New upstream version 18.08
[deb_dpdk.git] / drivers / net / cxgbe / base / t4vf_hw.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Chelsio Communications.
3  * All rights reserved.
4  */
5
6 #include <rte_ethdev_driver.h>
7 #include <rte_ether.h>
8
9 #include "common.h"
10 #include "t4_regs.h"
11
12 /**
13  * t4vf_wait_dev_ready - wait till to reads of registers work
14  *
15  * Wait for the device to become ready (signified by our "who am I" register
16  * returning a value other than all 1's).  Return an error if it doesn't
17  * become ready ...
18  */
19 static int t4vf_wait_dev_ready(struct adapter *adapter)
20 {
21         const u32 whoami = T4VF_PL_BASE_ADDR + A_PL_VF_WHOAMI;
22         const u32 notready1 = 0xffffffff;
23         const u32 notready2 = 0xeeeeeeee;
24         u32 val;
25
26         val = t4_read_reg(adapter, whoami);
27         if (val != notready1 && val != notready2)
28                 return 0;
29
30         msleep(500);
31         val = t4_read_reg(adapter, whoami);
32         if (val != notready1 && val != notready2)
33                 return 0;
34
35         dev_err(adapter, "Device didn't become ready for access, whoami = %#x\n",
36                 val);
37         return -EIO;
38 }
39
40 /*
41  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
42  */
43 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
44                          u32 mbox_addr)
45 {
46         for ( ; nflit; nflit--, mbox_addr += 8)
47                 *rpl++ = htobe64(t4_read_reg64(adap, mbox_addr));
48 }
49
50 /**
51  * t4vf_wr_mbox_core - send a command to FW through the mailbox
52  * @adapter: the adapter
53  * @cmd: the command to write
54  * @size: command length in bytes
55  * @rpl: where to optionally store the reply
56  * @sleep_ok: if true we may sleep while awaiting command completion
57  *
58  * Sends the given command to FW through the mailbox and waits for the
59  * FW to execute the command.  If @rpl is not %NULL it is used to store
60  * the FW's reply to the command.  The command and its optional reply
61  * are of the same length.  FW can take up to 500 ms to respond.
62  * @sleep_ok determines whether we may sleep while awaiting the response.
63  * If sleeping is allowed we use progressive backoff otherwise we spin.
64  *
65  * The return value is 0 on success or a negative errno on failure.  A
66  * failure can happen either because we are not able to execute the
67  * command or FW executes it but signals an error.  In the latter case
68  * the return value is the error code indicated by FW (negated).
69  */
70 int t4vf_wr_mbox_core(struct adapter *adapter,
71                       const void __attribute__((__may_alias__)) *cmd,
72                       int size, void *rpl, bool sleep_ok)
73 {
74         /*
75          * We delay in small increments at first in an effort to maintain
76          * responsiveness for simple, fast executing commands but then back
77          * off to larger delays to a maximum retry delay.
78          */
79         static const int delay[] = {
80                 1, 1, 3, 5, 10, 10, 20, 50, 100
81         };
82
83
84         u32 mbox_ctl = T4VF_CIM_BASE_ADDR + A_CIM_VF_EXT_MAILBOX_CTRL;
85         __be64 cmd_rpl[MBOX_LEN / 8];
86         struct mbox_entry entry;
87         unsigned int delay_idx;
88         u32 v, mbox_data;
89         const __be64 *p;
90         int i, ret;
91         int ms;
92
93         /* In T6, mailbox size is changed to 128 bytes to avoid
94          * invalidating the entire prefetch buffer.
95          */
96         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
97                 mbox_data = T4VF_MBDATA_BASE_ADDR;
98         else
99                 mbox_data = T6VF_MBDATA_BASE_ADDR;
100
101         /*
102          * Commands must be multiples of 16 bytes in length and may not be
103          * larger than the size of the Mailbox Data register array.
104          */
105         if ((size % 16) != 0 ||
106                         size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
107                 return -EINVAL;
108
109         /*
110          * Queue ourselves onto the mailbox access list.  When our entry is at
111          * the front of the list, we have rights to access the mailbox.  So we
112          * wait [for a while] till we're at the front [or bail out with an
113          * EBUSY] ...
114          */
115         t4_os_atomic_add_tail(&entry, &adapter->mbox_list, &adapter->mbox_lock);
116
117         delay_idx = 0;
118         ms = delay[0];
119
120         for (i = 0; ; i += ms) {
121                 /*
122                  * If we've waited too long, return a busy indication.  This
123                  * really ought to be based on our initial position in the
124                  * mailbox access list but this is a start.  We very rarely
125                  * contend on access to the mailbox ...
126                  */
127                 if (i > (2 * FW_CMD_MAX_TIMEOUT)) {
128                         t4_os_atomic_list_del(&entry, &adapter->mbox_list,
129                                               &adapter->mbox_lock);
130                         ret = -EBUSY;
131                         return ret;
132                 }
133
134                 /*
135                  * If we're at the head, break out and start the mailbox
136                  * protocol.
137                  */
138                 if (t4_os_list_first_entry(&adapter->mbox_list) == &entry)
139                         break;
140
141                 /*
142                  * Delay for a bit before checking again ...
143                  */
144                 if (sleep_ok) {
145                         ms = delay[delay_idx];  /* last element may repeat */
146                         if (delay_idx < ARRAY_SIZE(delay) - 1)
147                                 delay_idx++;
148                         msleep(ms);
149                 } else {
150                         rte_delay_ms(ms);
151                 }
152         }
153
154         /*
155          * Loop trying to get ownership of the mailbox.  Return an error
156          * if we can't gain ownership.
157          */
158         v = G_MBOWNER(t4_read_reg(adapter, mbox_ctl));
159         for (i = 0; v == X_MBOWNER_NONE && i < 3; i++)
160                 v = G_MBOWNER(t4_read_reg(adapter, mbox_ctl));
161
162         if (v != X_MBOWNER_PL) {
163                 t4_os_atomic_list_del(&entry, &adapter->mbox_list,
164                                       &adapter->mbox_lock);
165                 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
166                 return ret;
167         }
168
169         /*
170          * Write the command array into the Mailbox Data register array and
171          * transfer ownership of the mailbox to the firmware.
172          */
173         for (i = 0, p = cmd; i < size; i += 8)
174                 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
175
176         t4_read_reg(adapter, mbox_data);          /* flush write */
177         t4_write_reg(adapter, mbox_ctl,
178                         F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
179         t4_read_reg(adapter, mbox_ctl);          /* flush write */
180         delay_idx = 0;
181         ms = delay[0];
182
183         /*
184          * Spin waiting for firmware to acknowledge processing our command.
185          */
186         for (i = 0; i < FW_CMD_MAX_TIMEOUT; i++) {
187                 if (sleep_ok) {
188                         ms = delay[delay_idx];  /* last element may repeat */
189                         if (delay_idx < ARRAY_SIZE(delay) - 1)
190                                 delay_idx++;
191                         msleep(ms);
192                 } else {
193                         rte_delay_ms(ms);
194                 }
195
196                 /*
197                  * If we're the owner, see if this is the reply we wanted.
198                  */
199                 v = t4_read_reg(adapter, mbox_ctl);
200                 if (G_MBOWNER(v) == X_MBOWNER_PL) {
201                         /*
202                          * If the Message Valid bit isn't on, revoke ownership
203                          * of the mailbox and continue waiting for our reply.
204                          */
205                         if ((v & F_MBMSGVALID) == 0) {
206                                 t4_write_reg(adapter, mbox_ctl,
207                                              V_MBOWNER(X_MBOWNER_NONE));
208                                 continue;
209                         }
210
211                         /*
212                          * We now have our reply.  Extract the command return
213                          * value, copy the reply back to our caller's buffer
214                          * (if specified) and revoke ownership of the mailbox.
215                          * We return the (negated) firmware command return
216                          * code (this depends on FW_SUCCESS == 0).  (Again we
217                          * avoid clogging the log with FW_VI_STATS_CMD
218                          * reply results.)
219                          */
220
221                         /*
222                          * Retrieve the command reply and release the mailbox.
223                          */
224                         get_mbox_rpl(adapter, cmd_rpl, size / 8, mbox_data);
225                         t4_write_reg(adapter, mbox_ctl,
226                                      V_MBOWNER(X_MBOWNER_NONE));
227                         t4_os_atomic_list_del(&entry, &adapter->mbox_list,
228                                               &adapter->mbox_lock);
229
230                         /* return value in high-order host-endian word */
231                         v = be64_to_cpu(cmd_rpl[0]);
232
233                         if (rpl) {
234                                 /* request bit in high-order BE word */
235                                 WARN_ON((be32_to_cpu(*(const u32 *)cmd)
236                                          & F_FW_CMD_REQUEST) == 0);
237                                 memcpy(rpl, cmd_rpl, size);
238                         }
239                         return -((int)G_FW_CMD_RETVAL(v));
240                 }
241         }
242
243         /*
244          * We timed out.  Return the error ...
245          */
246         dev_err(adapter, "command %#x timed out\n",
247                 *(const u8 *)cmd);
248         dev_err(adapter, "    Control = %#x\n", t4_read_reg(adapter, mbox_ctl));
249         t4_os_atomic_list_del(&entry, &adapter->mbox_list, &adapter->mbox_lock);
250         ret = -ETIMEDOUT;
251         return ret;
252 }
253
254 /**
255  * t4vf_fw_reset - issue a reset to FW
256  * @adapter: the adapter
257  *
258  * Issues a reset command to FW.  For a Physical Function this would
259  * result in the Firmware resetting all of its state.  For a Virtual
260  * Function this just resets the state associated with the VF.
261  */
262 int t4vf_fw_reset(struct adapter *adapter)
263 {
264         struct fw_reset_cmd cmd;
265
266         memset(&cmd, 0, sizeof(cmd));
267         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RESET_CMD) |
268                                       F_FW_CMD_WRITE);
269         cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(FW_LEN16(cmd)));
270         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
271 }
272
273 /**
274  * t4vf_prep_adapter - prepare SW and HW for operation
275  * @adapter: the adapter
276  *
277  * Initialize adapter SW state for the various HW modules, set initial
278  * values for some adapter tunables, take PHYs out of reset, and
279  * initialize the MDIO interface.
280  */
281 int t4vf_prep_adapter(struct adapter *adapter)
282 {
283         u32 pl_vf_rev;
284         int ret, ver;
285
286         ret = t4vf_wait_dev_ready(adapter);
287         if (ret < 0)
288                 return ret;
289
290         /*
291          * Default port and clock for debugging in case we can't reach
292          * firmware.
293          */
294         adapter->params.nports = 1;
295         adapter->params.vfres.pmask = 1;
296         adapter->params.vpd.cclk = 50000;
297
298         pl_vf_rev = G_REV(t4_read_reg(adapter, A_PL_VF_REV));
299         adapter->params.pci.device_id = adapter->pdev->id.device_id;
300         adapter->params.pci.vendor_id = adapter->pdev->id.vendor_id;
301
302         /*
303          * WE DON'T NEED adapter->params.chip CODE ONCE PL_REV CONTAINS
304          * ADAPTER (VERSION << 4 | REVISION)
305          */
306         ver = CHELSIO_PCI_ID_VER(adapter->params.pci.device_id);
307         adapter->params.chip = 0;
308         switch (ver) {
309         case CHELSIO_T5:
310                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5,
311                                                           pl_vf_rev);
312                 adapter->params.arch.sge_fl_db = F_DBPRIO | F_DBTYPE;
313                 adapter->params.arch.mps_tcam_size =
314                         NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
315                 break;
316         case CHELSIO_T6:
317                 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6,
318                                                           pl_vf_rev);
319                 adapter->params.arch.sge_fl_db = 0;
320                 adapter->params.arch.mps_tcam_size =
321                         NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
322                 break;
323         default:
324                 dev_err(adapter, "%s: Device %d is not supported\n",
325                         __func__, adapter->params.pci.device_id);
326                 return -EINVAL;
327         }
328         return 0;
329 }
330
331 /**
332  * t4vf_query_params - query FW or device parameters
333  * @adapter: the adapter
334  * @nparams: the number of parameters
335  * @params: the parameter names
336  * @vals: the parameter values
337  *
338  * Reads the values of firmware or device parameters.  Up to 7 parameters
339  * can be queried at once.
340  */
341 int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
342                       const u32 *params, u32 *vals)
343 {
344         struct fw_params_cmd cmd, rpl;
345         struct fw_params_param *p;
346         unsigned int i;
347         size_t len16;
348         int ret;
349
350         if (nparams > 7)
351                 return -EINVAL;
352
353         memset(&cmd, 0, sizeof(cmd));
354         cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
355                                     F_FW_CMD_REQUEST |
356                                     F_FW_CMD_READ);
357         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
358                              param[nparams]), 16);
359         cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(len16));
360         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
361                 p->mnem = cpu_to_be32(*params++);
362         ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
363         if (ret == 0)
364                 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
365                         *vals++ = be32_to_cpu(p->val);
366         return ret;
367 }
368
369 /**
370  * t4vf_get_vpd_params - retrieve device VPD paremeters
371  * @adapter: the adapter
372  *
373  * Retrives various device Vital Product Data parameters.  The parameters
374  * are stored in @adapter->params.vpd.
375  */
376 int t4vf_get_vpd_params(struct adapter *adapter)
377 {
378         struct vpd_params *vpd_params = &adapter->params.vpd;
379         u32 params[7], vals[7];
380         int v;
381
382         params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
383                      V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
384         v = t4vf_query_params(adapter, 1, params, vals);
385         if (v != FW_SUCCESS)
386                 return v;
387         vpd_params->cclk = vals[0];
388         dev_debug(adapter, "%s: vpd_params->cclk = %u\n",
389                   __func__, vpd_params->cclk);
390         return 0;
391 }
392
393 /**
394  * t4vf_get_dev_params - retrieve device paremeters
395  * @adapter: the adapter
396  *
397  * Retrives fw and tp version.
398  */
399 int t4vf_get_dev_params(struct adapter *adapter)
400 {
401         u32 params[7], vals[7];
402         int v;
403
404         params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
405                      V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV));
406         params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
407                      V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV));
408         v = t4vf_query_params(adapter, 2, params, vals);
409         if (v != FW_SUCCESS)
410                 return v;
411         adapter->params.fw_vers = vals[0];
412         adapter->params.tp_vers = vals[1];
413
414         dev_info(adapter, "Firmware version: %u.%u.%u.%u\n",
415                  G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers),
416                  G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers),
417                  G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers),
418                  G_FW_HDR_FW_VER_BUILD(adapter->params.fw_vers));
419
420         dev_info(adapter, "TP Microcode version: %u.%u.%u.%u\n",
421                  G_FW_HDR_FW_VER_MAJOR(adapter->params.tp_vers),
422                  G_FW_HDR_FW_VER_MINOR(adapter->params.tp_vers),
423                  G_FW_HDR_FW_VER_MICRO(adapter->params.tp_vers),
424                  G_FW_HDR_FW_VER_BUILD(adapter->params.tp_vers));
425         return 0;
426 }
427
428 /**
429  * t4vf_set_params - sets FW or device parameters
430  * @adapter: the adapter
431  * @nparams: the number of parameters
432  * @params: the parameter names
433  * @vals: the parameter values
434  *
435  * Sets the values of firmware or device parameters.  Up to 7 parameters
436  * can be specified at once.
437  */
438 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
439                     const u32 *params, const u32 *vals)
440 {
441         struct fw_params_param *p;
442         struct fw_params_cmd cmd;
443         unsigned int i;
444         size_t len16;
445
446         if (nparams > 7)
447                 return -EINVAL;
448
449         memset(&cmd, 0, sizeof(cmd));
450         cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
451                                     F_FW_CMD_REQUEST |
452                                     F_FW_CMD_WRITE);
453         len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
454                              param[nparams]), 16);
455         cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(len16));
456         for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
457                 p->mnem = cpu_to_be32(*params++);
458                 p->val = cpu_to_be32(*vals++);
459         }
460         return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
461 }
462
463 /**
464  * t4vf_fl_pkt_align - return the fl packet alignment
465  * @adapter: the adapter
466  *
467  * T4 has a single field to specify the packing and padding boundary.
468  * T5 onwards has separate fields for this and hence the alignment for
469  * next packet offset is maximum of these two.
470  */
471 int t4vf_fl_pkt_align(struct adapter *adapter, u32 sge_control,
472                       u32 sge_control2)
473 {
474         unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
475
476         /* T4 uses a single control field to specify both the PCIe Padding and
477          * Packing Boundary.  T5 introduced the ability to specify these
478          * separately.  The actual Ingress Packet Data alignment boundary
479          * within Packed Buffer Mode is the maximum of these two
480          * specifications.
481          */
482         if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
483                 ingpad_shift = X_INGPADBOUNDARY_SHIFT;
484         else
485                 ingpad_shift = X_T6_INGPADBOUNDARY_SHIFT;
486
487         ingpadboundary = 1 << (G_INGPADBOUNDARY(sge_control) + ingpad_shift);
488
489         fl_align = ingpadboundary;
490         if (!is_t4(adapter->params.chip)) {
491                 ingpackboundary = G_INGPACKBOUNDARY(sge_control2);
492                 if (ingpackboundary == X_INGPACKBOUNDARY_16B)
493                         ingpackboundary = 16;
494                 else
495                         ingpackboundary = 1 << (ingpackboundary +
496                                         X_INGPACKBOUNDARY_SHIFT);
497
498                 fl_align = max(ingpadboundary, ingpackboundary);
499         }
500         return fl_align;
501 }
502
503 unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
504 {
505         u32 whoami;
506
507         whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + A_PL_VF_WHOAMI);
508         return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
509                         G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami));
510 }
511
512 /**
513  * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
514  * @adapter: the adapter
515  *
516  * Retrieves global RSS mode and parameters with which we have to live
517  * and stores them in the @adapter's RSS parameters.
518  */
519 int t4vf_get_rss_glb_config(struct adapter *adapter)
520 {
521         struct rss_params *rss = &adapter->params.rss;
522         struct fw_rss_glb_config_cmd cmd, rpl;
523         int v;
524
525         /*
526          * Execute an RSS Global Configuration read command to retrieve
527          * our RSS configuration.
528          */
529         memset(&cmd, 0, sizeof(cmd));
530         cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
531                                       F_FW_CMD_REQUEST |
532                                       F_FW_CMD_READ);
533         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
534         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
535         if (v != FW_SUCCESS)
536                 return v;
537
538         /*
539          * Translate the big-endian RSS Global Configuration into our
540          * cpu-endian format based on the RSS mode.  We also do first level
541          * filtering at this point to weed out modes which don't support
542          * VF Drivers ...
543          */
544         rss->mode = G_FW_RSS_GLB_CONFIG_CMD_MODE
545                         (be32_to_cpu(rpl.u.manual.mode_pkd));
546         switch (rss->mode) {
547         case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
548                 u32 word = be32_to_cpu
549                                 (rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
550
551                 rss->u.basicvirtual.synmapen =
552                         ((word & F_FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0);
553                 rss->u.basicvirtual.syn4tupenipv6 =
554                         ((word & F_FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0);
555                 rss->u.basicvirtual.syn2tupenipv6 =
556                         ((word & F_FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0);
557                 rss->u.basicvirtual.syn4tupenipv4 =
558                         ((word & F_FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0);
559                 rss->u.basicvirtual.syn2tupenipv4 =
560                         ((word & F_FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0);
561                 rss->u.basicvirtual.ofdmapen =
562                         ((word & F_FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0);
563                 rss->u.basicvirtual.tnlmapen =
564                         ((word & F_FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0);
565                 rss->u.basicvirtual.tnlalllookup =
566                         ((word  & F_FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0);
567                 rss->u.basicvirtual.hashtoeplitz =
568                         ((word & F_FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0);
569
570                 /* we need at least Tunnel Map Enable to be set */
571                 if (!rss->u.basicvirtual.tnlmapen)
572                         return -EINVAL;
573                 break;
574         }
575
576         default:
577                 /* all unknown/unsupported RSS modes result in an error */
578                 return -EINVAL;
579         }
580         return 0;
581 }
582
583 /**
584  * t4vf_get_vfres - retrieve VF resource limits
585  * @adapter: the adapter
586  *
587  * Retrieves configured resource limits and capabilities for a virtual
588  * function.  The results are stored in @adapter->vfres.
589  */
590 int t4vf_get_vfres(struct adapter *adapter)
591 {
592         struct vf_resources *vfres = &adapter->params.vfres;
593         struct fw_pfvf_cmd cmd, rpl;
594         u32 word;
595         int v;
596
597         /*
598          * Execute PFVF Read command to get VF resource limits; bail out early
599          * with error on command failure.
600          */
601         memset(&cmd, 0, sizeof(cmd));
602         cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) |
603                                     F_FW_CMD_REQUEST |
604                                     F_FW_CMD_READ);
605         cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
606         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
607         if (v != FW_SUCCESS)
608                 return v;
609
610         /*
611          * Extract VF resource limits and return success.
612          */
613         word = be32_to_cpu(rpl.niqflint_niq);
614         vfres->niqflint = G_FW_PFVF_CMD_NIQFLINT(word);
615         vfres->niq = G_FW_PFVF_CMD_NIQ(word);
616
617         word = be32_to_cpu(rpl.type_to_neq);
618         vfres->neq = G_FW_PFVF_CMD_NEQ(word);
619         vfres->pmask = G_FW_PFVF_CMD_PMASK(word);
620
621         word = be32_to_cpu(rpl.tc_to_nexactf);
622         vfres->tc = G_FW_PFVF_CMD_TC(word);
623         vfres->nvi = G_FW_PFVF_CMD_NVI(word);
624         vfres->nexactf = G_FW_PFVF_CMD_NEXACTF(word);
625
626         word = be32_to_cpu(rpl.r_caps_to_nethctrl);
627         vfres->r_caps = G_FW_PFVF_CMD_R_CAPS(word);
628         vfres->wx_caps = G_FW_PFVF_CMD_WX_CAPS(word);
629         vfres->nethctrl = G_FW_PFVF_CMD_NETHCTRL(word);
630         return 0;
631 }
632
633 /**
634  * t4vf_get_port_stats_fw - collect "port" statistics via Firmware
635  * @adapter: the adapter
636  * @pidx: the port index
637  * @s: the stats structure to fill
638  *
639  * Collect statistics for the "port"'s Virtual Interface via Firmware
640  * commands.
641  */
642 static int t4vf_get_port_stats_fw(struct adapter *adapter, int pidx,
643                                   struct port_stats *p)
644 {
645         struct port_info *pi = adap2pinfo(adapter, pidx);
646         unsigned int rem = VI_VF_NUM_STATS;
647         struct fw_vi_stats_vf fwstats;
648         __be64 *fwsp = (__be64 *)&fwstats;
649
650         /*
651          * Grab the Virtual Interface statistics a chunk at a time via mailbox
652          * commands.  We could use a Work Request and get all of them at once
653          * but that's an asynchronous interface which is awkward to use.
654          */
655         while (rem) {
656                 unsigned int ix = VI_VF_NUM_STATS - rem;
657                 unsigned int nstats = min(6U, rem);
658                 struct fw_vi_stats_cmd cmd, rpl;
659                 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
660                               sizeof(struct fw_vi_stats_ctl));
661                 size_t len16 = DIV_ROUND_UP(len, 16);
662                 int ret;
663
664                 memset(&cmd, 0, sizeof(cmd));
665                 cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_STATS_CMD) |
666                                              V_FW_VI_STATS_CMD_VIID(pi->viid) |
667                                              F_FW_CMD_REQUEST |
668                                              F_FW_CMD_READ);
669                 cmd.retval_len16 = cpu_to_be32(V_FW_CMD_LEN16(len16));
670                 cmd.u.ctl.nstats_ix =
671                         cpu_to_be16(V_FW_VI_STATS_CMD_IX(ix) |
672                                     V_FW_VI_STATS_CMD_NSTATS(nstats));
673                 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
674                 if (ret != FW_SUCCESS)
675                         return ret;
676
677                 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
678
679                 rem -= nstats;
680                 fwsp += nstats;
681         }
682
683         /*
684          * Translate firmware statistics into host native statistics.
685          */
686         p->tx_octets = be64_to_cpu(fwstats.tx_bcast_bytes) +
687                        be64_to_cpu(fwstats.tx_mcast_bytes) +
688                        be64_to_cpu(fwstats.tx_ucast_bytes);
689         p->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
690         p->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
691         p->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
692         p->tx_drop = be64_to_cpu(fwstats.tx_drop_frames);
693
694         p->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
695         p->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
696         p->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
697         p->rx_len_err = be64_to_cpu(fwstats.rx_err_frames);
698
699         return 0;
700 }
701
702 /**
703  *      t4vf_get_port_stats - collect "port" statistics
704  *      @adapter: the adapter
705  *      @pidx: the port index
706  *      @s: the stats structure to fill
707  *
708  *      Collect statistics for the "port"'s Virtual Interface.
709  */
710 void t4vf_get_port_stats(struct adapter *adapter, int pidx,
711                          struct port_stats *p)
712 {
713         /*
714          * If this is not the first Virtual Interface for our Virtual
715          * Function, we need to use Firmware commands to retrieve its
716          * MPS statistics.
717          */
718         if (pidx != 0)
719                 t4vf_get_port_stats_fw(adapter, pidx, p);
720
721         /*
722          * But for the first VI, we can grab its statistics via the MPS
723          * register mapped into the VF register space.
724          */
725 #define GET_STAT(name) \
726         t4_read_reg64(adapter, \
727                         T4VF_MPS_BASE_ADDR + A_MPS_VF_STAT_##name##_L)
728         p->tx_octets = GET_STAT(TX_VF_BCAST_BYTES) +
729                        GET_STAT(TX_VF_MCAST_BYTES) +
730                        GET_STAT(TX_VF_UCAST_BYTES);
731         p->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES);
732         p->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES);
733         p->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES);
734         p->tx_drop = GET_STAT(TX_VF_DROP_FRAMES);
735
736         p->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES);
737         p->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES);
738         p->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES);
739
740         p->rx_len_err = GET_STAT(RX_VF_ERR_FRAMES);
741 #undef GET_STAT
742 }
743
744 static int t4vf_alloc_vi(struct adapter *adapter, int port_id)
745 {
746         struct fw_vi_cmd cmd, rpl;
747         int v;
748
749         /*
750          * Execute a VI command to allocate Virtual Interface and return its
751          * VIID.
752          */
753         memset(&cmd, 0, sizeof(cmd));
754         cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
755                                     F_FW_CMD_REQUEST |
756                                     F_FW_CMD_WRITE |
757                                     F_FW_CMD_EXEC);
758         cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
759                                          F_FW_VI_CMD_ALLOC);
760         cmd.portid_pkd = V_FW_VI_CMD_PORTID(port_id);
761         v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
762         if (v != FW_SUCCESS)
763                 return v;
764         return G_FW_VI_CMD_VIID(be16_to_cpu(rpl.type_to_viid));
765 }
766
767 int t4vf_port_init(struct adapter *adapter)
768 {
769         unsigned int fw_caps = adapter->params.fw_caps_support;
770         struct fw_port_cmd port_cmd, port_rpl;
771         struct fw_vi_cmd vi_cmd, vi_rpl;
772         fw_port_cap32_t pcaps, acaps;
773         enum fw_port_type port_type;
774         int mdio_addr;
775         int ret, i;
776
777         for_each_port(adapter, i) {
778                 struct port_info *p = adap2pinfo(adapter, i);
779
780                 /*
781                  * If we haven't yet determined if we're talking to Firmware
782                  * which knows the new 32-bit Port Caps, it's time to find
783                  * out now.  This will also tell new Firmware to send us Port
784                  * Status Updates using the new 32-bit Port Capabilities
785                  * version of the Port Information message.
786                  */
787                 if (fw_caps == FW_CAPS_UNKNOWN) {
788                         u32 param, val;
789
790                         param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) |
791                                  V_FW_PARAMS_PARAM_X
792                                          (FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
793                         val = 1;
794                         ret = t4vf_set_params(adapter, 1, &param, &val);
795                         fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
796                         adapter->params.fw_caps_support = fw_caps;
797                 }
798
799                 ret = t4vf_alloc_vi(adapter, p->port_id);
800                 if (ret < 0) {
801                         dev_err(&pdev->dev, "cannot allocate VI for port %d:"
802                                 " err=%d\n", p->port_id, ret);
803                         return ret;
804                 }
805                 p->viid = ret;
806
807                 /*
808                  * Execute a VI Read command to get our Virtual Interface
809                  * information like MAC address, etc.
810                  */
811                 memset(&vi_cmd, 0, sizeof(vi_cmd));
812                 vi_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
813                                                F_FW_CMD_REQUEST |
814                                                F_FW_CMD_READ);
815                 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
816                 vi_cmd.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(p->viid));
817                 ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
818                 if (ret != FW_SUCCESS)
819                         return ret;
820
821                 p->rss_size = G_FW_VI_CMD_RSSSIZE
822                                 (be16_to_cpu(vi_rpl.norss_rsssize));
823                 t4_os_set_hw_addr(adapter, i, vi_rpl.mac);
824
825                 /*
826                  * If we don't have read access to our port information, we're
827                  * done now.  Else, execute a PORT Read command to get it ...
828                  */
829                 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
830                         return 0;
831
832                 memset(&port_cmd, 0, sizeof(port_cmd));
833                 port_cmd.op_to_portid = cpu_to_be32
834                                 (V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST |
835                                 F_FW_CMD_READ |
836                                 V_FW_PORT_CMD_PORTID(p->port_id));
837                 port_cmd.action_to_len16 = cpu_to_be32
838                                 (V_FW_PORT_CMD_ACTION(fw_caps == FW_CAPS16 ?
839                                         FW_PORT_ACTION_GET_PORT_INFO :
840                                         FW_PORT_ACTION_GET_PORT_INFO32) |
841                                         FW_LEN16(port_cmd));
842                 ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd),
843                                    &port_rpl);
844                 if (ret != FW_SUCCESS)
845                         return ret;
846
847                 /*
848                  * Extract the various fields from the Port Information message.
849                  */
850                 if (fw_caps == FW_CAPS16) {
851                         u32 lstatus = be32_to_cpu
852                                         (port_rpl.u.info.lstatus_to_modtype);
853
854                         port_type = G_FW_PORT_CMD_PTYPE(lstatus);
855                         mdio_addr = ((lstatus & F_FW_PORT_CMD_MDIOCAP) ?
856                                       (int)G_FW_PORT_CMD_MDIOADDR(lstatus) :
857                                       -1);
858                         pcaps = fwcaps16_to_caps32
859                                         (be16_to_cpu(port_rpl.u.info.pcap));
860                         acaps = fwcaps16_to_caps32
861                                         (be16_to_cpu(port_rpl.u.info.acap));
862                 } else {
863                         u32 lstatus32 = be32_to_cpu
864                                 (port_rpl.u.info32.lstatus32_to_cbllen32);
865
866                         port_type = G_FW_PORT_CMD_PORTTYPE32(lstatus32);
867                         mdio_addr = ((lstatus32 & F_FW_PORT_CMD_MDIOCAP32) ?
868                                       (int)G_FW_PORT_CMD_MDIOADDR32(lstatus32) :
869                                       -1);
870                         pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
871                         acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
872                 }
873
874                 p->port_type = port_type;
875                 p->mdio_addr = mdio_addr;
876                 p->mod_type = FW_PORT_MOD_TYPE_NA;
877                 init_link_config(&p->link_cfg, pcaps, acaps);
878         }
879         return 0;
880 }