f0, 0x190f8,
696                 0x19100, 0x19110,
697                 0x19120, 0x19124,
698                 0x19150, 0x19194,
699                 0x1919c, 0x191b0,
700                 0x191d0, 0x191e8,
701                 0x19238, 0x19290,
702                 0x193f8, 0x19428,
703                 0x19430, 0x19444,
704                 0x1944c, 0x1946c,
705                 0x19474, 0x19474,
706                 0x19490, 0x194cc,
707                 0x194f0, 0x194f8,
708                 0x19c00, 0x19c08,
709                 0x19c10, 0x19c60,
710                 0x19c94, 0x19ce4,
711                 0x19cf0, 0x19d40,
712                 0x19d50, 0x19d94,
713                 0x19da0, 0x19de8,
714                 0x19df0, 0x19e10,
715                 0x19e50, 0x19e90,
716                 0x19ea0, 0x19f24,
717                 0x19f34, 0x19f34,
718                 0x19f40, 0x19f50,
719                 0x19f90, 0x19fb4,
720                 0x19fc4, 0x19fe4,
721                 0x1a000, 0x1a004,
722                 0x1a010, 0x1a06c,
723                 0x1a0b0, 0x1a0e4,
724                 0x1a0ec, 0x1a0f8,
725                 0x1a100, 0x1a108,
726                 0x1a114, 0x1a120,
727                 0x1a128, 0x1a130,
728                 0x1a138, 0x1a138,
729                 0x1a190, 0x1a1c4,
730                 0x1a1fc, 0x1a1fc,
731                 0x1e008, 0x1e00c,
732                 0x1e040, 0x1e044,
733                 0x1e04c, 0x1e04c,
734                 0x1e284, 0x1e290,
735                 0x1e2c0, 0x1e2c0,
736                 0x1e2e0, 0x1e2e0,
737                 0x1e300, 0x1e384,
738                 0x1e3c0, 0x1e3c8,
739                 0x1e408, 0x1e40c,
740                 0x1e440, 0x1e444,
741                 0x1e44c, 0x1e44c,
742                 0x1e684, 0x1e690,
743                 0x1e6c0, 0x1e6c0,
744                 0x1e6e0, 0x1e6e0,
745                 0x1e700, 0x1e784,
746                 0x1e7c0, 0x1e7c8,
747                 0x1e808, 0x1e80c,
748                 0x1e840, 0x1e844,
749                 0x1e84c, 0x1e84c,
750                 0x1ea84, 0x1ea90,
751                 0x1eac0, 0x1eac0,
752                 0x1eae0, 0x1eae0,
753                 0x1eb00, 0x1eb84,
754                 0x1ebc0, 0x1ebc8,
755                 0x1ec08, 0x1ec0c,
756                 0x1ec40, 0x1ec44,
757                 0x1ec4c, 0x1ec4c,
758                 0x1ee84, 0x1ee90,
759                 0x1eec0, 0x1eec0,
760                 0x1eee0, 0x1eee0,
761                 0x1ef00, 0x1ef84,
762                 0x1efc0, 0x1efc8,
763                 0x1f008, 0x1f00c,
764                 0x1f040, 0x1f044,
765                 0x1f04c, 0x1f04c,
766                 0x1f284, 0x1f290,
767                 0x1f2c0, 0x1f2c0,
768                 0x1f2e0, 0x1f2e0,
769                 0x1f300, 0x1f384,
770                 0x1f3c0, 0x1f3c8,
771                 0x1f408, 0x1f40c,
772                 0x1f440, 0x1f444,
773                 0x1f44c, 0x1f44c,
774                 0x1f684, 0x1f690,
775                 0x1f6c0, 0x1f6c0,
776                 0x1f6e0, 0x1f6e0,
777                 0x1f700, 0x1f784,
778                 0x1f7c0, 0x1f7c8,
779                 0x1f808, 0x1f80c,
780                 0x1f840, 0x1f844,
781                 0x1f84c, 0x1f84c,
782                 0x1fa84, 0x1fa90,
783                 0x1fac0, 0x1fac0,
784                 0x1fae0, 0x1fae0,
785                 0x1fb00, 0x1fb84,
786                 0x1fbc0, 0x1fbc8,
787                 0x1fc08, 0x1fc0c,
788                 0x1fc40, 0x1fc44,
789                 0x1fc4c, 0x1fc4c,
790                 0x1fe84, 0x1fe90,
791                 0x1fec0, 0x1fec0,
792                 0x1fee0, 0x1fee0,
793                 0x1ff00, 0x1ff84,
794                 0x1ffc0, 0x1ffc8,
795                 0x30000, 0x30030,
796                 0x30038, 0x30038,
797                 0x30040, 0x30040,
798                 0x30100, 0x30144,
799                 0x30190, 0x301a0,
800                 0x301a8, 0x301b8,
801                 0x301c4, 0x301c8,
802                 0x301d0, 0x301d0,
803                 0x30200, 0x30318,
804                 0x30400, 0x304b4,
805                 0x304c0, 0x3052c,
806                 0x30540, 0x3061c,
807                 0x30800, 0x30828,
808                 0x30834, 0x30834,
809                 0x308c0, 0x30908,
810                 0x30910, 0x309ac,
811                 0x30a00, 0x30a14,
812                 0x30a1c, 0x30a2c,
813                 0x30a44, 0x30a50,
814                 0x30a74, 0x30a74,
815                 0x30a7c, 0x30afc,
816                 0x30b08, 0x30c24,
817                 0x30d00, 0x30d00,
818                 0x30d08, 0x30d14,
819                 0x30d1c, 0x30d20,
820                 0x30d3c, 0x30d3c,
821                 0x30d48, 0x30d50,
822                 0x31200, 0x3120c,
823                 0x31220, 0x31220,
824                 0x31240, 0x31240,
825                 0x31600, 0x3160c,
826                 0x31a00, 0x31a1c,
827                 0x31e00, 0x31e20,
828                 0x31e38, 0x31e3c,
829                 0x31e80, 0x31e80,
830                 0x31e88, 0x31ea8,
831                 0x31eb0, 0x31eb4,
832                 0x31ec8, 0x31ed4,
833                 0x31fb8, 0x32004,
834                 0x32200, 0x32200,
835                 0x32208, 0x32240,
836                 0x32248, 0x32280,
837                 0x32288, 0x322c0,
838                 0x322c8, 0x322fc,
839                 0x32600, 0x32630,
840                 0x32a00, 0x32abc,
841                 0x32b00, 0x32b10,
842                 0x32b20, 0x32b30,
843                 0x32b40, 0x32b50,
844                 0x32b60, 0x32b70,
845                 0x33000, 0x33028,
846                 0x33030, 0x33048,
847                 0x33060, 0x33068,
848                 0x33070, 0x3309c,
849                 0x330f0, 0x33128,
850                 0x33130, 0x33148,
851                 0x33160, 0x33168,
852                 0x33170, 0x3319c,
853                 0x331f0, 0x33238,
854                 0x33240, 0x33240,
855                 0x33248, 0x33250,
856                 0x3325c, 0x33264,
857                 0x33270, 0x332b8,
858                 0x332c0, 0x332e4,
859                 0x332f8, 0x33338,
860                 0x33340, 0x33340,
861                 0x33348, 0x33350,
862                 0x3335c, 0x33364,
863                 0x33370, 0x333b8,
864                 0x333c0, 0x333e4,
865                 0x333f8, 0x33428,
866                 0x33430, 0x33448,
867                 0x33460, 0x33468,
868                 0x33470, 0x3349c,
869                 0x334f0, 0x33528,
870                 0x33530, 0x33548,
871                 0x33560, 0x33568,
872                 0x33570, 0x3359c,
873                 0x335f0, 0x33638,
874                 0x33640, 0x33640,
875                 0x33648, 0x33650,
876                 0x3365c, 0x33664,
877                 0x33670, 0x336b8,
878                 0x336c0, 0x336e4,
879                 0x336f8, 0x33738,
880                 0x33740, 0x33740,
881                 0x33748, 0x33750,
882                 0x3375c, 0x33764,
883                 0x33770, 0x337b8,
884                 0x337c0, 0x337e4,
885                 0x337f8, 0x337fc,
886                 0x33814, 0x33814,
887                 0x3382c, 0x3382c,
888                 0x33880, 0x3388c,
889                 0x338e8, 0x338ec,
890                 0x33900, 0x33928,
891                 0x33930, 0x33948,
892                 0x33960, 0x33968,
893                 0x33970, 0x3399c,
894                 0x339f0, 0x33a38,
895                 0x33a40, 0x33a40,
896                 0x33a48, 0x33a50,
897                 0x33a5c, 0x33a64,
898                 0x33a70, 0x33ab8,
899                 0x33ac0, 0x33ae4,
900                 0x33af8, 0x33b10,
901                 0x33b28, 0x33b28,
902                 0x33b3c, 0x33b50,
903                 0x33bf0, 0x33c10,
904                 0x33c28, 0x33c28,
905                 0x33c3c, 0x33c50,
906                 0x33cf0, 0x33cfc,
907                 0x34000, 0x34030,
908                 0x34038, 0x34038,
909                 0x34040, 0x34040,
910                 0x34100, 0x34144,
911                 0x34190, 0x341a0,
912                 0x341a8, 0x341b8,
913                 0x341c4, 0x341c8,
914                 0x341d0, 0x341d0,
915                 0x34200, 0x34318,
916                 0x34400, 0x344b4,
917                 0x344c0, 0x3452c,
918                 0x34540, 0x3461c,
919                 0x34800, 0x34828,
920                 0x34834, 0x34834,
921                 0x348c0, 0x34908,
922                 0x34910, 0x349ac,
923                 0x34a00, 0x34a14,
924                 0x34a1c, 0x34a2c,
925                 0x34a44, 0x34a50,
926                 0x34a74, 0x34a74,
927                 0x34a7c, 0x34afc,
928                 0x34b08, 0x34c24,
929                 0x34d00, 0x34d00,
930                 0x34d08, 0x34d14,
931                 0x34d1c, 0x34d20,
932                 0x34d3c, 0x34d3c,
933                 0x34d48, 0x34d50,
934                 0x35200, 0x3520c,
935                 0x35220, 0x35220,
936                 0x35240, 0x35240,
937                 0x35600, 0x3560c,
938                 0x35a00, 0x35a1c,
939                 0x35e00, 0x35e20,
940                 0x35e38, 0x35e3c,
941                 0x35e80, 0x35e80,
942                 0x35e88, 0x35ea8,
943                 0x35eb0, 0x35eb4,
944                 0x35ec8, 0x35ed4,
945                 0x35fb8, 0x36004,
946                 0x36200, 0x36200,
947                 0x36208, 0x36240,
948                 0x36248, 0x36280,
949                 0x36288, 0x362c0,
950                 0x362c8, 0x362fc,
951                 0x36600, 0x36630,
952                 0x36a00, 0x36abc,
953                 0x36b00, 0x36b10,
954                 0x36b20, 0x36b30,
955                 0x36b40, 0x36b50,
956                 0x36b60, 0x36b70,
957                 0x37000, 0x37028,
958                 0x37030, 0x37048,
959                 0x37060, 0x37068,
960                 0x37070, 0x3709c,
961                 0x370f0, 0x37128,
962                 0x37130, 0x37148,
963                 0x37160, 0x37168,
964                 0x37170, 0x3719c,
965                 0x371f0, 0x37238,
966                 0x37240, 0x37240,
967                 0x37248, 0x37250,
968                 0x3725c, 0x37264,
969                 0x37270, 0x372b8,
970                 0x372c0, 0x372e4,
971                 0x372f8, 0x37338,
972                 0x37340, 0x37340,
973                 0x37348, 0x37350,
974                 0x3735c, 0x37364,
975                 0x37370, 0x373b8,
976                 0x373c0, 0x373e4,
977                 0x373f8, 0x37428,
978                 0x37430, 0x37448,
979                 0x37460, 0x37468,
980                 0x37470, 0x3749c,
981                 0x374f0, 0x37528,
982                 0x37530, 0x37548,
983                 0x37560, 0x37568,
984                 0x37570, 0x3759c,
985                 0x375f0, 0x37638,
986                 0x37640, 0x37640,
987                 0x37648, 0x37650,
988                 0x3765c, 0x37664,
989                 0x37670, 0x376b8,
990                 0x376c0, 0x376e4,
991                 0x376f8, 0x37738,
992                 0x37740, 0x37740,
993                 0x37748, 0x37750,
994                 0x3775c, 0x37764,
995                 0x37770, 0x377b8,
996                 0x377c0, 0x377e4,
997                 0x377f8, 0x377fc,
998                 0x37814, 0x37814,
999                 0x3782c, 0x3782c,
1000                 0x37880, 0x3788c,
1001                 0x378e8, 0x378ec,
1002                 0x37900, 0x37928,
1003                 0x37930, 0x37948,
1004                 0x37960, 0x37968,
1005                 0x37970, 0x3799c,
1006                 0x379f0, 0x37a38,
1007                 0x37a40, 0x37a40,
1008                 0x37a48, 0x37a50,
1009                 0x37a5c, 0x37a64,
1010                 0x37a70, 0x37ab8,
1011                 0x37ac0, 0x37ae4,
1012                 0x37af8, 0x37b10,
1013                 0x37b28, 0x37b28,
1014                 0x37b3c, 0x37b50,
1015                 0x37bf0, 0x37c10,
1016                 0x37c28, 0x37c28,
1017                 0x37c3c, 0x37c50,
1018                 0x37cf0, 0x37cfc,
1019                 0x38000, 0x38030,
1020                 0x38038, 0x38038,
1021                 0x38040, 0x38040,
1022                 0x38100, 0x38144,
1023                 0x38190, 0x381a0,
1024                 0x381a8, 0x381b8,
1025                 0x381c4, 0x381c8,
1026                 0x381d0, 0x381d0,
1027                 0x38200, 0x38318,
1028                 0x38400, 0x384b4,
1029                 0x384c0, 0x3852c,
1030                 0x38540, 0x3861c,
1031                 0x38800, 0x38828,
1032                 0x38834, 0x38834,
1033                 0x388c0, 0x38908,
1034                 0x38910, 0x389ac,
1035                 0x38a00, 0x38a14,
1036                 0x38a1c, 0x38a2c,
1037                 0x38a44, 0x38a50,
1038                 0x38a74, 0x38a74,
1039                 0x38a7c, 0x38afc,
1040                 0x38b08, 0x38c24,
1041                 0x38d00, 0x38d00,
1042                 0x38d08, 0x38d14,
1043                 0x38d1c, 0x38d20,
1044                 0x38d3c, 0x38d3c,
1045                 0x38d48, 0x38d50,
1046                 0x39200, 0x3920c,
1047                 0x39220, 0x39220,
1048                 0x39240, 0x39240,
1049                 0x39600, 0x3960c,
1050                 0x39a00, 0x39a1c,
1051                 0x39e00, 0x39e20,
1052                 0x39e38, 0x39e3c,
1053                 0x39e80, 0x39e80,
1054                 0x39e88, 0x39ea8,
1055                 0x39eb0, 0x39eb4,
1056                 0x39ec8, 0x39ed4,
1057                 0x39fb8, 0x3a004,
1058                 0x3a200, 0x3a200,
1059                 0x3a208, 0x3a240,
1060                 0x3a248, 0x3a280,
1061                 0x3a288, 0x3a2c0,
1062                 0x3a2c8, 0x3a2fc,
1063                 0x3a600, 0x3a630,
1064                 0x3aa00, 0x3aabc,
1065                 0x3ab00, 0x3ab10,
1066                 0x3ab20, 0x3ab30,
1067                 0x3ab40, 0x3ab50,
1068                 0x3ab60, 0x3ab70,
1069                 0x3b000, 0x3b028,
1070                 0x3b030, 0x3b048,
1071                 0x3b060, 0x3b068,
1072                 0x3b070, 0x3b09c,
1073                 0x3b0f0, 0x3b128,
1074                 0x3b130, 0x3b148,
1075                 0x3b160, 0x3b168,
1076                 0x3b170, 0x3b19c,
1077                 0x3b1f0, 0x3b238,
1078                 0x3b240, 0x3b240,
1079                 0x3b248, 0x3b250,
1080                 0x3b25c, 0x3b264,
1081                 0x3b270, 0x3b2b8,
1082                 0x3b2c0, 0x3b2e4,
1083                 0x3b2f8, 0x3b338,
1084                 0x3b340, 0x3b340,
1085                 0x3b348, 0x3b350,
1086                 0x3b35c, 0x3b364,
1087                 0x3b370, 0x3b3b8,
1088                 0x3b3c0, 0x3b3e4,
1089                 0x3b3f8, 0x3b428,
1090                 0x3b430, 0x3b448,
1091                 0x3b460, 0x3b468,
1092                 0x3b470, 0x3b49c,
1093                 0x3b4f0, 0x3b528,
1094                 0x3b530, 0x3b548,
1095                 0x3b560, 0x3b568,
1096                 0x3b570, 0x3b59c,
1097                 0x3b5f0, 0x3b638,
1098                 0x3b640, 0x3b640,
1099                 0x3b648, 0x3b650,
1100                 0x3b65c, 0x3b664,
1101                 0x3b670, 0x3b6b8,
1102                 0x3b6c0, 0x3b6e4,
1103                 0x3b6f8, 0x3b738,
1104                 0x3b740, 0x3b740,
1105                 0x3b748, 0x3b750,
1106                 0x3b75c, 0x3b764,
1107                 0x3b770, 0x3b7b8,
1108                 0x3b7c0, 0x3b7e4,
1109                 0x3b7f8, 0x3b7fc,
1110                 0x3b814, 0x3b814,
1111                 0x3b82c, 0x3b82c,
1112                 0x3b880, 0x3b88c,
1113                 0x3b8e8, 0x3b8ec,
1114                 0x3b900, 0x3b928,
1115                 0x3b930, 0x3b948,
1116                 0x3b960, 0x3b968,
1117                 0x3b970, 0x3b99c,
1118                 0x3b9f0, 0x3ba38,
1119                 0x3ba40, 0x3ba40,
1120                 0x3ba48, 0x3ba50,
1121                 0x3ba5c, 0x3ba64,
1122                 0x3ba70, 0x3bab8,
1123                 0x3bac0, 0x3bae4,
1124                 0x3baf8, 0x3bb10,
1125                 0x3bb28, 0x3bb28,
1126                 0x3bb3c, 0x3bb50,
1127                 0x3bbf0, 0x3bc10,
1128                 0x3bc28, 0x3bc28,
1129                 0x3bc3c, 0x3bc50,
1130                 0x3bcf0, 0x3bcfc,
1131                 0x3c000, 0x3c030,
1132                 0x3c038, 0x3c038,
1133                 0x3c040, 0x3c040,
1134                 0x3c100, 0x3c144,
1135                 0x3c190, 0x3c1a0,
1136                 0x3c1a8, 0x3c1b8,
1137                 0x3c1c4, 0x3c1c8,
1138                 0x3c1d0, 0x3c1d0,
1139                 0x3c200, 0x3c318,
1140                 0x3c400, 0x3c4b4,
1141                 0x3c4c0, 0x3c52c,
1142                 0x3c540, 0x3c61c,
1143                 0x3c800, 0x3c828,
1144                 0x3c834, 0x3c834,
1145                 0x3c8c0, 0x3c908,
1146                 0x3c910, 0x3c9ac,
1147                 0x3ca00, 0x3ca14,
1148                 0x3ca1c, 0x3ca2c,
1149                 0x3ca44, 0x3ca50,
1150                 0x3ca74, 0x3ca74,
1151                 0x3ca7c, 0x3cafc,
1152                 0x3cb08, 0x3cc24,
1153                 0x3cd00, 0x3cd00,
1154                 0x3cd08, 0x3cd14,
1155                 0x3cd1c, 0x3cd20,
1156                 0x3cd3c, 0x3cd3c,
1157                 0x3cd48, 0x3cd50,
1158                 0x3d200, 0x3d20c,
1159                 0x3d220, 0x3d220,
1160                 0x3d240, 0x3d240,
1161                 0x3d600, 0x3d60c,
1162                 0x3da00, 0x3da1c,
1163                 0x3de00, 0x3de20,
1164                 0x3de38, 0x3de3c,
1165                 0x3de80, 0x3de80,
1166                 0x3de88, 0x3dea8,
1167                 0x3deb0, 0x3deb4,
1168                 0x3dec8, 0x3ded4,
1169                 0x3dfb8, 0x3e004,
1170                 0x3e200, 0x3e200,
1171                 0x3e208, 0x3e240,
1172                 0x3e248, 0x3e280,
1173                 0x3e288, 0x3e2c0,
1174                 0x3e2c8, 0x3e2fc,
1175                 0x3e600, 0x3e630,
1176                 0x3ea00, 0x3eabc,
1177                 0x3eb00, 0x3eb10,
1178                 0x3eb20, 0x3eb30,
1179                 0x3eb40, 0x3eb50,
1180                 0x3eb60, 0x3eb70,
1181                 0x3f000, 0x3f028,
1182                 0x3f030, 0x3f048,
1183                 0x3f060, 0x3f068,
1184                 0x3f070, 0x3f09c,
1185                 0x3f0f0, 0x3f128,
1186                 0x3f130, 0x3f148,
1187                 0x3f160, 0x3f168,
1188                 0x3f170, 0x3f19c,
1189                 0x3f1f0, 0x3f238,
1190                 0x3f240, 0x3f240,
1191                 0x3f248, 0x3f250,
1192                 0x3f25c, 0x3f264,
1193                 0x3f270, 0x3f2b8,
1194                 0x3f2c0, 0x3f2e4,
1195                 0x3f2f8, 0x3f338,
1196                 0x3f340, 0x3f340,
1197                 0x3f348, 0x3f350,
1198                 0x3f35c, 0x3f364,
1199                 0x3f370, 0x3f3b8,
1200                 0x3f3c0, 0x3f3e4,
1201                 0x3f3f8, 0x3f428,
1202                 0x3f430, 0x3f448,
1203                 0x3f460, 0x3f468,
1204                 0x3f470, 0x3f49c,
1205                 0x3f4f0, 0x3f528,
1206                 0x3f530, 0x3f548,
1207                 0x3f560, 0x3f568,
1208                 0x3f570, 0x3f59c,
1209                 0x3f5f0, 0x3f638,
1210                 0x3f640, 0x3f640,
1211                 0x3f648, 0x3f650,
1212                 0x3f65c, 0x3f664,
1213                 0x3f670, 0x3f6b8,
1214                 0x3f6c0, 0x3f6e4,
1215                 0x3f6f8, 0x3f738,
1216                 0x3f740, 0x3f740,
1217                 0x3f748, 0x3f750,
1218                 0x3f75c, 0x3f764,
1219                 0x3f770, 0x3f7b8,
1220                 0x3f7c0, 0x3f7e4,
1221                 0x3f7f8, 0x3f7fc,
1222                 0x3f814, 0x3f814,
1223                 0x3f82c, 0x3f82c,
1224                 0x3f880, 0x3f88c,
1225                 0x3f8e8, 0x3f8ec,
1226                 0x3f900, 0x3f928,
1227                 0x3f930, 0x3f948,
1228                 0x3f960, 0x3f968,
1229                 0x3f970, 0x3f99c,
1230                 0x3f9f0, 0x3fa38,
1231                 0x3fa40, 0x3fa40,
1232                 0x3fa48, 0x3fa50,
1233                 0x3fa5c, 0x3fa64,
1234                 0x3fa70, 0x3fab8,
1235                 0x3fac0, 0x3fae4,
1236                 0x3faf8, 0x3fb10,
1237                 0x3fb28, 0x3fb28,
1238                 0x3fb3c, 0x3fb50,
1239                 0x3fbf0, 0x3fc10,
1240                 0x3fc28, 0x3fc28,
1241                 0x3fc3c, 0x3fc50,
1242                 0x3fcf0, 0x3fcfc,
1243                 0x40000, 0x4000c,
1244                 0x40040, 0x40050,
1245                 0x40060, 0x40068,
1246                 0x4007c, 0x4008c,
1247                 0x40094, 0x400b0,
1248                 0x400c0, 0x40144,
1249                 0x40180, 0x4018c,
1250                 0x40200, 0x40254,
1251                 0x40260, 0x40264,
1252                 0x40270, 0x40288,
1253                 0x40290, 0x40298,
1254                 0x402ac, 0x402c8,
1255                 0x402d0, 0x402e0,
1256                 0x402f0, 0x402f0,
1257                 0x40300, 0x4033c,
1258                 0x403f8, 0x403fc,
1259                 0x41304, 0x413c4,
1260                 0x41400, 0x4140c,
1261                 0x41414, 0x4141c,
1262                 0x41480, 0x414d0,
1263                 0x44000, 0x44054,
1264                 0x4405c, 0x44078,
1265                 0x440c0, 0x44174,
1266                 0x44180, 0x441ac,
1267                 0x441b4, 0x441b8,
1268                 0x441c0, 0x44254,
1269                 0x4425c, 0x44278,
1270                 0x442c0, 0x44374,
1271                 0x44380, 0x443ac,
1272                 0x443b4, 0x443b8,
1273                 0x443c0, 0x44454,
1274                 0x4445c, 0x44478,
1275                 0x444c0, 0x44574,
1276                 0x44580, 0x445ac,
1277                 0x445b4, 0x445b8,
1278                 0x445c0, 0x44654,
1279                 0x4465c, 0x44678,
1280                 0x446c0, 0x44774,
1281                 0x44780, 0x447ac,
1282                 0x447b4, 0x447b8,
1283                 0x447c0, 0x44854,
1284                 0x4485c, 0x44878,
1285                 0x448c0, 0x44974,
1286                 0x44980, 0x449ac,
1287                 0x449b4, 0x449b8,
1288                 0x449c0, 0x449fc,
1289                 0x45000, 0x45004,
1290                 0x45010, 0x45030,
1291                 0x45040, 0x45060,
1292                 0x45068, 0x45068,
1293                 0x45080, 0x45084,
1294                 0x450a0, 0x450b0,
1295                 0x45200, 0x45204,
1296                 0x45210, 0x45230,
1297                 0x45240, 0x45260,
1298                 0x45268, 0x45268,
1299                 0x45280, 0x45284,
1300                 0x452a0, 0x452b0,
1301                 0x460c0, 0x460e4,
1302                 0x47000, 0x4703c,
1303                 0x47044, 0x4708c,
1304                 0x47200, 0x47250,
1305                 0x47400, 0x47408,
1306                 0x47414, 0x47420,
1307                 0x47600, 0x47618,
1308                 0x47800, 0x47814,
1309                 0x48000, 0x4800c,
1310                 0x48040, 0x48050,
1311                 0x48060, 0x48068,
1312                 0x4807c, 0x4808c,
1313                 0x48094, 0x480b0,
1314                 0x480c0, 0x48144,
1315                 0x48180, 0x4818c,
1316                 0x48200, 0x48254,
1317                 0x48260, 0x48264,
1318                 0x48270, 0x48288,
1319                 0x48290, 0x48298,
1320                 0x482ac, 0x482c8,
1321                 0x482d0, 0x482e0,
1322                 0x482f0, 0x482f0,
1323                 0x48300, 0x4833c,
1324                 0x483f8, 0x483fc,
1325                 0x49304, 0x493c4,
1326                 0x49400, 0x4940c,
1327                 0x49414, 0x4941c,
1328                 0x49480, 0x494d0,
1329                 0x4c000, 0x4c054,
1330                 0x4c05c, 0x4c078,
1331                 0x4c0c0, 0x4c174,
1332                 0x4c180, 0x4c1ac,
1333                 0x4c1b4, 0x4c1b8,
1334                 0x4c1c0, 0x4c254,
1335                 0x4c25c, 0x4c278,
1336                 0x4c2c0, 0x4c374,
1337                 0x4c380, 0x4c3ac,
1338                 0x4c3b4, 0x4c3b8,
1339                 0x4c3c0, 0x4c454,
1340                 0x4c45c, 0x4c478,
1341                 0x4c4c0, 0x4c574,
1342                 0x4c580, 0x4c5ac,
1343                 0x4c5b4, 0x4c5b8,
1344                 0x4c5c0, 0x4c654,
1345                 0x4c65c, 0x4c678,
1346                 0x4c6c0, 0x4c774,
1347                 0x4c780, 0x4c7ac,
1348                 0x4c7b4, 0x4c7b8,
1349                 0x4c7c0, 0x4c854,
1350                 0x4c85c, 0x4c878,
1351                 0x4c8c0, 0x4c974,
1352                 0x4c980, 0x4c9ac,
1353                 0x4c9b4, 0x4c9b8,
1354                 0x4c9c0, 0x4c9fc,
1355                 0x4d000, 0x4d004,
1356                 0x4d010, 0x4d030,
1357                 0x4d040, 0x4d060,
1358                 0x4d068, 0x4d068,
1359                 0x4d080, 0x4d084,
1360                 0x4d0a0, 0x4d0b0,
1361                 0x4d200, 0x4d204,
1362                 0x4d210, 0x4d230,
1363                 0x4d240, 0x4d260,
1364                 0x4d268, 0x4d268,
1365                 0x4d280, 0x4d284,
1366                 0x4d2a0, 0x4d2b0,
1367                 0x4e0c0, 0x4e0e4,
1368                 0x4f000, 0x4f03c,
1369                 0x4f044, 0x4f08c,
1370                 0x4f200, 0x4f250,
1371                 0x4f400, 0x4f408,
1372                 0x4f414, 0x4f420,
1373                 0x4f600, 0x4f618,
1374                 0x4f800, 0x4f814,
1375                 0x50000, 0x50084,
1376                 0x50090, 0x500cc,
1377                 0x50400, 0x50400,
1378                 0x50800, 0x50884,
1379                 0x50890, 0x508cc,
1380                 0x50c00, 0x50c00,
1381                 0x51000, 0x5101c,
1382                 0x51300, 0x51308,
1383         };
1384
1385         static const unsigned int t6_reg_ranges[] = {
1386                 0x1008, 0x101c,
1387                 0x1024, 0x10a8,
1388                 0x10b4, 0x10f8,
1389                 0x1100, 0x1114,
1390                 0x111c, 0x112c,
1391                 0x1138, 0x113c,
1392                 0x1144, 0x114c,
1393                 0x1180, 0x1184,
1394                 0x1190, 0x1194,
1395                 0x11a0, 0x11a4,
1396                 0x11b0, 0x11b4,
1397                 0x11fc, 0x1274,
1398                 0x1280, 0x133c,
1399                 0x1800, 0x18fc,
1400                 0x3000, 0x302c,
1401                 0x3060, 0x30b0,
1402                 0x30b8, 0x30d8,
1403                 0x30e0, 0x30fc,
1404                 0x3140, 0x357c,
1405                 0x35a8, 0x35cc,
1406                 0x35ec, 0x35ec,
1407                 0x3600, 0x5624,
1408                 0x56cc, 0x56ec,
1409                 0x56f4, 0x5720,
1410                 0x5728, 0x575c,
1411                 0x580c, 0x5814,
1412                 0x5890, 0x589c,
1413                 0x58a4, 0x58ac,
1414                 0x58b8, 0x58bc,
1415                 0x5940, 0x595c,
1416                 0x5980, 0x598c,
1417                 0x59b0, 0x59c8,
1418                 0x59d0, 0x59dc,
1419                 0x59fc, 0x5a18,
1420                 0x5a60, 0x5a6c,
1421                 0x5a80, 0x5a8c,
1422                 0x5a94, 0x5a9c,
1423                 0x5b94, 0x5bfc,
1424                 0x5c10, 0x5e48,
1425                 0x5e50, 0x5e94,
1426                 0x5ea0, 0x5eb0,
1427                 0x5ec0, 0x5ec0,
1428                 0x5ec8, 0x5ed0,
1429                 0x5ee0, 0x5ee0,
1430                 0x5ef0, 0x5ef0,
1431                 0x5f00, 0x5f00,
1432                 0x6000, 0x6020,
1433                 0x6028, 0x6040,
1434                 0x6058, 0x609c,
1435                 0x60a8, 0x619c,
1436                 0x7700, 0x7798,
1437                 0x77c0, 0x7880,
1438                 0x78cc, 0x78fc,
1439                 0x7b00, 0x7b58,
1440                 0x7b60, 0x7b84,
1441                 0x7b8c, 0x7c54,
1442                 0x7d00, 0x7d38,
1443                 0x7d40, 0x7d84,
1444                 0x7d8c, 0x7ddc,
1445                 0x7de4, 0x7e04,
1446                 0x7e10, 0x7e1c,
1447                 0x7e24, 0x7e38,
1448                 0x7e40, 0x7e44,
1449                 0x7e4c, 0x7e78,
1450                 0x7e80, 0x7edc,
1451                 0x7ee8, 0x7efc,
1452                 0x8dc0, 0x8de4,
1453                 0x8df8, 0x8e04,
1454                 0x8e10, 0x8e84,
1455                 0x8ea0, 0x8f88,
1456                 0x8fb8, 0x9058,
1457                 0x9060, 0x9060,
1458                 0x9068, 0x90f8,
1459                 0x9100, 0x9124,
1460                 0x9400, 0x9470,
1461                 0x9600, 0x9600,
1462                 0x9608, 0x9638,
1463                 0x9640, 0x9704,
1464                 0x9710, 0x971c,
1465                 0x9800, 0x9808,
1466                 0x9820, 0x983c,
1467                 0x9850, 0x9864,
1468                 0x9c00, 0x9c6c,
1469                 0x9c80, 0x9cec,
1470                 0x9d00, 0x9d6c,
1471                 0x9d80, 0x9dec,
1472                 0x9e00, 0x9e6c,
1473                 0x9e80, 0x9eec,
1474                 0x9f00, 0x9f6c,
1475                 0x9f80, 0xa020,
1476                 0xd004, 0xd03c,
1477                 0xd100, 0xd118,
1478                 0xd200, 0xd214,
1479                 0xd220, 0xd234,
1480                 0xd240, 0xd254,
1481                 0xd260, 0xd274,
1482                 0xd280, 0xd294,
1483                 0xd2a0, 0xd2b4,
1484                 0xd2c0, 0xd2d4,
1485                 0xd2e0, 0xd2f4,
1486                 0xd300, 0xd31c,
1487                 0xdfc0, 0xdfe0,
1488                 0xe000, 0xf008,
1489                 0xf010, 0xf018,
1490                 0xf020, 0xf028,
1491                 0x11000, 0x11014,
1492                 0x11048, 0x1106c,
1493                 0x11074, 0x11088,
1494                 0x11098, 0x11120,
1495                 0x1112c, 0x1117c,
1496                 0x11190, 0x112e0,
1497                 0x11300, 0x1130c,
1498                 0x12000, 0x1206c,
1499                 0x19040, 0x1906c,
1500                 0x19078, 0x19080,
1501                 0x1908c, 0x190e8,
1502                 0x190f0, 0x190f8,
1503                 0x19100, 0x19110,
1504                 0x19120, 0x19124,
1505                 0x19150, 0x19194,
1506                 0x1919c, 0x191b0,
1507                 0x191d0, 0x191e8,
1508                 0x19238, 0x19290,
1509                 0x192a4, 0x192b0,
1510                 0x192bc, 0x192bc,
1511                 0x19348, 0x1934c,
1512                 0x193f8, 0x19418,
1513                 0x19420, 0x19428,
1514                 0x19430, 0x19444,
1515                 0x1944c, 0x1946c,
1516                 0x19474, 0x19474,
1517                 0x19490, 0x194cc,
1518                 0x194f0, 0x194f8,
1519                 0x19c00, 0x19c48,
1520                 0x19c50, 0x19c80,
1521                 0x19c94, 0x19c98,
1522                 0x19ca0, 0x19cbc,
1523                 0x19ce4, 0x19ce4,
1524                 0x19cf0, 0x19cf8,
1525                 0x19d00, 0x19d28,
1526                 0x19d50, 0x19d78,
1527                 0x19d94, 0x19d98,
1528                 0x19da0, 0x19dc8,
1529                 0x19df0, 0x19e10,
1530                 0x19e50, 0x19e6c,
1531                 0x19ea0, 0x19ebc,
1532                 0x19ec4, 0x19ef4,
1533                 0x19f04, 0x19f2c,
1534                 0x19f34, 0x19f34,
1535                 0x19f40, 0x19f50,
1536                 0x19f90, 0x19fac,
1537                 0x19fc4, 0x19fc8,
1538                 0x19fd0, 0x19fe4,
1539                 0x1a000, 0x1a004,
1540                 0x1a010, 0x1a06c,
1541                 0x1a0b0, 0x1a0e4,
1542                 0x1a0ec, 0x1a0f8,
1543                 0x1a100, 0x1a108,
1544                 0x1a114, 0x1a120,
1545                 0x1a128, 0x1a130,
1546                 0x1a138, 0x1a138,
1547                 0x1a190, 0x1a1c4,
1548                 0x1a1fc, 0x1a1fc,
1549                 0x1e008, 0x1e00c,
1550                 0x1e040, 0x1e044,
1551                 0x1e04c, 0x1e04c,
1552                 0x1e284, 0x1e290,
1553                 0x1e2c0, 0x1e2c0,
1554                 0x1e2e0, 0x1e2e0,
1555                 0x1e300, 0x1e384,
1556                 0x1e3c0, 0x1e3c8,
1557                 0x1e408, 0x1e40c,
1558                 0x1e440, 0x1e444,
1559                 0x1e44c, 0x1e44c,
1560                 0x1e684, 0x1e690,
1561                 0x1e6c0, 0x1e6c0,
1562                 0x1e6e0, 0x1e6e0,
1563                 0x1e700, 0x1e784,
1564                 0x1e7c0, 0x1e7c8,
1565                 0x1e808, 0x1e80c,
1566                 0x1e840, 0x1e844,
1567                 0x1e84c, 0x1e84c,
1568                 0x1ea84, 0x1ea90,
1569                 0x1eac0, 0x1eac0,
1570                 0x1eae0, 0x1eae0,
1571                 0x1eb00, 0x1eb84,
1572                 0x1ebc0, 0x1ebc8,
1573                 0x1ec08, 0x1ec0c,
1574                 0x1ec40, 0x1ec44,
1575                 0x1ec4c, 0x1ec4c,
1576                 0x1ee84, 0x1ee90,
1577                 0x1eec0, 0x1eec0,
1578                 0x1eee0, 0x1eee0,
1579                 0x1ef00, 0x1ef84,
1580                 0x1efc0, 0x1efc8,
1581                 0x1f008, 0x1f00c,
1582                 0x1f040, 0x1f044,
1583                 0x1f04c, 0x1f04c,
1584                 0x1f284, 0x1f290,
1585                 0x1f2c0, 0x1f2c0,
1586                 0x1f2e0, 0x1f2e0,
1587                 0x1f300, 0x1f384,
1588                 0x1f3c0, 0x1f3c8,
1589                 0x1f408, 0x1f40c,
1590                 0x1f440, 0x1f444,
1591                 0x1f44c, 0x1f44c,
1592                 0x1f684, 0x1f690,
1593                 0x1f6c0, 0x1f6c0,
1594                 0x1f6e0, 0x1f6e0,
1595                 0x1f700, 0x1f784,
1596                 0x1f7c0, 0x1f7c8,
1597                 0x1f808, 0x1f80c,
1598                 0x1f840, 0x1f844,
1599                 0x1f84c, 0x1f84c,
1600                 0x1fa84, 0x1fa90,
1601                 0x1fac0, 0x1fac0,
1602                 0x1fae0, 0x1fae0,
1603                 0x1fb00, 0x1fb84,
1604                 0x1fbc0, 0x1fbc8,
1605                 0x1fc08, 0x1fc0c,
1606                 0x1fc40, 0x1fc44,
1607                 0x1fc4c, 0x1fc4c,
1608                 0x1fe84, 0x1fe90,
1609                 0x1fec0, 0x1fec0,
1610                 0x1fee0, 0x1fee0,
1611                 0x1ff00, 0x1ff84,
1612                 0x1ffc0, 0x1ffc8,
1613                 0x30000, 0x30030,
1614                 0x30100, 0x30168,
1615                 0x30190, 0x301a0,
1616                 0x301a8, 0x301b8,
1617                 0x301c4, 0x301c8,
1618                 0x301d0, 0x301d0,
1619                 0x30200, 0x30320,
1620                 0x30400, 0x304b4,
1621                 0x304c0, 0x3052c,
1622                 0x30540, 0x3061c,
1623                 0x30800, 0x308a0,
1624                 0x308c0, 0x30908,
1625                 0x30910, 0x309b8,
1626                 0x30a00, 0x30a04,
1627                 0x30a0c, 0x30a14,
1628                 0x30a1c, 0x30a2c,
1629                 0x30a44, 0x30a50,
1630                 0x30a74, 0x30a74,
1631                 0x30a7c, 0x30afc,
1632                 0x30b08, 0x30c24,
1633                 0x30d00, 0x30d14,
1634                 0x30d1c, 0x30d3c,
1635                 0x30d44, 0x30d4c,
1636                 0x30d54, 0x30d74,
1637                 0x30d7c, 0x30d7c,
1638                 0x30de0, 0x30de0,
1639                 0x30e00, 0x30ed4,
1640                 0x30f00, 0x30fa4,
1641                 0x30fc0, 0x30fc4,
1642                 0x31000, 0x31004,
1643                 0x31080, 0x310fc,
1644                 0x31208, 0x31220,
1645                 0x3123c, 0x31254,
1646                 0x31300, 0x31300,
1647                 0x31308, 0x3131c,
1648                 0x31338, 0x3133c,
1649                 0x31380, 0x31380,
1650                 0x31388, 0x313a8,
1651                 0x313b4, 0x313b4,
1652                 0x31400, 0x31420,
1653                 0x31438, 0x3143c,
1654                 0x31480, 0x31480,
1655                 0x314a8, 0x314a8,
1656                 0x314b0, 0x314b4,
1657                 0x314c8, 0x314d4,
1658                 0x31a40, 0x31a4c,
1659                 0x31af0, 0x31b20,
1660                 0x31b38, 0x31b3c,
1661                 0x31b80, 0x31b80,
1662                 0x31ba8, 0x31ba8,
1663                 0x31bb0, 0x31bb4,
1664                 0x31bc8, 0x31bd4,
1665                 0x32140, 0x3218c,
1666                 0x321f0, 0x321f4,
1667                 0x32200, 0x32200,
1668                 0x32218, 0x32218,
1669                 0x32400, 0x32400,
1670                 0x32408, 0x3241c,
1671                 0x32618, 0x32620,
1672                 0x32664, 0x32664,
1673                 0x326a8, 0x326a8,
1674                 0x326ec, 0x326ec,
1675                 0x32a00, 0x32abc,
1676                 0x32b00, 0x32b38,
1677                 0x32b20, 0x32b38,
1678                 0x32b40, 0x32b58,
1679                 0x32b60, 0x32b78,
1680                 0x32c00, 0x32c00,
1681                 0x32c08, 0x32c3c,
1682                 0x33000, 0x3302c,
1683                 0x33034, 0x33050,
1684                 0x33058, 0x33058,
1685                 0x33060, 0x3308c,
1686                 0x3309c, 0x330ac,
1687                 0x330c0, 0x330c0,
1688                 0x330c8, 0x330d0,
1689                 0x330d8, 0x330e0,
1690                 0x330ec, 0x3312c,
1691                 0x33134, 0x33150,
1692                 0x33158, 0x33158,
1693                 0x33160, 0x3318c,
1694                 0x3319c, 0x331ac,
1695                 0x331c0, 0x331c0,
1696                 0x331c8, 0x331d0,
1697                 0x331d8, 0x331e0,
1698                 0x331ec, 0x33290,
1699                 0x33298, 0x332c4,
1700                 0x332e4, 0x33390,
1701                 0x33398, 0x333c4,
1702                 0x333e4, 0x3342c,
1703                 0x33434, 0x33450,
1704                 0x33458, 0x33458,
1705                 0x33460, 0x3348c,
1706                 0x3349c, 0x334ac,
1707                 0x334c0, 0x334c0,
1708                 0x334c8, 0x334d0,
1709                 0x334d8, 0x334e0,
1710                 0x334ec, 0x3352c,
1711                 0x33534, 0x33550,
1712                 0x33558, 0x33558,
1713                 0x33560, 0x3358c,
1714                 0x3359c, 0x335ac,
1715                 0x335c0, 0x335c0,
1716                 0x335c8, 0x335d0,
1717                 0x335d8, 0x335e0,
1718                 0x335ec, 0x33690,
1719                 0x33698, 0x336c4,
1720                 0x336e4, 0x33790,
1721                 0x33798, 0x337c4,
1722                 0x337e4, 0x337fc,
1723                 0x33814, 0x33814,
1724                 0x33854, 0x33868,
1725                 0x33880, 0x3388c,
1726                 0x338c0, 0x338d0,
1727                 0x338e8, 0x338ec,
1728                 0x33900, 0x3392c,
1729                 0x33934, 0x33950,
1730                 0x33958, 0x33958,
1731                 0x33960, 0x3398c,
1732                 0x3399c, 0x339ac,
1733                 0x339c0, 0x339c0,
1734                 0x339c8, 0x339d0,
1735                 0x339d8, 0x339e0,
1736                 0x339ec, 0x33a90,
1737                 0x33a98, 0x33ac4,
1738                 0x33ae4, 0x33b10,
1739                 0x33b24, 0x33b28,
1740                 0x33b38, 0x33b50,
1741                 0x33bf0, 0x33c10,
1742                 0x33c24, 0x33c28,
1743                 0x33c38, 0x33c50,
1744                 0x33cf0, 0x33cfc,
1745                 0x34000, 0x34030,
1746                 0x34100, 0x34168,
1747                 0x34190, 0x341a0,
1748                 0x341a8, 0x341b8,
1749                 0x341c4, 0x341c8,
1750                 0x341d0, 0x341d0,
1751                 0x34200, 0x34320,
1752                 0x34400, 0x344b4,
1753                 0x344c0, 0x3452c,
1754                 0x34540, 0x3461c,
1755                 0x34800, 0x348a0,
1756                 0x348c0, 0x34908,
1757                 0x34910, 0x349b8,
1758                 0x34a00, 0x34a04,
1759                 0x34a0c, 0x34a14,
1760                 0x34a1c, 0x34a2c,
1761                 0x34a44, 0x34a50,
1762                 0x34a74, 0x34a74,
1763                 0x34a7c, 0x34afc,
1764                 0x34b08, 0x34c24,
1765                 0x34d00, 0x34d14,
1766                 0x34d1c, 0x34d3c,
1767                 0x34d44, 0x34d4c,
1768                 0x34d54, 0x34d74,
1769                 0x34d7c, 0x34d7c,
1770                 0x34de0, 0x34de0,
1771                 0x34e00, 0x34ed4,
1772                 0x34f00, 0x34fa4,
1773                 0x34fc0, 0x34fc4,
1774                 0x35000, 0x35004,
1775                 0x35080, 0x350fc,
1776                 0x35208, 0x35220,
1777                 0x3523c, 0x35254,
1778                 0x35300, 0x35300,
1779                 0x35308, 0x3531c,
1780                 0x35338, 0x3533c,
1781                 0x35380, 0x35380,
1782                 0x35388, 0x353a8,
1783                 0x353b4, 0x353b4,
1784                 0x35400, 0x35420,
1785                 0x35438, 0x3543c,
1786                 0x35480, 0x35480,
1787                 0x354a8, 0x354a8,
1788                 0x354b0, 0x354b4,
1789                 0x354c8, 0x354d4,
1790                 0x35a40, 0x35a4c,
1791                 0x35af0, 0x35b20,
1792                 0x35b38, 0x35b3c,
1793                 0x35b80, 0x35b80,
1794                 0x35ba8, 0x35ba8,
1795                 0x35bb0, 0x35bb4,
1796                 0x35bc8, 0x35bd4,
1797                 0x36140, 0x3618c,
1798                 0x361f0, 0x361f4,
1799                 0x36200, 0x36200,
1800                 0x36218, 0x36218,
1801                 0x36400, 0x36400,
1802                 0x36408, 0x3641c,
1803                 0x36618, 0x36620,
1804                 0x36664, 0x36664,
1805                 0x366a8, 0x366a8,
1806                 0x366ec, 0x366ec,
1807                 0x36a00, 0x36abc,
1808                 0x36b00, 0x36b38,
1809                 0x36b20, 0x36b38,
1810                 0x36b40, 0x36b58,
1811                 0x36b60, 0x36b78,
1812                 0x36c00, 0x36c00,
1813                 0x36c08, 0x36c3c,
1814                 0x37000, 0x3702c,
1815                 0x37034, 0x37050,
1816                 0x37058, 0x37058,
1817                 0x37060, 0x3708c,
1818                 0x3709c, 0x370ac,
1819                 0x370c0, 0x370c0,
1820                 0x370c8, 0x370d0,
1821                 0x370d8, 0x370e0,
1822                 0x370ec, 0x3712c,
1823                 0x37134, 0x37150,
1824                 0x37158, 0x37158,
1825                 0x37160, 0x3718c,
1826                 0x3719c, 0x371ac,
1827                 0x371c0, 0x371c0,
1828                 0x371c8, 0x371d0,
1829                 0x371d8, 0x371e0,
1830                 0x371ec, 0x37290,
1831                 0x37298, 0x372c4,
1832                 0x372e4, 0x37390,
1833                 0x37398, 0x373c4,
1834                 0x373e4, 0x3742c,
1835                 0x37434, 0x37450,
1836                 0x37458, 0x37458,
1837                 0x37460, 0x3748c,
1838                 0x3749c, 0x374ac,
1839                 0x374c0, 0x374c0,
1840                 0x374c8, 0x374d0,
1841                 0x374d8, 0x374e0,
1842                 0x374ec, 0x3752c,
1843                 0x37534, 0x37550,
1844                 0x37558, 0x37558,
1845                 0x37560, 0x3758c,
1846                 0x3759c, 0x375ac,
1847                 0x375c0, 0x375c0,
1848                 0x375c8, 0x375d0,
1849                 0x375d8, 0x375e0,
1850                 0x375ec, 0x37690,
1851                 0x37698, 0x376c4,
1852                 0x376e4, 0x37790,
1853                 0x37798, 0x377c4,
1854                 0x377e4, 0x377fc,
1855                 0x37814, 0x37814,
1856                 0x37854, 0x37868,
1857                 0x37880, 0x3788c,
1858                 0x378c0, 0x378d0,
1859                 0x378e8, 0x378ec,
1860                 0x37900, 0x3792c,
1861                 0x37934, 0x37950,
1862                 0x37958, 0x37958,
1863                 0x37960, 0x3798c,
1864                 0x3799c, 0x379ac,
1865                 0x379c0, 0x379c0,
1866                 0x379c8, 0x379d0,
1867                 0x379d8, 0x379e0,
1868                 0x379ec, 0x37a90,
1869                 0x37a98, 0x37ac4,
1870                 0x37ae4, 0x37b10,
1871                 0x37b24, 0x37b28,
1872                 0x37b38, 0x37b50,
1873                 0x37bf0, 0x37c10,
1874                 0x37c24, 0x37c28,
1875                 0x37c38, 0x37c50,
1876                 0x37cf0, 0x37cfc,
1877                 0x40040, 0x40040,
1878                 0x40080, 0x40084,
1879                 0x40100, 0x40100,
1880                 0x40140, 0x401bc,
1881                 0x40200, 0x40214,
1882                 0x40228, 0x40228,
1883                 0x40240, 0x40258,
1884                 0x40280, 0x40280,
1885                 0x40304, 0x40304,
1886                 0x40330, 0x4033c,
1887                 0x41304, 0x413c8,
1888                 0x413d0, 0x413dc,
1889                 0x413f0, 0x413f0,
1890                 0x41400, 0x4140c,
1891                 0x41414, 0x4141c,
1892                 0x41480, 0x414d0,
1893                 0x44000, 0x4407c,
1894                 0x440c0, 0x441ac,
1895                 0x441b4, 0x4427c,
1896                 0x442c0, 0x443ac,
1897                 0x443b4, 0x4447c,
1898                 0x444c0, 0x445ac,
1899                 0x445b4, 0x4467c,
1900                 0x446c0, 0x447ac,
1901                 0x447b4, 0x4487c,
1902                 0x448c0, 0x449ac,
1903                 0x449b4, 0x44a7c,
1904                 0x44ac0, 0x44bac,
1905                 0x44bb4, 0x44c7c,
1906                 0x44cc0, 0x44dac,
1907                 0x44db4, 0x44e7c,
1908                 0x44ec0, 0x44fac,
1909                 0x44fb4, 0x4507c,
1910                 0x450c0, 0x451ac,
1911                 0x451b4, 0x451fc,
1912                 0x45800, 0x45804,
1913                 0x45810, 0x45830,
1914                 0x45840, 0x45860,
1915                 0x45868, 0x45868,
1916                 0x45880, 0x45884,
1917                 0x458a0, 0x458b0,
1918                 0x45a00, 0x45a04,
1919                 0x45a10, 0x45a30,
1920                 0x45a40, 0x45a60,
1921                 0x45a68, 0x45a68,
1922                 0x45a80, 0x45a84,
1923                 0x45aa0, 0x45ab0,
1924                 0x460c0, 0x460e4,
1925                 0x47000, 0x4703c,
1926                 0x47044, 0x4708c,
1927                 0x47200, 0x47250,
1928                 0x47400, 0x47408,
1929                 0x47414, 0x47420,
1930                 0x47600, 0x47618,
1931                 0x47800, 0x47814,
1932                 0x47820, 0x4782c,
1933                 0x50000, 0x50084,
1934                 0x50090, 0x500cc,
1935                 0x50300, 0x50384,
1936                 0x50400, 0x50400,
1937                 0x50800, 0x50884,
1938                 0x50890, 0x508cc,
1939                 0x50b00, 0x50b84,
1940                 0x50c00, 0x50c00,
1941                 0x51000, 0x51020,
1942                 0x51028, 0x510b0,
1943                 0x51300, 0x51324,
1944         };
1945
1946         u32 *buf_end = (u32 *)((char *)buf + buf_size);
1947         const unsigned int *reg_ranges;
1948         int reg_ranges_size, range;
1949         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
1950
1951         /* Select the right set of register ranges to dump depending on the
1952          * adapter chip type.
1953          */
1954         switch (chip_version) {
1955         case CHELSIO_T5:
1956                 reg_ranges = t5_reg_ranges;
1957                 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
1958                 break;
1959
1960         case CHELSIO_T6:
1961                 reg_ranges = t6_reg_ranges;
1962                 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
1963                 break;
1964
1965         default:
1966                 dev_err(adap,
1967                         "Unsupported chip version %d\n", chip_version);
1968                 return;
1969         }
1970
1971         /* Clear the register buffer and insert the appropriate register
1972          * values selected by the above register ranges.
1973          */
1974         memset(buf, 0, buf_size);
1975         for (range = 0; range < reg_ranges_size; range += 2) {
1976                 unsigned int reg = reg_ranges[range];
1977                 unsigned int last_reg = reg_ranges[range + 1];
1978                 u32 *bufp = (u32 *)((char *)buf + reg);
1979
1980                 /* Iterate across the register range filling in the register
1981                  * buffer but don't write past the end of the register buffer.
1982                  */
1983                 while (reg <= last_reg && bufp < buf_end) {
1984                         *bufp++ = t4_read_reg(adap, reg);
1985                         reg += sizeof(u32);
1986                 }
1987         }
1988 }
1989
1990 /* EEPROM reads take a few tens of us while writes can take a bit over 5 ms. */
1991 #define EEPROM_DELAY            10              /* 10us per poll spin */
1992 #define EEPROM_MAX_POLL         5000            /* x 5000 == 50ms */
1993
1994 #define EEPROM_STAT_ADDR        0x7bfc
1995
1996 /**
1997  * Small utility function to wait till any outstanding VPD Access is complete.
1998  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
1999  * VPD Access in flight.  This allows us to handle the problem of having a
2000  * previous VPD Access time out and prevent an attempt to inject a new VPD
2001  * Request before any in-flight VPD request has completed.
2002  */
2003 static int t4_seeprom_wait(struct adapter *adapter)
2004 {
2005         unsigned int base = adapter->params.pci.vpd_cap_addr;
2006         int max_poll;
2007
2008         /* If no VPD Access is in flight, we can just return success right
2009          * away.
2010          */
2011         if (!adapter->vpd_busy)
2012                 return 0;
2013
2014         /* Poll the VPD Capability Address/Flag register waiting for it
2015          * to indicate that the operation is complete.
2016          */
2017         max_poll = EEPROM_MAX_POLL;
2018         do {
2019                 u16 val;
2020
2021                 udelay(EEPROM_DELAY);
2022                 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2023
2024                 /* If the operation is complete, mark the VPD as no longer
2025                  * busy and return success.
2026                  */
2027                 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2028                         adapter->vpd_busy = 0;
2029                         return 0;
2030                 }
2031         } while (--max_poll);
2032
2033         /* Failure!  Note that we leave the VPD Busy status set in order to
2034          * avoid pushing a new VPD Access request into the VPD Capability till
2035          * the current operation eventually succeeds.  It's a bug to issue a
2036          * new request when an existing request is in flight and will result
2037          * in corrupt hardware state.
2038          */
2039         return -ETIMEDOUT;
2040 }
2041
2042 /**
2043  * t4_seeprom_read - read a serial EEPROM location
2044  * @adapter: adapter to read
2045  * @addr: EEPROM virtual address
2046  * @data: where to store the read data
2047  *
2048  * Read a 32-bit word from a location in serial EEPROM using the card's PCI
2049  * VPD capability.  Note that this function must be called with a virtual
2050  * address.
2051  */
2052 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2053 {
2054         unsigned int base = adapter->params.pci.vpd_cap_addr;
2055         int ret;
2056
2057         /* VPD Accesses must alway be 4-byte aligned!
2058          */
2059         if (addr >= EEPROMVSIZE || (addr & 3))
2060                 return -EINVAL;
2061
2062         /* Wait for any previous operation which may still be in flight to
2063          * complete.
2064          */
2065         ret = t4_seeprom_wait(adapter);
2066         if (ret) {
2067                 dev_err(adapter, "VPD still busy from previous operation\n");
2068                 return ret;
2069         }
2070
2071         /* Issue our new VPD Read request, mark the VPD as being busy and wait
2072          * for our request to complete.  If it doesn't complete, note the
2073          * error and return it to our caller.  Note that we do not reset the
2074          * VPD Busy status!
2075          */
2076         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2077         adapter->vpd_busy = 1;
2078         adapter->vpd_flag = PCI_VPD_ADDR_F;
2079         ret = t4_seeprom_wait(adapter);
2080         if (ret) {
2081                 dev_err(adapter, "VPD read of address %#x failed\n", addr);
2082                 return ret;
2083         }
2084
2085         /* Grab the returned data, swizzle it into our endianness and
2086          * return success.
2087          */
2088         t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2089         *data = le32_to_cpu(*data);
2090         return 0;
2091 }
2092
2093 /**
2094  * t4_seeprom_write - write a serial EEPROM location
2095  * @adapter: adapter to write
2096  * @addr: virtual EEPROM address
2097  * @data: value to write
2098  *
2099  * Write a 32-bit word to a location in serial EEPROM using the card's PCI
2100  * VPD capability.  Note that this function must be called with a virtual
2101  * address.
2102  */
2103 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2104 {
2105         unsigned int base = adapter->params.pci.vpd_cap_addr;
2106         int ret;
2107         u32 stats_reg = 0;
2108         int max_poll;
2109
2110         /* VPD Accesses must alway be 4-byte aligned!
2111          */
2112         if (addr >= EEPROMVSIZE || (addr & 3))
2113                 return -EINVAL;
2114
2115         /* Wait for any previous operation which may still be in flight to
2116          * complete.
2117          */
2118         ret = t4_seeprom_wait(adapter);
2119         if (ret) {
2120                 dev_err(adapter, "VPD still busy from previous operation\n");
2121                 return ret;
2122         }
2123
2124         /* Issue our new VPD Read request, mark the VPD as being busy and wait
2125          * for our request to complete.  If it doesn't complete, note the
2126          * error and return it to our caller.  Note that we do not reset the
2127          * VPD Busy status!
2128          */
2129         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2130                              cpu_to_le32(data));
2131         t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2132                              (u16)addr | PCI_VPD_ADDR_F);
2133         adapter->vpd_busy = 1;
2134         adapter->vpd_flag = 0;
2135         ret = t4_seeprom_wait(adapter);
2136         if (ret) {
2137                 dev_err(adapter, "VPD write of address %#x failed\n", addr);
2138                 return ret;
2139         }
2140
2141         /* Reset PCI_VPD_DATA register after a transaction and wait for our
2142          * request to complete. If it doesn't complete, return error.
2143          */
2144         t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2145         max_poll = EEPROM_MAX_POLL;
2146         do {
2147                 udelay(EEPROM_DELAY);
2148                 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2149         } while ((stats_reg & 0x1) && --max_poll);
2150         if (!max_poll)
2151                 return -ETIMEDOUT;
2152
2153         /* Return success! */
2154         return 0;
2155 }
2156
2157 /**
2158  * t4_seeprom_wp - enable/disable EEPROM write protection
2159  * @adapter: the adapter
2160  * @enable: whether to enable or disable write protection
2161  *
2162  * Enables or disables write protection on the serial EEPROM.
2163  */
2164 int t4_seeprom_wp(struct adapter *adapter, int enable)
2165 {
2166         return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2167 }
2168
2169 /**
2170  * t4_config_rss_range - configure a portion of the RSS mapping table
2171  * @adapter: the adapter
2172  * @mbox: mbox to use for the FW command
2173  * @viid: virtual interface whose RSS subtable is to be written
2174  * @start: start entry in the table to write
2175  * @n: how many table entries to write
2176  * @rspq: values for the "response queue" (Ingress Queue) lookup table
2177  * @nrspq: number of values in @rspq
2178  *
2179  * Programs the selected part of the VI's RSS mapping table with the
2180  * provided values.  If @nrspq < @n the supplied values are used repeatedly
2181  * until the full table range is populated.
2182  *
2183  * The caller must ensure the values in @rspq are in the range allowed for
2184  * @viid.
2185  */
2186 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
2187                         int start, int n, const u16 *rspq, unsigned int nrspq)
2188 {
2189         int ret;
2190         const u16 *rsp = rspq;
2191         const u16 *rsp_end = rspq + nrspq;
2192         struct fw_rss_ind_tbl_cmd cmd;
2193
2194         memset(&cmd, 0, sizeof(cmd));
2195         cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
2196                                      F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2197                                      V_FW_RSS_IND_TBL_CMD_VIID(viid));
2198         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
2199
2200         /*
2201          * Each firmware RSS command can accommodate up to 32 RSS Ingress
2202          * Queue Identifiers.  These Ingress Queue IDs are packed three to
2203          * a 32-bit word as 10-bit values with the upper remaining 2 bits
2204          * reserved.
2205          */
2206         while (n > 0) {
2207                 int nq = min(n, 32);
2208                 int nq_packed = 0;
2209                 __be32 *qp = &cmd.iq0_to_iq2;
2210
2211                 /*
2212                  * Set up the firmware RSS command header to send the next
2213                  * "nq" Ingress Queue IDs to the firmware.
2214                  */
2215                 cmd.niqid = cpu_to_be16(nq);
2216                 cmd.startidx = cpu_to_be16(start);
2217
2218                 /*
2219                  * "nq" more done for the start of the next loop.
2220                  */
2221                 start += nq;
2222                 n -= nq;
2223
2224                 /*
2225                  * While there are still Ingress Queue IDs to stuff into the
2226                  * current firmware RSS command, retrieve them from the
2227                  * Ingress Queue ID array and insert them into the command.
2228                  */
2229                 while (nq > 0) {
2230                         /*
2231                          * Grab up to the next 3 Ingress Queue IDs (wrapping
2232                          * around the Ingress Queue ID array if necessary) and
2233                          * insert them into the firmware RSS command at the
2234                          * current 3-tuple position within the commad.
2235                          */
2236                         u16 qbuf[3];
2237                         u16 *qbp = qbuf;
2238                         int nqbuf = min(3, nq);
2239
2240                         nq -= nqbuf;
2241                         qbuf[0] = 0;
2242                         qbuf[1] = 0;
2243                         qbuf[2] = 0;
2244                         while (nqbuf && nq_packed < 32) {
2245                                 nqbuf--;
2246                                 nq_packed++;
2247                                 *qbp++ = *rsp++;
2248                                 if (rsp >= rsp_end)
2249                                         rsp = rspq;
2250                         }
2251                         *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
2252                                             V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
2253                                             V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
2254                 }
2255
2256                 /*
2257                  * Send this portion of the RRS table update to the firmware;
2258                  * bail out on any errors.
2259                  */
2260                 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
2261                 if (ret)
2262                         return ret;
2263         }
2264
2265         return 0;
2266 }
2267
2268 /**
2269  * t4_config_vi_rss - configure per VI RSS settings
2270  * @adapter: the adapter
2271  * @mbox: mbox to use for the FW command
2272  * @viid: the VI id
2273  * @flags: RSS flags
2274  * @defq: id of the default RSS queue for the VI.
2275  *
2276  * Configures VI-specific RSS properties.
2277  */
2278 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
2279                      unsigned int flags, unsigned int defq)
2280 {
2281         struct fw_rss_vi_config_cmd c;
2282
2283         memset(&c, 0, sizeof(c));
2284         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2285                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2286                                    V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
2287         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
2288         c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
2289                         V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
2290         return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2291 }
2292
2293 /**
2294  * init_cong_ctrl - initialize congestion control parameters
2295  * @a: the alpha values for congestion control
2296  * @b: the beta values for congestion control
2297  *
2298  * Initialize the congestion control parameters.
2299  */
2300 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
2301 {
2302         int i;
2303
2304         for (i = 0; i < 9; i++) {
2305                 a[i] = 1;
2306                 b[i] = 0;
2307         }
2308
2309         a[9] = 2;
2310         a[10] = 3;
2311         a[11] = 4;
2312         a[12] = 5;
2313         a[13] = 6;
2314         a[14] = 7;
2315         a[15] = 8;
2316         a[16] = 9;
2317         a[17] = 10;
2318         a[18] = 14;
2319         a[19] = 17;
2320         a[20] = 21;
2321         a[21] = 25;
2322         a[22] = 30;
2323         a[23] = 35;
2324         a[24] = 45;
2325         a[25] = 60;
2326         a[26] = 80;
2327         a[27] = 100;
2328         a[28] = 200;
2329         a[29] = 300;
2330         a[30] = 400;
2331         a[31] = 500;
2332
2333         b[9] = 1;
2334         b[10] = 1;
2335         b[11] = 2;
2336         b[12] = 2;
2337         b[13] = 3;
2338         b[14] = 3;
2339         b[15] = 3;
2340         b[16] = 3;
2341         b[17] = 4;
2342         b[18] = 4;
2343         b[19] = 4;
2344         b[20] = 4;
2345         b[21] = 4;
2346         b[22] = 5;
2347         b[23] = 5;
2348         b[24] = 5;
2349         b[25] = 5;
2350         b[26] = 5;
2351         b[27] = 5;
2352         b[28] = 6;
2353         b[29] = 6;
2354         b[30] = 7;
2355         b[31] = 7;
2356 }
2357
2358 #define INIT_CMD(var, cmd, rd_wr) do { \
2359         (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
2360                         F_FW_CMD_REQUEST | F_FW_CMD_##rd_wr); \
2361         (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
2362 } while (0)
2363
2364 int t4_get_core_clock(struct adapter *adapter, struct vpd_params *p)
2365 {
2366         u32 cclk_param, cclk_val;
2367         int ret;
2368
2369         /*
2370          * Ask firmware for the Core Clock since it knows how to translate the
2371          * Reference Clock ('V2') VPD field into a Core Clock value ...
2372          */
2373         cclk_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2374                       V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
2375         ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2376                               1, &cclk_param, &cclk_val);
2377         if (ret) {
2378                 dev_err(adapter, "%s: error in fetching from coreclock - %d\n",
2379                         __func__, ret);
2380                 return ret;
2381         }
2382
2383         p->cclk = cclk_val;
2384         dev_debug(adapter, "%s: p->cclk = %u\n", __func__, p->cclk);
2385         return 0;
2386 }
2387
2388 /* serial flash and firmware constants and flash config file constants */
2389 enum {
2390         SF_ATTEMPTS = 10,             /* max retries for SF operations */
2391
2392         /* flash command opcodes */
2393         SF_PROG_PAGE    = 2,          /* program page */
2394         SF_WR_DISABLE   = 4,          /* disable writes */
2395         SF_RD_STATUS    = 5,          /* read status register */
2396         SF_WR_ENABLE    = 6,          /* enable writes */
2397         SF_RD_DATA_FAST = 0xb,        /* read flash */
2398         SF_RD_ID        = 0x9f,       /* read ID */
2399         SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2400 };
2401
2402 /**
2403  * sf1_read - read data from the serial flash
2404  * @adapter: the adapter
2405  * @byte_cnt: number of bytes to read
2406  * @cont: whether another operation will be chained
2407  * @lock: whether to lock SF for PL access only
2408  * @valp: where to store the read data
2409  *
2410  * Reads up to 4 bytes of data from the serial flash.  The location of
2411  * the read needs to be specified prior to calling this by issuing the
2412  * appropriate commands to the serial flash.
2413  */
2414 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2415                     int lock, u32 *valp)
2416 {
2417         int ret;
2418
2419         if (!byte_cnt || byte_cnt > 4)
2420                 return -EINVAL;
2421         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
2422                 return -EBUSY;
2423         t4_write_reg(adapter, A_SF_OP,
2424                      V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
2425         ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
2426         if (!ret)
2427                 *valp = t4_read_reg(adapter, A_SF_DATA);
2428         return ret;
2429 }
2430
2431 /**
2432  * sf1_write - write data to the serial flash
2433  * @adapter: the adapter
2434  * @byte_cnt: number of bytes to write
2435  * @cont: whether another operation will be chained
2436  * @lock: whether to lock SF for PL access only
2437  * @val: value to write
2438  *
2439  * Writes up to 4 bytes of data to the serial flash.  The location of
2440  * the write needs to be specified prior to calling this by issuing the
2441  * appropriate commands to the serial flash.
2442  */
2443 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2444                      int lock, u32 val)
2445 {
2446         if (!byte_cnt || byte_cnt > 4)
2447                 return -EINVAL;
2448         if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
2449                 return -EBUSY;
2450         t4_write_reg(adapter, A_SF_DATA, val);
2451         t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
2452                      V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
2453         return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
2454 }
2455
2456 /**
2457  * t4_read_flash - read words from serial flash
2458  * @adapter: the adapter
2459  * @addr: the start address for the read
2460  * @nwords: how many 32-bit words to read
2461  * @data: where to store the read data
2462  * @byte_oriented: whether to store data as bytes or as words
2463  *
2464  * Read the specified number of 32-bit words from the serial flash.
2465  * If @byte_oriented is set the read data is stored as a byte array
2466  * (i.e., big-endian), otherwise as 32-bit words in the platform's
2467  * natural endianness.
2468  */
2469 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2470                   unsigned int nwords, u32 *data, int byte_oriented)
2471 {
2472         int ret;
2473
2474         if (((addr + nwords * sizeof(u32)) > adapter->params.sf_size) ||
2475             (addr & 3))
2476                 return -EINVAL;
2477
2478         addr = rte_constant_bswap32(addr) | SF_RD_DATA_FAST;
2479
2480         ret = sf1_write(adapter, 4, 1, 0, addr);
2481         if (ret != 0)
2482                 return ret;
2483
2484         ret = sf1_read(adapter, 1, 1, 0, data);
2485         if (ret != 0)
2486                 return ret;
2487
2488         for ( ; nwords; nwords--, data++) {
2489                 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2490                 if (nwords == 1)
2491                         t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
2492                 if (ret)
2493                         return ret;
2494                 if (byte_oriented)
2495                         *data = cpu_to_be32(*data);
2496         }
2497         return 0;
2498 }
2499
2500 /**
2501  * t4_get_exprom_version - return the Expansion ROM version (if any)
2502  * @adapter: the adapter
2503  * @vers: where to place the version
2504  *
2505  * Reads the Expansion ROM header from FLASH and returns the version
2506  * number (if present) through the @vers return value pointer.  We return
2507  * this in the Firmware Version Format since it's convenient.  Return
2508  * 0 on success, -ENOENT if no Expansion ROM is present.
2509  */
2510 static int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
2511 {
2512         struct exprom_header {
2513                 unsigned char hdr_arr[16];      /* must start with 0x55aa */
2514                 unsigned char hdr_ver[4];       /* Expansion ROM version */
2515         } *hdr;
2516         u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2517                                            sizeof(u32))];
2518         int ret;
2519
2520         ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
2521                             ARRAY_SIZE(exprom_header_buf),
2522                             exprom_header_buf, 0);
2523         if (ret)
2524                 return ret;
2525
2526         hdr = (struct exprom_header *)exprom_header_buf;
2527         if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2528                 return -ENOENT;
2529
2530         *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
2531                  V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
2532                  V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
2533                  V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
2534         return 0;
2535 }
2536
2537 /**
2538  * t4_get_fw_version - read the firmware version
2539  * @adapter: the adapter
2540  * @vers: where to place the version
2541  *
2542  * Reads the FW version from flash.
2543  */
2544 static int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2545 {
2546         return t4_read_flash(adapter, FLASH_FW_START +
2547                              offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
2548 }
2549
2550 /**
2551  *     t4_get_bs_version - read the firmware bootstrap version
2552  *     @adapter: the adapter
2553  *     @vers: where to place the version
2554  *
2555  *     Reads the FW Bootstrap version from flash.
2556  */
2557 static int t4_get_bs_version(struct adapter *adapter, u32 *vers)
2558 {
2559         return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
2560                              offsetof(struct fw_hdr, fw_ver), 1,
2561                              vers, 0);
2562 }
2563
2564 /**
2565  * t4_get_tp_version - read the TP microcode version
2566  * @adapter: the adapter
2567  * @vers: where to place the version
2568  *
2569  * Reads the TP microcode version from flash.
2570  */
2571 static int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2572 {
2573         return t4_read_flash(adapter, FLASH_FW_START +
2574                              offsetof(struct fw_hdr, tp_microcode_ver),
2575                              1, vers, 0);
2576 }
2577
2578 /**
2579  * t4_get_version_info - extract various chip/firmware version information
2580  * @adapter: the adapter
2581  *
2582  * Reads various chip/firmware version numbers and stores them into the
2583  * adapter Adapter Parameters structure.  If any of the efforts fails
2584  * the first failure will be returned, but all of the version numbers
2585  * will be read.
2586  */
2587 int t4_get_version_info(struct adapter *adapter)
2588 {
2589         int ret = 0;
2590
2591 #define FIRST_RET(__getvinfo) \
2592         do { \
2593                 int __ret = __getvinfo; \
2594                 if (__ret && !ret) \
2595                         ret = __ret; \
2596         } while (0)
2597
2598         FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
2599         FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
2600         FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
2601         FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
2602
2603 #undef FIRST_RET
2604
2605         return ret;
2606 }
2607
2608 /**
2609  * t4_dump_version_info - dump all of the adapter configuration IDs
2610  * @adapter: the adapter
2611  *
2612  * Dumps all of the various bits of adapter configuration version/revision
2613  * IDs information.  This is typically called at some point after
2614  * t4_get_version_info() has been called.
2615  */
2616 void t4_dump_version_info(struct adapter *adapter)
2617 {
2618         /**
2619          * Device information.
2620          */
2621         dev_info(adapter, "Chelsio rev %d\n",
2622                  CHELSIO_CHIP_RELEASE(adapter->params.chip));
2623
2624         /**
2625          * Firmware Version.
2626          */
2627         if (!adapter->params.fw_vers)
2628                 dev_warn(adapter, "No firmware loaded\n");
2629         else
2630                 dev_info(adapter, "Firmware version: %u.%u.%u.%u\n",
2631                          G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers),
2632                          G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers),
2633                          G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers),
2634                          G_FW_HDR_FW_VER_BUILD(adapter->params.fw_vers));
2635
2636         /**
2637          * Bootstrap Firmware Version.
2638          */
2639         if (!adapter->params.bs_vers)
2640                 dev_warn(adapter, "No bootstrap loaded\n");
2641         else
2642                 dev_info(adapter, "Bootstrap version: %u.%u.%u.%u\n",
2643                          G_FW_HDR_FW_VER_MAJOR(adapter->params.bs_vers),
2644                          G_FW_HDR_FW_VER_MINOR(adapter->params.bs_vers),
2645                          G_FW_HDR_FW_VER_MICRO(adapter->params.bs_vers),
2646                          G_FW_HDR_FW_VER_BUILD(adapter->params.bs_vers));
2647
2648         /**
2649          * TP Microcode Version.
2650          */
2651         if (!adapter->params.tp_vers)
2652                 dev_warn(adapter, "No TP Microcode loaded\n");
2653         else
2654                 dev_info(adapter, "TP Microcode version: %u.%u.%u.%u\n",
2655                          G_FW_HDR_FW_VER_MAJOR(adapter->params.tp_vers),
2656                          G_FW_HDR_FW_VER_MINOR(adapter->params.tp_vers),
2657                          G_FW_HDR_FW_VER_MICRO(adapter->params.tp_vers),
2658                          G_FW_HDR_FW_VER_BUILD(adapter->params.tp_vers));
2659
2660         /**
2661          * Expansion ROM version.
2662          */
2663         if (!adapter->params.er_vers)
2664                 dev_info(adapter, "No Expansion ROM loaded\n");
2665         else
2666                 dev_info(adapter, "Expansion ROM version: %u.%u.%u.%u\n",
2667                          G_FW_HDR_FW_VER_MAJOR(adapter->params.er_vers),
2668                          G_FW_HDR_FW_VER_MINOR(adapter->params.er_vers),
2669                          G_FW_HDR_FW_VER_MICRO(adapter->params.er_vers),
2670                          G_FW_HDR_FW_VER_BUILD(adapter->params.er_vers));
2671 }
2672
2673 #define ADVERT_MASK (V_FW_PORT_CAP_SPEED(M_FW_PORT_CAP_SPEED) | \
2674                      FW_PORT_CAP_ANEG)
2675
2676 /**
2677  * t4_link_l1cfg - apply link configuration to MAC/PHY
2678  * @phy: the PHY to setup
2679  * @mac: the MAC to setup
2680  * @lc: the requested link configuration
2681  *
2682  * Set up a port's MAC and PHY according to a desired link configuration.
2683  * - If the PHY can auto-negotiate first decide what to advertise, then
2684  *   enable/disable auto-negotiation as desired, and reset.
2685  * - If the PHY does not auto-negotiate just reset it.
2686  * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
2687  *   otherwise do it later based on the outcome of auto-negotiation.
2688  */
2689 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
2690                   struct link_config *lc)
2691 {
2692         struct fw_port_cmd c;
2693         unsigned int mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
2694         unsigned int fc, fec;
2695
2696         lc->link_ok = 0;
2697         fc = 0;
2698         if (lc->requested_fc & PAUSE_RX)
2699                 fc |= FW_PORT_CAP_FC_RX;
2700         if (lc->requested_fc & PAUSE_TX)
2701                 fc |= FW_PORT_CAP_FC_TX;
2702
2703         fec = 0;
2704         if (lc->requested_fec & FEC_RS)
2705                 fec |= FW_PORT_CAP_FEC_RS;
2706         if (lc->requested_fec & FEC_BASER_RS)
2707                 fec |= FW_PORT_CAP_FEC_BASER_RS;
2708         if (lc->requested_fec & FEC_RESERVED)
2709                 fec |= FW_PORT_CAP_FEC_RESERVED;
2710
2711         memset(&c, 0, sizeof(c));
2712         c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
2713                                      F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
2714                                      V_FW_PORT_CMD_PORTID(port));
2715         c.action_to_len16 =
2716                 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
2717                             FW_LEN16(c));
2718
2719         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
2720                 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
2721                                              fc | fec);
2722                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
2723                 lc->fec = lc->requested_fec;
2724         } else if (lc->autoneg == AUTONEG_DISABLE) {
2725                 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc |
2726                                              fec | mdi);
2727                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
2728                 lc->fec = lc->requested_fec;
2729         } else {
2730                 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | fec | mdi);
2731         }
2732
2733         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
2734 }
2735
2736 /**
2737  * t4_flash_cfg_addr - return the address of the flash configuration file
2738  * @adapter: the adapter
2739  *
2740  * Return the address within the flash where the Firmware Configuration
2741  * File is stored, or an error if the device FLASH is too small to contain
2742  * a Firmware Configuration File.
2743  */
2744 int t4_flash_cfg_addr(struct adapter *adapter)
2745 {
2746         /*
2747          * If the device FLASH isn't large enough to hold a Firmware
2748          * Configuration File, return an error.
2749          */
2750         if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
2751                 return -ENOSPC;
2752
2753         return FLASH_CFG_START;
2754 }
2755
2756 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
2757
2758 /**
2759  * t4_intr_enable - enable interrupts
2760  * @adapter: the adapter whose interrupts should be enabled
2761  *
2762  * Enable PF-specific interrupts for the calling function and the top-level
2763  * interrupt concentrator for global interrupts.  Interrupts are already
2764  * enabled at each module, here we just enable the roots of the interrupt
2765  * hierarchies.
2766  *
2767  * Note: this function should be called only when the driver manages
2768  * non PF-specific interrupts from the various HW modules.  Only one PCI
2769  * function at a time should be doing this.
2770  */
2771 void t4_intr_enable(struct adapter *adapter)
2772 {
2773         u32 val = 0;
2774         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2775         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
2776                  G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2777
2778         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
2779                 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
2780         t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
2781                      F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
2782                      F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
2783                      F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
2784                      F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
2785                      F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
2786                      F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
2787         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
2788         t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
2789 }
2790
2791 /**
2792  * t4_intr_disable - disable interrupts
2793  * @adapter: the adapter whose interrupts should be disabled
2794  *
2795  * Disable interrupts.  We only disable the top-level interrupt
2796  * concentrators.  The caller must be a PCI function managing global
2797  * interrupts.
2798  */
2799 void t4_intr_disable(struct adapter *adapter)
2800 {
2801         u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
2802         u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
2803                  G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
2804
2805         t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
2806         t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
2807 }
2808
2809 /**
2810  * t4_get_port_type_description - return Port Type string description
2811  * @port_type: firmware Port Type enumeration
2812  */
2813 const char *t4_get_port_type_description(enum fw_port_type port_type)
2814 {
2815         static const char * const port_type_description[] = {
2816                 "Fiber_XFI",
2817                 "Fiber_XAUI",
2818                 "BT_SGMII",
2819                 "BT_XFI",
2820                 "BT_XAUI",
2821                 "KX4",
2822                 "CX4",
2823                 "KX",
2824                 "KR",
2825                 "SFP",
2826                 "BP_AP",
2827                 "BP4_AP",
2828                 "QSFP_10G",
2829                 "QSA",
2830                 "QSFP",
2831                 "BP40_BA",
2832                 "KR4_100G",
2833                 "CR4_QSFP",
2834                 "CR_QSFP",
2835                 "CR2_QSFP",
2836                 "SFP28",
2837                 "KR_SFP28",
2838         };
2839
2840         if (port_type < ARRAY_SIZE(port_type_description))
2841                 return port_type_description[port_type];
2842         return "UNKNOWN";
2843 }
2844
2845 /**
2846  * t4_get_mps_bg_map - return the buffer groups associated with a port
2847  * @adap: the adapter
2848  * @pidx: the port index
2849  *
2850  * Returns a bitmap indicating which MPS buffer groups are associated
2851  * with the given port.  Bit i is set if buffer group i is used by the
2852  * port.
2853  */
2854 unsigned int t4_get_mps_bg_map(struct adapter *adap, unsigned int pidx)
2855 {
2856         unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2857         unsigned int nports = 1 << G_NUMPORTS(t4_read_reg(adap,
2858                                                           A_MPS_CMN_CTL));
2859
2860         if (pidx >= nports) {
2861                 dev_warn(adap, "MPS Port Index %d >= Nports %d\n",
2862                          pidx, nports);
2863                 return 0;
2864         }
2865
2866         switch (chip_version) {
2867         case CHELSIO_T4:
2868         case CHELSIO_T5:
2869                 switch (nports) {
2870                 case 1: return 0xf;
2871                 case 2: return 3 << (2 * pidx);
2872                 case 4: return 1 << pidx;
2873                 }
2874                 break;
2875
2876         case CHELSIO_T6:
2877                 switch (nports) {
2878                 case 2: return 1 << (2 * pidx);
2879                 }
2880                 break;
2881         }
2882
2883         dev_err(adap, "Need MPS Buffer Group Map for Chip %0x, Nports %d\n",
2884                 chip_version, nports);
2885         return 0;
2886 }
2887
2888 /**
2889  * t4_get_tp_ch_map - return TP ingress channels associated with a port
2890  * @adapter: the adapter
2891  * @pidx: the port index
2892  *
2893  * Returns a bitmap indicating which TP Ingress Channels are associated with
2894  * a given Port.  Bit i is set if TP Ingress Channel i is used by the Port.
2895  */
2896 unsigned int t4_get_tp_ch_map(struct adapter *adapter, unsigned int pidx)
2897 {
2898         unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
2899         unsigned int nports = 1 << G_NUMPORTS(t4_read_reg(adapter,
2900                                                           A_MPS_CMN_CTL));
2901
2902         if (pidx >= nports) {
2903                 dev_warn(adap, "TP Port Index %d >= Nports %d\n",
2904                          pidx, nports);
2905                 return 0;
2906         }
2907
2908         switch (chip_version) {
2909         case CHELSIO_T4:
2910         case CHELSIO_T5:
2911                 /* Note that this happens to be the same values as the MPS
2912                  * Buffer Group Map for these Chips.  But we replicate the code
2913                  * here because they're really separate concepts.
2914                  */
2915                 switch (nports) {
2916                 case 1: return 0xf;
2917                 case 2: return 3 << (2 * pidx);
2918                 case 4: return 1 << pidx;
2919                 }
2920                 break;
2921
2922         case CHELSIO_T6:
2923                 switch (nports) {
2924                 case 2: return 1 << pidx;
2925                 }
2926                 break;
2927         }
2928
2929         dev_err(adapter, "Need TP Channel Map for Chip %0x, Nports %d\n",
2930                 chip_version, nports);
2931         return 0;
2932 }
2933
2934 /**
2935  * t4_get_port_stats - collect port statistics
2936  * @adap: the adapter
2937  * @idx: the port index
2938  * @p: the stats structure to fill
2939  *
2940  * Collect statistics related to the given port from HW.
2941  */
2942 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
2943 {
2944         u32 bgmap = t4_get_mps_bg_map(adap, idx);
2945         u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
2946
2947 #define GET_STAT(name) \
2948         t4_read_reg64(adap, \
2949                       (is_t4(adap->params.chip) ? \
2950                        PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) :\
2951                        T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
2952 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
2953
2954         p->tx_octets           = GET_STAT(TX_PORT_BYTES);
2955         p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
2956         p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
2957         p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
2958         p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
2959         p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
2960         p->tx_frames_64        = GET_STAT(TX_PORT_64B);
2961         p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
2962         p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
2963         p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
2964         p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
2965         p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
2966         p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
2967         p->tx_drop             = GET_STAT(TX_PORT_DROP);
2968         p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
2969         p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
2970         p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
2971         p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
2972         p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
2973         p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
2974         p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
2975         p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
2976         p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
2977
2978         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
2979                 if (stat_ctl & F_COUNTPAUSESTATTX) {
2980                         p->tx_frames -= p->tx_pause;
2981                         p->tx_octets -= p->tx_pause * 64;
2982                 }
2983                 if (stat_ctl & F_COUNTPAUSEMCTX)
2984                         p->tx_mcast_frames -= p->tx_pause;
2985         }
2986
2987         p->rx_octets           = GET_STAT(RX_PORT_BYTES);
2988         p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
2989         p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
2990         p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
2991         p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
2992         p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
2993         p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
2994         p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
2995         p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
2996         p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
2997         p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
2998         p->rx_frames_64        = GET_STAT(RX_PORT_64B);
2999         p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
3000         p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
3001         p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
3002         p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
3003         p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
3004         p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
3005         p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
3006         p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
3007         p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
3008         p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
3009         p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
3010         p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
3011         p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
3012         p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
3013         p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
3014
3015         if (CHELSIO_CHIP_VERSION(adap->params.chip) >= CHELSIO_T5) {
3016                 if (stat_ctl & F_COUNTPAUSESTATRX) {
3017                         p->rx_frames -= p->rx_pause;
3018                         p->rx_octets -= p->rx_pause * 64;
3019                 }
3020                 if (stat_ctl & F_COUNTPAUSEMCRX)
3021                         p->rx_mcast_frames -= p->rx_pause;
3022         }
3023
3024         p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
3025         p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
3026         p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
3027         p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
3028         p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
3029         p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
3030         p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
3031         p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
3032
3033 #undef GET_STAT
3034 #undef GET_STAT_COM
3035 }
3036
3037 /**
3038  * t4_get_port_stats_offset - collect port stats relative to a previous snapshot
3039  * @adap: The adapter
3040  * @idx: The port
3041  * @stats: Current stats to fill
3042  * @offset: Previous stats snapshot
3043  */
3044 void t4_get_port_stats_offset(struct adapter *adap, int idx,
3045                               struct port_stats *stats,
3046                               struct port_stats *offset)
3047 {
3048         u64 *s, *o;
3049         unsigned int i;
3050
3051         t4_get_port_stats(adap, idx, stats);
3052         for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
3053              i < (sizeof(struct port_stats) / sizeof(u64));
3054              i++, s++, o++)
3055                 *s -= *o;
3056 }
3057
3058 /**
3059  * t4_clr_port_stats - clear port statistics
3060  * @adap: the adapter
3061  * @idx: the port index
3062  *
3063  * Clear HW statistics for the given port.
3064  */
3065 void t4_clr_port_stats(struct adapter *adap, int idx)
3066 {
3067         unsigned int i;
3068         u32 bgmap = t4_get_mps_bg_map(adap, idx);
3069         u32 port_base_addr;
3070
3071         if (is_t4(adap->params.chip))
3072                 port_base_addr = PORT_BASE(idx);
3073         else
3074                 port_base_addr = T5_PORT_BASE(idx);
3075
3076         for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
3077              i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
3078                 t4_write_reg(adap, port_base_addr + i, 0);
3079         for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
3080              i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
3081                 t4_write_reg(adap, port_base_addr + i, 0);
3082         for (i = 0; i < 4; i++)
3083                 if (bgmap & (1 << i)) {
3084                         t4_write_reg(adap,
3085                                      A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L +
3086                                      i * 8, 0);
3087                         t4_write_reg(adap,
3088                                      A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L +
3089                                      i * 8, 0);
3090                 }
3091 }
3092
3093 /**
3094  * t4_fw_hello - establish communication with FW
3095  * @adap: the adapter
3096  * @mbox: mailbox to use for the FW command
3097  * @evt_mbox: mailbox to receive async FW events
3098  * @master: specifies the caller's willingness to be the device master
3099  * @state: returns the current device state (if non-NULL)
3100  *
3101  * Issues a command to establish communication with FW.  Returns either
3102  * an error (negative integer) or the mailbox of the Master PF.
3103  */
3104 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
3105                 enum dev_master master, enum dev_state *state)
3106 {
3107         int ret;
3108         struct fw_hello_cmd c;
3109         u32 v;
3110         unsigned int master_mbox;
3111         int retries = FW_CMD_HELLO_RETRIES;
3112
3113 retry:
3114         memset(&c, 0, sizeof(c));
3115         INIT_CMD(c, HELLO, WRITE);
3116         c.err_to_clearinit = cpu_to_be32(
3117                         V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
3118                         V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
3119                         V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
3120                                                 M_FW_HELLO_CMD_MBMASTER) |
3121                         V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
3122                         V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
3123                         F_FW_HELLO_CMD_CLEARINIT);
3124
3125         /*
3126          * Issue the HELLO command to the firmware.  If it's not successful
3127          * but indicates that we got a "busy" or "timeout" condition, retry
3128          * the HELLO until we exhaust our retry limit.  If we do exceed our
3129          * retry limit, check to see if the firmware left us any error
3130          * information and report that if so ...
3131          */
3132         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3133         if (ret != FW_SUCCESS) {
3134                 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
3135                         goto retry;
3136                 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
3137                         t4_report_fw_error(adap);
3138                 return ret;
3139         }
3140
3141         v = be32_to_cpu(c.err_to_clearinit);
3142         master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
3143         if (state) {
3144                 if (v & F_FW_HELLO_CMD_ERR)
3145                         *state = DEV_STATE_ERR;
3146                 else if (v & F_FW_HELLO_CMD_INIT)
3147                         *state = DEV_STATE_INIT;
3148                 else
3149                         *state = DEV_STATE_UNINIT;
3150         }
3151
3152         /*
3153          * If we're not the Master PF then we need to wait around for the
3154          * Master PF Driver to finish setting up the adapter.
3155          *
3156          * Note that we also do this wait if we're a non-Master-capable PF and
3157          * there is no current Master PF; a Master PF may show up momentarily
3158          * and we wouldn't want to fail pointlessly.  (This can happen when an
3159          * OS loads lots of different drivers rapidly at the same time).  In
3160          * this case, the Master PF returned by the firmware will be
3161          * M_PCIE_FW_MASTER so the test below will work ...
3162          */
3163         if ((v & (F_FW_HELLO_CMD_ERR | F_FW_HELLO_CMD_INIT)) == 0 &&
3164             master_mbox != mbox) {
3165                 int waiting = FW_CMD_HELLO_TIMEOUT;
3166
3167                 /*
3168                  * Wait for the firmware to either indicate an error or
3169                  * initialized state.  If we see either of these we bail out
3170                  * and report the issue to the caller.  If we exhaust the
3171                  * "hello timeout" and we haven't exhausted our retries, try
3172                  * again.  Otherwise bail with a timeout error.
3173                  */
3174                 for (;;) {
3175                         u32 pcie_fw;
3176
3177                         msleep(50);
3178                         waiting -= 50;
3179
3180                         /*
3181                          * If neither Error nor Initialialized are indicated
3182                          * by the firmware keep waiting till we exaust our
3183                          * timeout ... and then retry if we haven't exhausted
3184                          * our retries ...
3185                          */
3186                         pcie_fw = t4_read_reg(adap, A_PCIE_FW);
3187                         if (!(pcie_fw & (F_PCIE_FW_ERR | F_PCIE_FW_INIT))) {
3188                                 if (waiting <= 0) {
3189                                         if (retries-- > 0)
3190                                                 goto retry;
3191
3192                                         return -ETIMEDOUT;
3193                                 }
3194                                 continue;
3195                         }
3196
3197                         /*
3198                          * We either have an Error or Initialized condition
3199                          * report errors preferentially.
3200                          */
3201                         if (state) {
3202                                 if (pcie_fw & F_PCIE_FW_ERR)
3203                                         *state = DEV_STATE_ERR;
3204                                 else if (pcie_fw & F_PCIE_FW_INIT)
3205                                         *state = DEV_STATE_INIT;
3206                         }
3207
3208                         /*
3209                          * If we arrived before a Master PF was selected and
3210                          * there's not a valid Master PF, grab its identity
3211                          * for our caller.
3212                          */
3213                         if (master_mbox == M_PCIE_FW_MASTER &&
3214                             (pcie_fw & F_PCIE_FW_MASTER_VLD))
3215                                 master_mbox = G_PCIE_FW_MASTER(pcie_fw);
3216                         break;
3217                 }
3218         }
3219
3220         return master_mbox;
3221 }
3222
3223 /**
3224  * t4_fw_bye - end communication with FW
3225  * @adap: the adapter
3226  * @mbox: mailbox to use for the FW command
3227  *
3228  * Issues a command to terminate communication with FW.
3229  */
3230 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
3231 {
3232         struct fw_bye_cmd c;
3233
3234         memset(&c, 0, sizeof(c));
3235         INIT_CMD(c, BYE, WRITE);
3236         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3237 }
3238
3239 /**
3240  * t4_fw_reset - issue a reset to FW
3241  * @adap: the adapter
3242  * @mbox: mailbox to use for the FW command
3243  * @reset: specifies the type of reset to perform
3244  *
3245  * Issues a reset command of the specified type to FW.
3246  */
3247 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
3248 {
3249         struct fw_reset_cmd c;
3250
3251         memset(&c, 0, sizeof(c));
3252         INIT_CMD(c, RESET, WRITE);
3253         c.val = cpu_to_be32(reset);
3254         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3255 }
3256
3257 /**
3258  * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
3259  * @adap: the adapter
3260  * @mbox: mailbox to use for the FW RESET command (if desired)
3261  * @force: force uP into RESET even if FW RESET command fails
3262  *
3263  * Issues a RESET command to firmware (if desired) with a HALT indication
3264  * and then puts the microprocessor into RESET state.  The RESET command
3265  * will only be issued if a legitimate mailbox is provided (mbox <=
3266  * M_PCIE_FW_MASTER).
3267  *
3268  * This is generally used in order for the host to safely manipulate the
3269  * adapter without fear of conflicting with whatever the firmware might
3270  * be doing.  The only way out of this state is to RESTART the firmware
3271  * ...
3272  */
3273 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
3274 {
3275         int ret = 0;
3276
3277         /*
3278          * If a legitimate mailbox is provided, issue a RESET command
3279          * with a HALT indication.
3280          */
3281         if (mbox <= M_PCIE_FW_MASTER) {
3282                 struct fw_reset_cmd c;
3283
3284                 memset(&c, 0, sizeof(c));
3285                 INIT_CMD(c, RESET, WRITE);
3286                 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
3287                 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
3288                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3289         }
3290
3291         /*
3292          * Normally we won't complete the operation if the firmware RESET
3293          * command fails but if our caller insists we'll go ahead and put the
3294          * uP into RESET.  This can be useful if the firmware is hung or even
3295          * missing ...  We'll have to take the risk of putting the uP into
3296          * RESET without the cooperation of firmware in that case.
3297          *
3298          * We also force the firmware's HALT flag to be on in case we bypassed
3299          * the firmware RESET command above or we're dealing with old firmware
3300          * which doesn't have the HALT capability.  This will serve as a flag
3301          * for the incoming firmware to know that it's coming out of a HALT
3302          * rather than a RESET ... if it's new enough to understand that ...
3303          */
3304         if (ret == 0 || force) {
3305                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
3306                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
3307                                  F_PCIE_FW_HALT);
3308         }
3309
3310         /*
3311          * And we always return the result of the firmware RESET command
3312          * even when we force the uP into RESET ...
3313          */
3314         return ret;
3315 }
3316
3317 /**
3318  * t4_fw_restart - restart the firmware by taking the uP out of RESET
3319  * @adap: the adapter
3320  * @mbox: mailbox to use for the FW RESET command (if desired)
3321  * @reset: if we want to do a RESET to restart things
3322  *
3323  * Restart firmware previously halted by t4_fw_halt().  On successful
3324  * return the previous PF Master remains as the new PF Master and there
3325  * is no need to issue a new HELLO command, etc.
3326  *
3327  * We do this in two ways:
3328  *
3329  * 1. If we're dealing with newer firmware we'll simply want to take
3330  *    the chip's microprocessor out of RESET.  This will cause the
3331  *    firmware to start up from its start vector.  And then we'll loop
3332  *    until the firmware indicates it's started again (PCIE_FW.HALT
3333  *    reset to 0) or we timeout.
3334  *
3335  * 2. If we're dealing with older firmware then we'll need to RESET
3336  *    the chip since older firmware won't recognize the PCIE_FW.HALT
3337  *    flag and automatically RESET itself on startup.
3338  */
3339 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
3340 {
3341         if (reset) {
3342                 /*
3343                  * Since we're directing the RESET instead of the firmware
3344                  * doing it automatically, we need to clear the PCIE_FW.HALT
3345                  * bit.
3346                  */
3347                 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
3348
3349                 /*
3350                  * If we've been given a valid mailbox, first try to get the
3351                  * firmware to do the RESET.  If that works, great and we can
3352                  * return success.  Otherwise, if we haven't been given a
3353                  * valid mailbox or the RESET command failed, fall back to
3354                  * hitting the chip with a hammer.
3355                  */
3356                 if (mbox <= M_PCIE_FW_MASTER) {
3357                         t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
3358                         msleep(100);
3359                         if (t4_fw_reset(adap, mbox,
3360                                         F_PIORST | F_PIORSTMODE) == 0)
3361                                 return 0;
3362                 }
3363
3364                 t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
3365                 msleep(2000);
3366         } else {
3367                 int ms;
3368
3369                 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
3370                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
3371                         if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
3372                                 return FW_SUCCESS;
3373                         msleep(100);
3374                         ms += 100;
3375                 }
3376                 return -ETIMEDOUT;
3377         }
3378         return 0;
3379 }
3380
3381 /**
3382  * t4_fl_pkt_align - return the fl packet alignment
3383  * @adap: the adapter
3384  *
3385  * T4 has a single field to specify the packing and padding boundary.
3386  * T5 onwards has separate fields for this and hence the alignment for
3387  * next packet offset is maximum of these two.
3388  */
3389 int t4_fl_pkt_align(struct adapter *adap)
3390 {
3391         u32 sge_control, sge_control2;
3392         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
3393
3394         sge_control = t4_read_reg(adap, A_SGE_CONTROL);
3395
3396         /* T4 uses a single control field to specify both the PCIe Padding and
3397          * Packing Boundary.  T5 introduced the ability to specify these
3398          * separately.  The actual Ingress Packet Data alignment boundary
3399          * within Packed Buffer Mode is the maximum of these two
3400          * specifications.
3401          */
3402         if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
3403                 ingpad_shift = X_INGPADBOUNDARY_SHIFT;
3404         else
3405                 ingpad_shift = X_T6_INGPADBOUNDARY_SHIFT;
3406
3407         ingpadboundary = 1 << (G_INGPADBOUNDARY(sge_control) + ingpad_shift);
3408
3409         fl_align = ingpadboundary;
3410         if (!is_t4(adap->params.chip)) {
3411                 sge_control2 = t4_read_reg(adap, A_SGE_CONTROL2);
3412                 ingpackboundary = G_INGPACKBOUNDARY(sge_control2);
3413                 if (ingpackboundary == X_INGPACKBOUNDARY_16B)
3414                         ingpackboundary = 16;
3415                 else
3416                         ingpackboundary = 1 << (ingpackboundary +
3417                                         X_INGPACKBOUNDARY_SHIFT);
3418
3419                 fl_align = max(ingpadboundary, ingpackboundary);
3420         }
3421         return fl_align;
3422 }
3423
3424 /**
3425  * t4_fixup_host_params_compat - fix up host-dependent parameters
3426  * @adap: the adapter
3427  * @page_size: the host's Base Page Size
3428  * @cache_line_size: the host's Cache Line Size
3429  * @chip_compat: maintain compatibility with designated chip
3430  *
3431  * Various registers in the chip contain values which are dependent on the
3432  * host's Base Page and Cache Line Sizes.  This function will fix all of
3433  * those registers with the appropriate values as passed in ...
3434  *
3435  * @chip_compat is used to limit the set of changes that are made
3436  * to be compatible with the indicated chip release.  This is used by
3437  * drivers to maintain compatibility with chip register settings when
3438  * the drivers haven't [yet] been updated with new chip support.
3439  */
3440 int t4_fixup_host_params_compat(struct adapter *adap,
3441                                 unsigned int page_size,
3442                                 unsigned int cache_line_size,
3443                                 enum chip_type chip_compat)
3444 {
3445         unsigned int page_shift = cxgbe_fls(page_size) - 1;
3446         unsigned int sge_hps = page_shift - 10;
3447         unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
3448         unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
3449         unsigned int fl_align_log = cxgbe_fls(fl_align) - 1;
3450
3451         t4_write_reg(adap, A_SGE_HOST_PAGE_SIZE,
3452                      V_HOSTPAGESIZEPF0(sge_hps) |
3453                      V_HOSTPAGESIZEPF1(sge_hps) |
3454                      V_HOSTPAGESIZEPF2(sge_hps) |
3455                      V_HOSTPAGESIZEPF3(sge_hps) |
3456                      V_HOSTPAGESIZEPF4(sge_hps) |
3457                      V_HOSTPAGESIZEPF5(sge_hps) |
3458                      V_HOSTPAGESIZEPF6(sge_hps) |
3459                      V_HOSTPAGESIZEPF7(sge_hps));
3460
3461         if (is_t4(adap->params.chip) || is_t4(chip_compat))
3462                 t4_set_reg_field(adap, A_SGE_CONTROL,
3463                                  V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
3464                                  F_EGRSTATUSPAGESIZE,
3465                                  V_INGPADBOUNDARY(fl_align_log -
3466                                                   X_INGPADBOUNDARY_SHIFT) |
3467                                 V_EGRSTATUSPAGESIZE(stat_len != 64));
3468         else {
3469                 unsigned int pack_align;
3470                 unsigned int ingpad, ingpack;
3471                 unsigned int pcie_cap;
3472
3473                 /*
3474                  * T5 introduced the separation of the Free List Padding and
3475                  * Packing Boundaries.  Thus, we can select a smaller Padding
3476                  * Boundary to avoid uselessly chewing up PCIe Link and Memory
3477                  * Bandwidth, and use a Packing Boundary which is large enough
3478                  * to avoid false sharing between CPUs, etc.
3479                  *
3480                  * For the PCI Link, the smaller the Padding Boundary the
3481                  * better.  For the Memory Controller, a smaller Padding
3482                  * Boundary is better until we cross under the Memory Line
3483                  * Size (the minimum unit of transfer to/from Memory).  If we
3484                  * have a Padding Boundary which is smaller than the Memory
3485                  * Line Size, that'll involve a Read-Modify-Write cycle on the
3486                  * Memory Controller which is never good.
3487                  */
3488
3489                 /* We want the Packing Boundary to be based on the Cache Line
3490                  * Size in order to help avoid False Sharing performance
3491                  * issues between CPUs, etc.  We also want the Packing
3492                  * Boundary to incorporate the PCI-E Maximum Payload Size.  We
3493                  * get best performance when the Packing Boundary is a
3494                  * multiple of the Maximum Payload Size.
3495                  */
3496                 pack_align = fl_align;
3497                 pcie_cap = t4_os_find_pci_capability(adap, PCI_CAP_ID_EXP);
3498                 if (pcie_cap) {
3499                         unsigned int mps, mps_log;
3500                         u16 devctl;
3501
3502                         /* The PCIe Device Control Maximum Payload Size field
3503                          * [bits 7:5] encodes sizes as powers of 2 starting at
3504                          * 128 bytes.
3505                          */
3506                         t4_os_pci_read_cfg2(adap, pcie_cap + PCI_EXP_DEVCTL,
3507                                             &devctl);
3508                         mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
3509                         mps = 1 << mps_log;
3510                         if (mps > pack_align)
3511                                 pack_align = mps;
3512                 }
3513
3514                 /*
3515                  * N.B. T5 has a different interpretation of the "0" value for
3516                  * the Packing Boundary.  This corresponds to 16 bytes instead
3517                  * of the expected 32 bytes.  We never have a Packing Boundary
3518                  * less than 32 bytes so we can't use that special value but
3519                  * on the other hand, if we wanted 32 bytes, the best we can
3520                  * really do is 64 bytes ...
3521                  */
3522                 if (pack_align <= 16) {
3523                         ingpack = X_INGPACKBOUNDARY_16B;
3524                         fl_align = 16;
3525                 } else if (pack_align == 32) {
3526                         ingpack = X_INGPACKBOUNDARY_64B;
3527                         fl_align = 64;
3528                 } else {
3529                         unsigned int pack_align_log = cxgbe_fls(pack_align) - 1;
3530
3531                         ingpack = pack_align_log - X_INGPACKBOUNDARY_SHIFT;
3532                         fl_align = pack_align;
3533                 }
3534
3535                 /* Use the smallest Ingress Padding which isn't smaller than
3536                  * the Memory Controller Read/Write Size.  We'll take that as
3537                  * being 8 bytes since we don't know of any system with a
3538                  * wider Memory Controller Bus Width.
3539                  */
3540                 if (is_t5(adap->params.chip))
3541                         ingpad = X_INGPADBOUNDARY_32B;
3542                 else
3543                         ingpad = X_T6_INGPADBOUNDARY_8B;
3544                 t4_set_reg_field(adap, A_SGE_CONTROL,
3545                                  V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
3546                                  F_EGRSTATUSPAGESIZE,
3547                                  V_INGPADBOUNDARY(ingpad) |
3548                                  V_EGRSTATUSPAGESIZE(stat_len != 64));
3549                 t4_set_reg_field(adap, A_SGE_CONTROL2,
3550                                  V_INGPACKBOUNDARY(M_INGPACKBOUNDARY),
3551                                  V_INGPACKBOUNDARY(ingpack));
3552         }
3553
3554         /*
3555          * Adjust various SGE Free List Host Buffer Sizes.
3556          *
3557          * The first four entries are:
3558          *
3559          *   0: Host Page Size
3560          *   1: 64KB
3561          *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
3562          *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
3563          *
3564          * For the single-MTU buffers in unpacked mode we need to include
3565          * space for the SGE Control Packet Shift, 14 byte Ethernet header,
3566          * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
3567          * Padding boundary.  All of these are accommodated in the Factory
3568          * Default Firmware Configuration File but we need to adjust it for
3569          * this host's cache line size.
3570          */
3571         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE0, page_size);
3572         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE2,
3573                      (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE2) + fl_align - 1)
3574                      & ~(fl_align - 1));
3575         t4_write_reg(adap, A_SGE_FL_BUFFER_SIZE3,
3576                      (t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE3) + fl_align - 1)
3577                      & ~(fl_align - 1));
3578
3579         t4_write_reg(adap, A_ULP_RX_TDDP_PSZ, V_HPZ0(page_shift - 12));
3580
3581         return 0;
3582 }
3583
3584 /**
3585  * t4_fixup_host_params - fix up host-dependent parameters (T4 compatible)
3586  * @adap: the adapter
3587  * @page_size: the host's Base Page Size
3588  * @cache_line_size: the host's Cache Line Size
3589  *
3590  * Various registers in T4 contain values which are dependent on the
3591  * host's Base Page and Cache Line Sizes.  This function will fix all of
3592  * those registers with the appropriate values as passed in ...
3593  *
3594  * This routine makes changes which are compatible with T4 chips.
3595  */
3596 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
3597                          unsigned int cache_line_size)
3598 {
3599         return t4_fixup_host_params_compat(adap, page_size, cache_line_size,
3600                                            T4_LAST_REV);
3601 }
3602
3603 /**
3604  * t4_fw_initialize - ask FW to initialize the device
3605  * @adap: the adapter
3606  * @mbox: mailbox to use for the FW command
3607  *
3608  * Issues a command to FW to partially initialize the device.  This
3609  * performs initialization that generally doesn't depend on user input.
3610  */
3611 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
3612 {
3613         struct fw_initialize_cmd c;
3614
3615         memset(&c, 0, sizeof(c));
3616         INIT_CMD(c, INITIALIZE, WRITE);
3617         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3618 }
3619
3620 /**
3621  * t4_query_params_rw - query FW or device parameters
3622  * @adap: the adapter
3623  * @mbox: mailbox to use for the FW command
3624  * @pf: the PF
3625  * @vf: the VF
3626  * @nparams: the number of parameters
3627  * @params: the parameter names
3628  * @val: the parameter values
3629  * @rw: Write and read flag
3630  *
3631  * Reads the value of FW or device parameters.  Up to 7 parameters can be
3632  * queried at once.
3633  */
3634 static int t4_query_params_rw(struct adapter *adap, unsigned int mbox,
3635                               unsigned int pf, unsigned int vf,
3636                               unsigned int nparams, const u32 *params,
3637                               u32 *val, int rw)
3638 {
3639         unsigned int i;
3640         int ret;
3641         struct fw_params_cmd c;
3642         __be32 *p = &c.param[0].mnem;
3643
3644         if (nparams > 7)
3645                 return -EINVAL;
3646
3647         memset(&c, 0, sizeof(c));
3648         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3649                                   F_FW_CMD_REQUEST | F_FW_CMD_READ |
3650                                   V_FW_PARAMS_CMD_PFN(pf) |
3651                                   V_FW_PARAMS_CMD_VFN(vf));
3652         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3653
3654         for (i = 0; i < nparams; i++) {
3655                 *p++ = cpu_to_be32(*params++);
3656                 if (rw)
3657                         *p = cpu_to_be32(*(val + i));
3658                 p++;
3659         }
3660
3661         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3662         if (ret == 0)
3663                 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
3664                         *val++ = be32_to_cpu(*p);
3665         return ret;
3666 }
3667
3668 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3669                     unsigned int vf, unsigned int nparams, const u32 *params,
3670                     u32 *val)
3671 {
3672         return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
3673 }
3674
3675 /**
3676  * t4_set_params_timeout - sets FW or device parameters
3677  * @adap: the adapter
3678  * @mbox: mailbox to use for the FW command
3679  * @pf: the PF
3680  * @vf: the VF
3681  * @nparams: the number of parameters
3682  * @params: the parameter names
3683  * @val: the parameter values
3684  * @timeout: the timeout time
3685  *
3686  * Sets the value of FW or device parameters.  Up to 7 parameters can be
3687  * specified at once.
3688  */
3689 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
3690                           unsigned int pf, unsigned int vf,
3691                           unsigned int nparams, const u32 *params,
3692                           const u32 *val, int timeout)
3693 {
3694         struct fw_params_cmd c;
3695         __be32 *p = &c.param[0].mnem;
3696
3697         if (nparams > 7)
3698                 return -EINVAL;
3699
3700         memset(&c, 0, sizeof(c));
3701         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3702                                   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3703                                   V_FW_PARAMS_CMD_PFN(pf) |
3704                                   V_FW_PARAMS_CMD_VFN(vf));
3705         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3706
3707         while (nparams--) {
3708                 *p++ = cpu_to_be32(*params++);
3709                 *p++ = cpu_to_be32(*val++);
3710         }
3711
3712         return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
3713 }
3714
3715 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
3716                   unsigned int vf, unsigned int nparams, const u32 *params,
3717                   const u32 *val)
3718 {
3719         return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
3720                                      FW_CMD_MAX_TIMEOUT);
3721 }
3722
3723 /**
3724  * t4_alloc_vi_func - allocate a virtual interface
3725  * @adap: the adapter
3726  * @mbox: mailbox to use for the FW command
3727  * @port: physical port associated with the VI
3728  * @pf: the PF owning the VI
3729  * @vf: the VF owning the VI
3730  * @nmac: number of MAC addresses needed (1 to 5)
3731  * @mac: the MAC addresses of the VI
3732  * @rss_size: size of RSS table slice associated with this VI
3733  * @portfunc: which Port Application Function MAC Address is desired
3734  * @idstype: Intrusion Detection Type
3735  *
3736  * Allocates a virtual interface for the given physical port.  If @mac is
3737  * not %NULL it contains the MAC addresses of the VI as assigned by FW.
3738  * @mac should be large enough to hold @nmac Ethernet addresses, they are
3739  * stored consecutively so the space needed is @nmac * 6 bytes.
3740  * Returns a negative error number or the non-negative VI id.
3741  */
3742 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
3743                      unsigned int port, unsigned int pf, unsigned int vf,
3744                      unsigned int nmac, u8 *mac, unsigned int *rss_size,
3745                      unsigned int portfunc, unsigned int idstype)
3746 {
3747         int ret;
3748         struct fw_vi_cmd c;
3749
3750         memset(&c, 0, sizeof(c));
3751         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
3752                                   F_FW_CMD_WRITE | F_FW_CMD_EXEC |
3753                                   V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
3754         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
3755         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
3756                                      V_FW_VI_CMD_FUNC(portfunc));
3757         c.portid_pkd = V_FW_VI_CMD_PORTID(port);
3758         c.nmac = nmac - 1;
3759
3760         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3761         if (ret)
3762                 return ret;
3763
3764         if (mac) {
3765                 memcpy(mac, c.mac, sizeof(c.mac));
3766                 switch (nmac) {
3767                 case 5:
3768                         memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
3769                         /* FALLTHROUGH */
3770                 case 4:
3771                         memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
3772                         /* FALLTHROUGH */
3773                 case 3:
3774                         memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
3775                         /* FALLTHROUGH */
3776                 case 2:
3777                         memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
3778                         /* FALLTHROUGH */
3779                 }
3780         }
3781         if (rss_size)
3782                 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
3783         return G_FW_VI_CMD_VIID(cpu_to_be16(c.type_to_viid));
3784 }
3785
3786 /**
3787  * t4_alloc_vi - allocate an [Ethernet Function] virtual interface
3788  * @adap: the adapter
3789  * @mbox: mailbox to use for the FW command
3790  * @port: physical port associated with the VI
3791  * @pf: the PF owning the VI
3792  * @vf: the VF owning the VI
3793  * @nmac: number of MAC addresses needed (1 to 5)
3794  * @mac: the MAC addresses of the VI
3795  * @rss_size: size of RSS table slice associated with this VI
3796  *
3797  * Backwards compatible and convieniance routine to allocate a Virtual
3798  * Interface with a Ethernet Port Application Function and Intrustion
3799  * Detection System disabled.
3800  */
3801 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
3802                 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
3803                 unsigned int *rss_size)
3804 {
3805         return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
3806                                 FW_VI_FUNC_ETH, 0);
3807 }
3808
3809 /**
3810  * t4_free_vi - free a virtual interface
3811  * @adap: the adapter
3812  * @mbox: mailbox to use for the FW command
3813  * @pf: the PF owning the VI
3814  * @vf: the VF owning the VI
3815  * @viid: virtual interface identifiler
3816  *
3817  * Free a previously allocated virtual interface.
3818  */
3819 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
3820                unsigned int vf, unsigned int viid)
3821 {
3822         struct fw_vi_cmd c;
3823
3824         memset(&c, 0, sizeof(c));
3825         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
3826                                   F_FW_CMD_EXEC | V_FW_VI_CMD_PFN(pf) |
3827                                   V_FW_VI_CMD_VFN(vf));
3828         c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
3829         c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
3830
3831         return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3832 }
3833
3834 /**
3835  * t4_set_rxmode - set Rx properties of a virtual interface
3836  * @adap: the adapter
3837  * @mbox: mailbox to use for the FW command
3838  * @viid: the VI id
3839  * @mtu: the new MTU or -1
3840  * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
3841  * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
3842  * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
3843  * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
3844  *          -1 no change
3845  * @sleep_ok: if true we may sleep while awaiting command completion
3846  *
3847  * Sets Rx properties of a virtual interface.
3848  */
3849 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
3850                   int mtu, int promisc, int all_multi, int bcast, int vlanex,
3851                   bool sleep_ok)
3852 {
3853         struct fw_vi_rxmode_cmd c;
3854
3855         /* convert to FW values */
3856         if (mtu < 0)
3857                 mtu = M_FW_VI_RXMODE_CMD_MTU;
3858         if (promisc < 0)
3859                 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
3860         if (all_multi < 0)
3861                 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
3862         if (bcast < 0)
3863                 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
3864         if (vlanex < 0)
3865                 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
3866
3867         memset(&c, 0, sizeof(c));
3868         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
3869                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3870                                    V_FW_VI_RXMODE_CMD_VIID(viid));
3871         c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3872         c.mtu_to_vlanexen = cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
3873                             V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
3874                             V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
3875                             V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
3876                             V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
3877         return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
3878 }
3879
3880 /**
3881  * t4_change_mac - modifies the exact-match filter for a MAC address
3882  * @adap: the adapter
3883  * @mbox: mailbox to use for the FW command
3884  * @viid: the VI id
3885  * @idx: index of existing filter for old value of MAC address, or -1
3886  * @addr: the new MAC address value
3887  * @persist: whether a new MAC allocation should be persistent
3888  * @add_smt: if true also add the address to the HW SMT
3889  *
3890  * Modifies an exact-match filter and sets it to the new MAC address if
3891  * @idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
3892  * latter case the address is added persistently if @persist is %true.
3893  *
3894  * Note that in general it is not possible to modify the value of a given
3895  * filter so the generic way to modify an address filter is to free the one
3896  * being used by the old address value and allocate a new filter for the
3897  * new address value.
3898  *
3899  * Returns a negative error number or the index of the filter with the new
3900  * MAC value.  Note that this index may differ from @idx.
3901  */
3902 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
3903                   int idx, const u8 *addr, bool persist, bool add_smt)
3904 {
3905         int ret, mode;
3906         struct fw_vi_mac_cmd c;
3907         struct fw_vi_mac_exact *p = c.u.exact;
3908         int max_mac_addr = adap->params.arch.mps_tcam_size;
3909
3910         if (idx < 0)                             /* new allocation */
3911                 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
3912         mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
3913
3914         memset(&c, 0, sizeof(c));
3915         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
3916                                    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3917                                    V_FW_VI_MAC_CMD_VIID(viid));
3918         c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
3919         p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
3920                                       V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
3921                                       V_FW_VI_MAC_CMD_IDX(idx));
3922         memcpy(p->macaddr, addr, sizeof(p->macaddr));
3923
3924         ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3925         if (ret == 0) {
3926                 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
3927                 if (ret >= max_mac_addr)
3928                         ret = -ENOMEM;
3929         }
3930         return ret;
3931 }
3932
3933 /**
3934  * t4_enable_vi_params - enable/disable a virtual interface
3935  * @adap: the adapter
3936  * @mbox: mailbox to use for the FW command
3937  * @viid: the VI id
3938  * @rx_en: 1=enable Rx, 0=disable Rx
3939  * @tx_en: 1=enable Tx, 0=disable Tx
3940  * @dcb_en: 1=enable delivery of Data Center Bridging messages.
3941  *
3942  * Enables/disables a virtual interface.  Note that setting DCB Enable
3943  * only makes sense when enabling a Virtual Interface ...
3944  */
3945 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
3946                         unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
3947 {
3948         struct fw_vi_enable_cmd c;
3949
3950         memset(&c, 0, sizeof(c));
3951         c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
3952                                    F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3953                                    V_FW_VI_ENABLE_CMD_VIID(viid));
3954         c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
3955                                      V_FW_VI_ENABLE_CMD_EEN(tx_en) |
3956                                      V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
3957                                      FW_LEN16(c));
3958         return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3959 }
3960
3961 /**
3962  * t4_enable_vi - enable/disable a virtual interface
3963  * @adap: the adapter
3964  * @mbox: mailbox to use for the FW command
3965  * @viid: the VI id
3966  * @rx_en: 1=enable Rx, 0=disable Rx
3967  * @tx_en: 1=enable Tx, 0=disable Tx
3968  *
3969  * Enables/disables a virtual interface.  Note that setting DCB Enable
3970  * only makes sense when enabling a Virtual Interface ...
3971  */
3972 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
3973                  bool rx_en, bool tx_en)
3974 {
3975         return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
3976 }
3977
3978 /**
3979  * t4_iq_start_stop - enable/disable an ingress queue and its FLs
3980  * @adap: the adapter
3981  * @mbox: mailbox to use for the FW command
3982  * @start: %true to enable the queues, %false to disable them
3983  * @pf: the PF owning the queues
3984  * @vf: the VF owning the queues
3985  * @iqid: ingress queue id
3986  * @fl0id: FL0 queue id or 0xffff if no attached FL0
3987  * @fl1id: FL1 queue id or 0xffff if no attached FL1
3988  *
3989  * Starts or stops an ingress queue and its associated FLs, if any.
3990  */
3991 int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
3992                      unsigned int pf, unsigned int vf, unsigned int iqid,
3993                      unsigned int fl0id, unsigned int fl1id)
3994 {
3995         struct fw_iq_cmd c;
3996
3997         memset(&c, 0, sizeof(c));
3998         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
3999                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
4000                                   V_FW_IQ_CMD_VFN(vf));
4001         c.alloc_to_len16 = cpu_to_be32(V_FW_IQ_CMD_IQSTART(start) |
4002                                        V_FW_IQ_CMD_IQSTOP(!start) |
4003                                        FW_LEN16(c));
4004         c.iqid = cpu_to_be16(iqid);
4005         c.fl0id = cpu_to_be16(fl0id);
4006         c.fl1id = cpu_to_be16(fl1id);
4007         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4008 }
4009
4010 /**
4011  * t4_iq_free - free an ingress queue and its FLs
4012  * @adap: the adapter
4013  * @mbox: mailbox to use for the FW command
4014  * @pf: the PF owning the queues
4015  * @vf: the VF owning the queues
4016  * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
4017  * @iqid: ingress queue id
4018  * @fl0id: FL0 queue id or 0xffff if no attached FL0
4019  * @fl1id: FL1 queue id or 0xffff if no attached FL1
4020  *
4021  * Frees an ingress queue and its associated FLs, if any.
4022  */
4023 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4024                unsigned int vf, unsigned int iqtype, unsigned int iqid,
4025                unsigned int fl0id, unsigned int fl1id)
4026 {
4027         struct fw_iq_cmd c;
4028
4029         memset(&c, 0, sizeof(c));
4030         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
4031                                   F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
4032                                   V_FW_IQ_CMD_VFN(vf));
4033         c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
4034         c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
4035         c.iqid = cpu_to_be16(iqid);
4036         c.fl0id = cpu_to_be16(fl0id);
4037         c.fl1id = cpu_to_be16(fl1id);
4038         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4039 }
4040
4041 /**
4042  * t4_eth_eq_free - free an Ethernet egress queue
4043  * @adap: the adapter
4044  * @mbox: mailbox to use for the FW command
4045  * @pf: the PF owning the queue
4046  * @vf: the VF owning the queue
4047  * @eqid: egress queue id
4048  *
4049  * Frees an Ethernet egress queue.
4050  */
4051 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4052                    unsigned int vf, unsigned int eqid)
4053 {
4054         struct fw_eq_eth_cmd c;
4055
4056         memset(&c, 0, sizeof(c));
4057         c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
4058                                   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4059                                   V_FW_EQ_ETH_CMD_PFN(pf) |
4060                                   V_FW_EQ_ETH_CMD_VFN(vf));
4061         c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
4062         c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
4063         return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4064 }
4065
4066 /**
4067  * t4_handle_fw_rpl - process a FW reply message
4068  * @adap: the adapter
4069  * @rpl: start of the FW message
4070  *
4071  * Processes a FW message, such as link state change messages.
4072  */
4073 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
4074 {
4075         u8 opcode = *(const u8 *)rpl;
4076
4077         /*
4078          * This might be a port command ... this simplifies the following
4079          * conditionals ...  We can get away with pre-dereferencing
4080          * action_to_len16 because it's in the first 16 bytes and all messages
4081          * will be at least that long.
4082          */
4083         const struct fw_port_cmd *p = (const void *)rpl;
4084         unsigned int action =
4085                 G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
4086
4087         if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
4088                 /* link/module state change message */
4089                 unsigned int speed = 0, fc = 0, i;
4090                 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
4091                 struct port_info *pi = NULL;
4092                 struct link_config *lc;
4093                 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
4094                 int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
4095                 u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
4096
4097                 if (stat & F_FW_PORT_CMD_RXPAUSE)
4098                         fc |= PAUSE_RX;
4099                 if (stat & F_FW_PORT_CMD_TXPAUSE)
4100                         fc |= PAUSE_TX;
4101                 if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
4102                         speed = ETH_SPEED_NUM_100M;
4103                 else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
4104                         speed = ETH_SPEED_NUM_1G;
4105                 else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
4106                         speed = ETH_SPEED_NUM_10G;
4107                 else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
4108                         speed = ETH_SPEED_NUM_25G;
4109                 else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
4110                         speed = ETH_SPEED_NUM_40G;
4111                 else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
4112                         speed = ETH_SPEED_NUM_100G;
4113
4114                 for_each_port(adap, i) {
4115                         pi = adap2pinfo(adap, i);
4116                         if (pi->tx_chan == chan)
4117                                 break;
4118                 }
4119                 lc = &pi->link_cfg;
4120
4121                 if (mod != pi->mod_type) {
4122                         pi->mod_type = mod;
4123                         t4_os_portmod_changed(adap, i);
4124                 }
4125                 if (link_ok != lc->link_ok || speed != lc->speed ||
4126                     fc != lc->fc) {                    /* something changed */
4127                         if (!link_ok && lc->link_ok) {
4128                                 static const char * const reason[] = {
4129                                         "Link Down",
4130                                         "Remote Fault",
4131                                         "Auto-negotiation Failure",
4132                                         "Reserved",
4133                                         "Insufficient Airflow",
4134                                         "Unable To Determine Reason",
4135                                         "No RX Signal Detected",
4136                                         "Reserved",
4137                                 };
4138                                 unsigned int rc = G_FW_PORT_CMD_LINKDNRC(stat);
4139
4140                                 dev_warn(adap, "Port %d link down, reason: %s\n",
4141                                          chan, reason[rc]);
4142                         }
4143                         lc->link_ok = link_ok;
4144                         lc->speed = speed;
4145                         lc->fc = fc;
4146                         lc->supported = be16_to_cpu(p->u.info.pcap);
4147                 }
4148         } else {
4149                 dev_warn(adap, "Unknown firmware reply %d\n", opcode);
4150                 return -EINVAL;
4151         }
4152         return 0;
4153 }
4154
4155 void t4_reset_link_config(struct adapter *adap, int idx)
4156 {
4157         struct port_info *pi = adap2pinfo(adap, idx);
4158         struct link_config *lc = &pi->link_cfg;
4159
4160         lc->link_ok = 0;
4161         lc->requested_speed = 0;
4162         lc->requested_fc = 0;
4163         lc->speed = 0;
4164         lc->fc = 0;
4165 }
4166
4167 /**
4168  * init_link_config - initialize a link's SW state
4169  * @lc: structure holding the link state
4170  * @pcaps: link Port Capabilities
4171  * @acaps: link current Advertised Port Capabilities
4172  *
4173  * Initializes the SW state maintained for each link, including the link's
4174  * capabilities and default speed/flow-control/autonegotiation settings.
4175  */
4176 static void init_link_config(struct link_config *lc, unsigned int pcaps,
4177                              unsigned int acaps)
4178 {
4179         unsigned int fec;
4180
4181         lc->supported = pcaps;
4182         lc->requested_speed = 0;
4183         lc->speed = 0;
4184         lc->requested_fc = 0;
4185         lc->fc = 0;
4186
4187         /**
4188          * For Forward Error Control, we default to whatever the Firmware
4189          * tells us the Link is currently advertising.
4190          */
4191         fec = 0;
4192         if (acaps & FW_PORT_CAP_FEC_RS)
4193                 fec |= FEC_RS;
4194         if (acaps & FW_PORT_CAP_FEC_BASER_RS)
4195                 fec |= FEC_BASER_RS;
4196         if (acaps & FW_PORT_CAP_FEC_RESERVED)
4197                 fec |= FEC_RESERVED;
4198         lc->requested_fec = fec;
4199         lc->fec = fec;
4200
4201         if (lc->supported & FW_PORT_CAP_ANEG) {
4202                 lc->advertising = lc->supported & ADVERT_MASK;
4203                 lc->autoneg = AUTONEG_ENABLE;
4204         } else {
4205                 lc->advertising = 0;
4206                 lc->autoneg = AUTONEG_DISABLE;
4207         }
4208 }
4209
4210 /**
4211  * t4_wait_dev_ready - wait till to reads of registers work
4212  *
4213  * Right after the device is RESET is can take a small amount of time
4214  * for it to respond to register reads.  Until then, all reads will
4215  * return either 0xff...ff or 0xee...ee.  Return an error if reads
4216  * don't work within a reasonable time frame.
4217  */
4218 static int t4_wait_dev_ready(struct adapter *adapter)
4219 {
4220         u32 whoami;
4221
4222         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4223
4224         if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS)
4225                 return 0;
4226
4227         msleep(500);
4228         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4229         if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS)
4230                 return 0;
4231
4232         dev_err(adapter, "Device didn't become ready for access, whoami = %#x\n",
4233                 whoami);
4234         return -EIO;
4235 }
4236
4237 struct flash_desc {
4238         u32 vendor_and_model_id;
4239         u32 size_mb;
4240 };
4241
4242 int t4_get_flash_params(struct adapter *adapter)
4243 {
4244         /*
4245          * Table for non-standard supported Flash parts.  Note, all Flash
4246          * parts must have 64KB sectors.
4247          */
4248         static struct flash_desc supported_flash[] = {
4249                 { 0x00150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
4250         };
4251
4252         int ret;
4253         u32 flashid = 0;
4254         unsigned int part, manufacturer;
4255         unsigned int density, size = 0;
4256
4257         /**
4258          * Issue a Read ID Command to the Flash part.  We decode supported
4259          * Flash parts and their sizes from this.  There's a newer Query
4260          * Command which can retrieve detailed geometry information but
4261          * many Flash parts don't support it.
4262          */
4263         ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
4264         if (!ret)
4265                 ret = sf1_read(adapter, 3, 0, 1, &flashid);
4266         t4_write_reg(adapter, A_SF_OP, 0);               /* unlock SF */
4267         if (ret < 0)
4268                 return ret;
4269
4270         /**
4271          * Check to see if it's one of our non-standard supported Flash parts.
4272          */
4273         for (part = 0; part < ARRAY_SIZE(supported_flash); part++) {
4274                 if (supported_flash[part].vendor_and_model_id == flashid) {
4275                         adapter->params.sf_size =
4276                                 supported_flash[part].size_mb;
4277                         adapter->params.sf_nsec =
4278                                 adapter->params.sf_size / SF_SEC_SIZE;
4279                         goto found;
4280                 }
4281         }
4282
4283         /**
4284          * Decode Flash part size.  The code below looks repetative with
4285          * common encodings, but that's not guaranteed in the JEDEC
4286          * specification for the Read JADEC ID command.  The only thing that
4287          * we're guaranteed by the JADEC specification is where the
4288          * Manufacturer ID is in the returned result.  After that each
4289          * Manufacturer ~could~ encode things completely differently.
4290          * Note, all Flash parts must have 64KB sectors.
4291          */
4292         manufacturer = flashid & 0xff;
4293         switch (manufacturer) {
4294         case 0x20: { /* Micron/Numonix */
4295                 /**
4296                  * This Density -> Size decoding table is taken from Micron
4297                  * Data Sheets.
4298                  */
4299                 density = (flashid >> 16) & 0xff;
4300                 switch (density) {
4301                 case 0x14:
4302                         size = 1 << 20; /* 1MB */
4303                         break;
4304                 case 0x15:
4305                         size = 1 << 21; /* 2MB */
4306                         break;
4307                 case 0x16:
4308                         size = 1 << 22; /* 4MB */
4309                         break;
4310                 case 0x17:
4311                         size = 1 << 23; /* 8MB */
4312                         break;
4313                 case 0x18:
4314                         size = 1 << 24; /* 16MB */
4315                         break;
4316                 case 0x19:
4317                         size = 1 << 25; /* 32MB */
4318                         break;
4319                 case 0x20:
4320                         size = 1 << 26; /* 64MB */
4321                         break;
4322                 case 0x21:
4323                         size = 1 << 27; /* 128MB */
4324                         break;
4325                 case 0x22:
4326                         size = 1 << 28; /* 256MB */
4327                         break;
4328                 }
4329                 break;
4330         }
4331
4332         case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
4333                 /**
4334                  * This Density -> Size decoding table is taken from ISSI
4335                  * Data Sheets.
4336                  */
4337                 density = (flashid >> 16) & 0xff;
4338                 switch (density) {
4339                 case 0x16:
4340                         size = 1 << 25; /* 32MB */
4341                         break;
4342                 case 0x17:
4343                         size = 1 << 26; /* 64MB */
4344                         break;
4345                 }
4346                 break;
4347         }
4348
4349         case 0xc2: { /* Macronix */
4350                 /**
4351                  * This Density -> Size decoding table is taken from Macronix
4352                  * Data Sheets.
4353                  */
4354                 density = (flashid >> 16) & 0xff;
4355                 switch (density) {
4356                 case 0x17:
4357                         size = 1 << 23; /* 8MB */
4358                         break;
4359                 case 0x18:
4360                         size = 1 << 24; /* 16MB */
4361                         break;
4362                 }
4363                 break;
4364         }
4365
4366         case 0xef: { /* Winbond */
4367                 /**
4368                  * This Density -> Size decoding table is taken from Winbond
4369                  * Data Sheets.
4370                  */
4371                 density = (flashid >> 16) & 0xff;
4372                 switch (density) {
4373                 case 0x17:
4374                         size = 1 << 23; /* 8MB */
4375                         break;
4376                 case 0x18:
4377                         size = 1 << 24; /* 16MB */
4378                         break;
4379                 }
4380                 break;
4381         }
4382         }
4383
4384         /* If we didn't recognize the FLASH part, that's no real issue: the
4385          * Hardware/Software contract says that Hardware will _*ALWAYS*_
4386          * use a FLASH part which is at least 4MB in size and has 64KB
4387          * sectors.  The unrecognized FLASH part is likely to be much larger
4388          * than 4MB, but that's all we really need.
4389          */
4390         if (size == 0) {
4391                 dev_warn(adapter,
4392                          "Unknown Flash Part, ID = %#x, assuming 4MB\n",
4393                          flashid);
4394                 size = 1 << 22;
4395         }
4396
4397         /**
4398          * Store decoded Flash size and fall through into vetting code.
4399          */
4400         adapter->params.sf_size = size;
4401         adapter->params.sf_nsec = size / SF_SEC_SIZE;
4402
4403 found:
4404         /*
4405          * We should reject adapters with FLASHes which are too small. So, emit
4406          * a warning.
4407          */
4408         if (adapter->params.sf_size < FLASH_MIN_SIZE)
4409                 dev_warn(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
4410                          flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
4411
4412         return 0;
4413 }
4414
4415 static void set_pcie_completion_timeout(struct adapter *adapter,
4416                                         u8 range)
4417 {
4418         u32 pcie_cap;
4419         u16 val;
4420
4421         pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
4422         if (pcie_cap) {
4423                 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
4424                 val &= 0xfff0;
4425                 val |= range;
4426                 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
4427         }
4428 }
4429
4430 /**
4431  * t4_get_chip_type - Determine chip type from device ID
4432  * @adap: the adapter
4433  * @ver: adapter version
4434  */
4435 int t4_get_chip_type(struct adapter *adap, int ver)
4436 {
4437         enum chip_type chip = 0;
4438         u32 pl_rev = G_REV(t4_read_reg(adap, A_PL_REV));
4439
4440         /* Retrieve adapter's device ID */
4441         switch (ver) {
4442         case CHELSIO_T5:
4443                 chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4444                 break;
4445         case CHELSIO_T6:
4446                 chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4447                 break;
4448         default:
4449                 dev_err(adap, "Device %d is not supported\n",
4450                         adap->params.pci.device_id);
4451                 return -EINVAL;
4452         }
4453
4454         return chip;
4455 }
4456
4457 /**
4458  * t4_prep_adapter - prepare SW and HW for operation
4459  * @adapter: the adapter
4460  *
4461  * Initialize adapter SW state for the various HW modules, set initial
4462  * values for some adapter tunables, take PHYs out of reset, and
4463  * initialize the MDIO interface.
4464  */
4465 int t4_prep_adapter(struct adapter *adapter)
4466 {
4467         int ret, ver;
4468         u32 pl_rev;
4469
4470         ret = t4_wait_dev_ready(adapter);
4471         if (ret < 0)
4472                 return ret;
4473
4474         pl_rev = G_REV(t4_read_reg(adapter, A_PL_REV));
4475         adapter->params.pci.device_id = adapter->pdev->id.device_id;
4476         adapter->params.pci.vendor_id = adapter->pdev->id.vendor_id;
4477
4478         /*
4479          * WE DON'T NEED adapter->params.chip CODE ONCE PL_REV CONTAINS
4480          * ADAPTER (VERSION << 4 | REVISION)
4481          */
4482         ver = CHELSIO_PCI_ID_VER(adapter->params.pci.device_id);
4483         adapter->params.chip = 0;
4484         switch (ver) {
4485         case CHELSIO_T5:
4486                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4487                 adapter->params.arch.sge_fl_db = F_DBPRIO | F_DBTYPE;
4488                 adapter->params.arch.mps_tcam_size =
4489                                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
4490                 adapter->params.arch.mps_rplc_size = 128;
4491                 adapter->params.arch.nchan = NCHAN;
4492                 adapter->params.arch.vfcount = 128;
4493                 break;
4494         case CHELSIO_T6:
4495                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4496                 adapter->params.arch.sge_fl_db = 0;
4497                 adapter->params.arch.mps_tcam_size =
4498                                                 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
4499                 adapter->params.arch.mps_rplc_size = 256;
4500                 adapter->params.arch.nchan = 2;
4501                 adapter->params.arch.vfcount = 256;
4502                 break;
4503         default:
4504                 dev_err(adapter, "%s: Device %d is not supported\n",
4505                         __func__, adapter->params.pci.device_id);
4506                 return -EINVAL;
4507         }
4508
4509         adapter->params.pci.vpd_cap_addr =
4510                 t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
4511
4512         ret = t4_get_flash_params(adapter);
4513         if (ret < 0) {
4514                 dev_err(adapter, "Unable to retrieve Flash Parameters, ret = %d\n",
4515                         -ret);
4516                 return ret;
4517         }
4518
4519         adapter->params.cim_la_size = CIMLA_SIZE;
4520
4521         init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
4522
4523         /*
4524          * Default port and clock for debugging in case we can't reach FW.
4525          */
4526         adapter->params.nports = 1;
4527         adapter->params.portvec = 1;
4528         adapter->params.vpd.cclk = 50000;
4529
4530         /* Set pci completion timeout value to 4 seconds. */
4531         set_pcie_completion_timeout(adapter, 0xd);
4532         return 0;
4533 }
4534
4535 /**
4536  * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
4537  * @adapter: the adapter
4538  * @qid: the Queue ID
4539  * @qtype: the Ingress or Egress type for @qid
4540  * @pbar2_qoffset: BAR2 Queue Offset
4541  * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4542  *
4543  * Returns the BAR2 SGE Queue Registers information associated with the
4544  * indicated Absolute Queue ID.  These are passed back in return value
4545  * pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
4546  * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
4547  *
4548  * This may return an error which indicates that BAR2 SGE Queue
4549  * registers aren't available.  If an error is not returned, then the
4550  * following values are returned:
4551  *
4552  *   *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
4553  *   *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
4554  *
4555  * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
4556  * require the "Inferred Queue ID" ability may be used.  E.g. the
4557  * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
4558  * then these "Inferred Queue ID" register may not be used.
4559  */
4560 int t4_bar2_sge_qregs(struct adapter *adapter, unsigned int qid,
4561                       enum t4_bar2_qtype qtype, u64 *pbar2_qoffset,
4562                       unsigned int *pbar2_qid)
4563 {
4564         unsigned int page_shift, page_size, qpp_shift, qpp_mask;
4565         u64 bar2_page_offset, bar2_qoffset;
4566         unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
4567
4568         /*
4569          * T4 doesn't support BAR2 SGE Queue registers.
4570          */
4571         if (is_t4(adapter->params.chip))
4572                 return -EINVAL;
4573
4574         /*
4575          * Get our SGE Page Size parameters.
4576          */
4577         page_shift = adapter->params.sge.hps + 10;
4578         page_size = 1 << page_shift;
4579
4580         /*
4581          * Get the right Queues per Page parameters for our Queue.
4582          */
4583         qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS ?
4584                               adapter->params.sge.eq_qpp :
4585                               adapter->params.sge.iq_qpp);
4586         qpp_mask = (1 << qpp_shift) - 1;
4587
4588         /*
4589          * Calculate the basics of the BAR2 SGE Queue register area:
4590          *  o The BAR2 page the Queue registers will be in.
4591          *  o The BAR2 Queue ID.
4592          *  o The BAR2 Queue ID Offset into the BAR2 page.
4593          */
4594         bar2_page_offset = ((qid >> qpp_shift) << page_shift);
4595         bar2_qid = qid & qpp_mask;
4596         bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
4597
4598         /*
4599          * If the BAR2 Queue ID Offset is less than the Page Size, then the
4600          * hardware will infer the Absolute Queue ID simply from the writes to
4601          * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
4602          * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
4603          * write to the first BAR2 SGE Queue Area within the BAR2 Page with
4604          * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
4605          * from the BAR2 Page and BAR2 Queue ID.
4606          *
4607          * One important censequence of this is that some BAR2 SGE registers
4608          * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
4609          * there.  But other registers synthesize the SGE Queue ID purely
4610          * from the writes to the registers -- the Write Combined Doorbell
4611          * Buffer is a good example.  These BAR2 SGE Registers are only
4612          * available for those BAR2 SGE Register areas where the SGE Absolute
4613          * Queue ID can be inferred from simple writes.
4614          */
4615         bar2_qoffset = bar2_page_offset;
4616         bar2_qinferred = (bar2_qid_offset < page_size);
4617         if (bar2_qinferred) {
4618                 bar2_qoffset += bar2_qid_offset;
4619                 bar2_qid = 0;
4620         }
4621
4622         *pbar2_qoffset = bar2_qoffset;
4623         *pbar2_qid = bar2_qid;
4624         return 0;
4625 }
4626
4627 /**
4628  * t4_init_sge_params - initialize adap->params.sge
4629  * @adapter: the adapter
4630  *
4631  * Initialize various fields of the adapter's SGE Parameters structure.
4632  */
4633 int t4_init_sge_params(struct adapter *adapter)
4634 {
4635         struct sge_params *sge_params = &adapter->params.sge;
4636         u32 hps, qpp;
4637         unsigned int s_hps, s_qpp;
4638
4639         /*
4640          * Extract the SGE Page Size for our PF.
4641          */
4642         hps = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
4643         s_hps = (S_HOSTPAGESIZEPF0 + (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) *
4644                  adapter->pf);
4645         sge_params->hps = ((hps >> s_hps) & M_HOSTPAGESIZEPF0);
4646
4647         /*
4648          * Extract the SGE Egress and Ingess Queues Per Page for our PF.
4649          */
4650         s_qpp = (S_QUEUESPERPAGEPF0 +
4651                  (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf);
4652         qpp = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
4653         sge_params->eq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
4654         qpp = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
4655         sge_params->iq_qpp = ((qpp >> s_qpp) & M_QUEUESPERPAGEPF0);
4656
4657         return 0;
4658 }
4659
4660 /**
4661  * t4_init_tp_params - initialize adap->params.tp
4662  * @adap: the adapter
4663  *
4664  * Initialize various fields of the adapter's TP Parameters structure.
4665  */
4666 int t4_init_tp_params(struct adapter *adap)
4667 {
4668         int chan;
4669         u32 v;
4670
4671         v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
4672         adap->params.tp.tre = G_TIMERRESOLUTION(v);
4673         adap->params.tp.dack_re = G_DELAYEDACKRESOLUTION(v);
4674
4675         /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
4676         for (chan = 0; chan < NCHAN; chan++)
4677                 adap->params.tp.tx_modq[chan] = chan;
4678
4679         /*
4680          * Cache the adapter's Compressed Filter Mode and global Incress
4681          * Configuration.
4682          */
4683         t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4684                          &adap->params.tp.vlan_pri_map, 1, A_TP_VLAN_PRI_MAP);
4685         t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4686                          &adap->params.tp.ingress_config, 1,
4687                          A_TP_INGRESS_CONFIG);
4688
4689         /* For T6, cache the adapter's compressed error vector
4690          * and passing outer header info for encapsulated packets.
4691          */
4692         if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4693                 v = t4_read_reg(adap, A_TP_OUT_CONFIG);
4694                 adap->params.tp.rx_pkt_encap = (v & F_CRXPKTENC) ? 1 : 0;
4695         }
4696
4697         /*
4698          * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
4699          * shift positions of several elements of the Compressed Filter Tuple
4700          * for this adapter which we need frequently ...
4701          */
4702         adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
4703         adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
4704         adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
4705         adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
4706                                                                F_PROTOCOL);
4707
4708         /*
4709          * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
4710          * represents the presense of an Outer VLAN instead of a VNIC ID.
4711          */
4712         if ((adap->params.tp.ingress_config & F_VNIC) == 0)
4713                 adap->params.tp.vnic_shift = -1;
4714
4715         return 0;
4716 }
4717
4718 /**
4719  * t4_filter_field_shift - calculate filter field shift
4720  * @adap: the adapter
4721  * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
4722  *
4723  * Return the shift position of a filter field within the Compressed
4724  * Filter Tuple.  The filter field is specified via its selection bit
4725  * within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
4726  */
4727 int t4_filter_field_shift(const struct adapter *adap, unsigned int filter_sel)
4728 {
4729         unsigned int filter_mode = adap->params.tp.vlan_pri_map;
4730         unsigned int sel;
4731         int field_shift;
4732
4733         if ((filter_mode & filter_sel) == 0)
4734                 return -1;
4735
4736         for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
4737                 switch (filter_mode & sel) {
4738                 case F_FCOE:
4739                         field_shift += W_FT_FCOE;
4740                         break;
4741                 case F_PORT:
4742                         field_shift += W_FT_PORT;
4743                         break;
4744                 case F_VNIC_ID:
4745                         field_shift += W_FT_VNIC_ID;
4746                         break;
4747                 case F_VLAN:
4748                         field_shift += W_FT_VLAN;
4749                         break;
4750                 case F_TOS:
4751                         field_shift += W_FT_TOS;
4752                         break;
4753                 case F_PROTOCOL:
4754                         field_shift += W_FT_PROTOCOL;
4755                         break;
4756                 case F_ETHERTYPE:
4757                         field_shift += W_FT_ETHERTYPE;
4758                         break;
4759                 case F_MACMATCH:
4760                         field_shift += W_FT_MACMATCH;
4761                         break;
4762                 case F_MPSHITTYPE:
4763                         field_shift += W_FT_MPSHITTYPE;
4764                         break;
4765                 case F_FRAGMENTATION:
4766                         field_shift += W_FT_FRAGMENTATION;
4767                         break;
4768                 }
4769         }
4770         return field_shift;
4771 }
4772
4773 int t4_init_rss_mode(struct adapter *adap, int mbox)
4774 {
4775         int i, ret;
4776         struct fw_rss_vi_config_cmd rvc;
4777
4778         memset(&rvc, 0, sizeof(rvc));
4779
4780         for_each_port(adap, i) {
4781                 struct port_info *p = adap2pinfo(adap, i);
4782
4783                 rvc.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4784                                        F_FW_CMD_REQUEST | F_FW_CMD_READ |
4785                                        V_FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
4786                 rvc.retval_len16 = htonl(FW_LEN16(rvc));
4787                 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
4788                 if (ret)
4789                         return ret;
4790                 p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
4791         }
4792         return 0;
4793 }
4794
4795 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
4796 {
4797         u8 addr[6];
4798         int ret, i, j = 0;
4799         struct fw_port_cmd c;
4800
4801         memset(&c, 0, sizeof(c));
4802
4803         for_each_port(adap, i) {
4804                 unsigned int rss_size = 0;
4805                 struct port_info *p = adap2pinfo(adap, i);
4806
4807                 while ((adap->params.portvec & (1 << j)) == 0)
4808                         j++;
4809
4810                 c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
4811                                              F_FW_CMD_REQUEST | F_FW_CMD_READ |
4812                                              V_FW_PORT_CMD_PORTID(j));
4813                 c.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(
4814                                                 FW_PORT_ACTION_GET_PORT_INFO) |
4815                                                 FW_LEN16(c));
4816                 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4817                 if (ret)
4818                         return ret;
4819
4820                 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
4821                 if (ret < 0)
4822                         return ret;
4823
4824                 p->viid = ret;
4825                 p->tx_chan = j;
4826                 p->rss_size = rss_size;
4827                 t4_os_set_hw_addr(adap, i, addr);
4828
4829                 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
4830                 p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
4831                                 G_FW_PORT_CMD_MDIOADDR(ret) : -1;
4832                 p->port_type = G_FW_PORT_CMD_PTYPE(ret);
4833                 p->mod_type = FW_PORT_MOD_TYPE_NA;
4834
4835                 init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap),
4836                                  be16_to_cpu(c.u.info.acap));
4837                 j++;
4838         }
4839         return 0;
4840 }