New upstream version 18.11-rc1
[deb_dpdk.git] / drivers / net / cxgbe / cxgbe_main.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5
6 #include <sys/queue.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14 #include <netinet/in.h>
15
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_pci.h>
23 #include <rte_atomic.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_memory.h>
26 #include <rte_tailq.h>
27 #include <rte_eal.h>
28 #include <rte_alarm.h>
29 #include <rte_ether.h>
30 #include <rte_ethdev_driver.h>
31 #include <rte_ethdev_pci.h>
32 #include <rte_random.h>
33 #include <rte_dev.h>
34 #include <rte_kvargs.h>
35
36 #include "common.h"
37 #include "t4_regs.h"
38 #include "t4_msg.h"
39 #include "cxgbe.h"
40 #include "clip_tbl.h"
41 #include "l2t.h"
42 #include "mps_tcam.h"
43
44 /**
45  * Allocate a chunk of memory. The allocated memory is cleared.
46  */
47 void *t4_alloc_mem(size_t size)
48 {
49         return rte_zmalloc(NULL, size, 0);
50 }
51
52 /**
53  * Free memory allocated through t4_alloc_mem().
54  */
55 void t4_free_mem(void *addr)
56 {
57         rte_free(addr);
58 }
59
60 /*
61  * Response queue handler for the FW event queue.
62  */
63 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
64                           __rte_unused const struct pkt_gl *gl)
65 {
66         u8 opcode = ((const struct rss_header *)rsp)->opcode;
67
68         rsp++;                                          /* skip RSS header */
69
70         /*
71          * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
72          */
73         if (unlikely(opcode == CPL_FW4_MSG &&
74                      ((const struct cpl_fw4_msg *)rsp)->type ==
75                       FW_TYPE_RSSCPL)) {
76                 rsp++;
77                 opcode = ((const struct rss_header *)rsp)->opcode;
78                 rsp++;
79                 if (opcode != CPL_SGE_EGR_UPDATE) {
80                         dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
81                                 opcode);
82                         goto out;
83                 }
84         }
85
86         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
87                 /* do nothing */
88         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
89                 const struct cpl_fw6_msg *msg = (const void *)rsp;
90
91                 t4_handle_fw_rpl(q->adapter, msg->data);
92         } else if (opcode == CPL_ABORT_RPL_RSS) {
93                 const struct cpl_abort_rpl_rss *p = (const void *)rsp;
94
95                 hash_del_filter_rpl(q->adapter, p);
96         } else if (opcode == CPL_SET_TCB_RPL) {
97                 const struct cpl_set_tcb_rpl *p = (const void *)rsp;
98
99                 filter_rpl(q->adapter, p);
100         } else if (opcode == CPL_ACT_OPEN_RPL) {
101                 const struct cpl_act_open_rpl *p = (const void *)rsp;
102
103                 hash_filter_rpl(q->adapter, p);
104         } else if (opcode == CPL_L2T_WRITE_RPL) {
105                 const struct cpl_l2t_write_rpl *p = (const void *)rsp;
106
107                 do_l2t_write_rpl(q->adapter, p);
108         } else {
109                 dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
110                         opcode);
111         }
112 out:
113         return 0;
114 }
115
116 /**
117  * Setup sge control queues to pass control information.
118  */
119 int setup_sge_ctrl_txq(struct adapter *adapter)
120 {
121         struct sge *s = &adapter->sge;
122         int err = 0, i = 0;
123
124         for_each_port(adapter, i) {
125                 char name[RTE_ETH_NAME_MAX_LEN];
126                 struct sge_ctrl_txq *q = &s->ctrlq[i];
127
128                 q->q.size = 1024;
129                 err = t4_sge_alloc_ctrl_txq(adapter, q,
130                                             adapter->eth_dev,  i,
131                                             s->fw_evtq.cntxt_id,
132                                             rte_socket_id());
133                 if (err) {
134                         dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
135                                 err);
136                         goto out;
137                 }
138                 snprintf(name, sizeof(name), "cxgbe_ctrl_pool_%d", i);
139                 q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
140                                                      RTE_CACHE_LINE_SIZE,
141                                                      RTE_MBUF_PRIV_ALIGN,
142                                                      RTE_MBUF_DEFAULT_BUF_SIZE,
143                                                      SOCKET_ID_ANY);
144                 if (!q->mb_pool) {
145                         dev_err(adapter, "Can't create ctrl pool for port: %d",
146                                 i);
147                         err = -ENOMEM;
148                         goto out;
149                 }
150         }
151         return 0;
152 out:
153         t4_free_sge_resources(adapter);
154         return err;
155 }
156
157 /**
158  * cxgbe_poll_for_completion: Poll rxq for completion
159  * @q: rxq to poll
160  * @us: microseconds to delay
161  * @cnt: number of times to poll
162  * @c: completion to check for 'done' status
163  *
164  * Polls the rxq for reples until completion is done or the count
165  * expires.
166  */
167 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int us,
168                               unsigned int cnt, struct t4_completion *c)
169 {
170         unsigned int i;
171         unsigned int work_done, budget = 4;
172
173         if (!c)
174                 return -EINVAL;
175
176         for (i = 0; i < cnt; i++) {
177                 cxgbe_poll(q, NULL, budget, &work_done);
178                 t4_os_lock(&c->lock);
179                 if (c->done) {
180                         t4_os_unlock(&c->lock);
181                         return 0;
182                 }
183                 t4_os_unlock(&c->lock);
184                 udelay(us);
185         }
186         return -ETIMEDOUT;
187 }
188
189 int setup_sge_fwevtq(struct adapter *adapter)
190 {
191         struct sge *s = &adapter->sge;
192         int err = 0;
193         int msi_idx = 0;
194
195         err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
196                                msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
197                                rte_socket_id());
198         return err;
199 }
200
201 static int closest_timer(const struct sge *s, int time)
202 {
203         unsigned int i, match = 0;
204         int delta, min_delta = INT_MAX;
205
206         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
207                 delta = time - s->timer_val[i];
208                 if (delta < 0)
209                         delta = -delta;
210                 if (delta < min_delta) {
211                         min_delta = delta;
212                         match = i;
213                 }
214         }
215         return match;
216 }
217
218 static int closest_thres(const struct sge *s, int thres)
219 {
220         unsigned int i, match = 0;
221         int delta, min_delta = INT_MAX;
222
223         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
224                 delta = thres - s->counter_val[i];
225                 if (delta < 0)
226                         delta = -delta;
227                 if (delta < min_delta) {
228                         min_delta = delta;
229                         match = i;
230                 }
231         }
232         return match;
233 }
234
235 /**
236  * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
237  * @q: the Rx queue
238  * @us: the hold-off time in us, or 0 to disable timer
239  * @cnt: the hold-off packet count, or 0 to disable counter
240  *
241  * Sets an Rx queue's interrupt hold-off time and packet count.  At least
242  * one of the two needs to be enabled for the queue to generate interrupts.
243  */
244 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
245                                unsigned int cnt)
246 {
247         struct adapter *adap = q->adapter;
248         unsigned int timer_val;
249
250         if (cnt) {
251                 int err;
252                 u32 v, new_idx;
253
254                 new_idx = closest_thres(&adap->sge, cnt);
255                 if (q->desc && q->pktcnt_idx != new_idx) {
256                         /* the queue has already been created, update it */
257                         v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
258                             V_FW_PARAMS_PARAM_X(
259                             FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
260                             V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
261                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
262                                             &v, &new_idx);
263                         if (err)
264                                 return err;
265                 }
266                 q->pktcnt_idx = new_idx;
267         }
268
269         timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
270                                 closest_timer(&adap->sge, us);
271
272         if ((us | cnt) == 0)
273                 q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
274         else
275                 q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
276                                  V_QINTR_CNT_EN(cnt > 0);
277         return 0;
278 }
279
280 /**
281  * Allocate an active-open TID and set it to the supplied value.
282  */
283 int cxgbe_alloc_atid(struct tid_info *t, void *data)
284 {
285         int atid = -1;
286
287         t4_os_lock(&t->atid_lock);
288         if (t->afree) {
289                 union aopen_entry *p = t->afree;
290
291                 atid = p - t->atid_tab;
292                 t->afree = p->next;
293                 p->data = data;
294                 t->atids_in_use++;
295         }
296         t4_os_unlock(&t->atid_lock);
297         return atid;
298 }
299
300 /**
301  * Release an active-open TID.
302  */
303 void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
304 {
305         union aopen_entry *p = &t->atid_tab[atid];
306
307         t4_os_lock(&t->atid_lock);
308         p->next = t->afree;
309         t->afree = p;
310         t->atids_in_use--;
311         t4_os_unlock(&t->atid_lock);
312 }
313
314 /**
315  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
316  */
317 static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
318 {
319         struct cpl_tid_release *req;
320
321         req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
322         INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
323 }
324
325 /**
326  * Release a TID and inform HW.  If we are unable to allocate the release
327  * message we defer to a work queue.
328  */
329 void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
330                       unsigned short family)
331 {
332         struct rte_mbuf *mbuf;
333         struct adapter *adap = container_of(t, struct adapter, tids);
334
335         WARN_ON(tid >= t->ntids);
336
337         if (t->tid_tab[tid]) {
338                 t->tid_tab[tid] = NULL;
339                 rte_atomic32_dec(&t->conns_in_use);
340                 if (t->hash_base && tid >= t->hash_base) {
341                         if (family == FILTER_TYPE_IPV4)
342                                 rte_atomic32_dec(&t->hash_tids_in_use);
343                 } else {
344                         if (family == FILTER_TYPE_IPV4)
345                                 rte_atomic32_dec(&t->tids_in_use);
346                 }
347         }
348
349         mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
350         if (mbuf) {
351                 mbuf->data_len = sizeof(struct cpl_tid_release);
352                 mbuf->pkt_len = mbuf->data_len;
353                 mk_tid_release(mbuf, tid);
354                 t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
355         }
356 }
357
358 /**
359  * Insert a TID.
360  */
361 void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
362                       unsigned short family)
363 {
364         t->tid_tab[tid] = data;
365         if (t->hash_base && tid >= t->hash_base) {
366                 if (family == FILTER_TYPE_IPV4)
367                         rte_atomic32_inc(&t->hash_tids_in_use);
368         } else {
369                 if (family == FILTER_TYPE_IPV4)
370                         rte_atomic32_inc(&t->tids_in_use);
371         }
372
373         rte_atomic32_inc(&t->conns_in_use);
374 }
375
376 /**
377  * Free TID tables.
378  */
379 static void tid_free(struct tid_info *t)
380 {
381         if (t->tid_tab) {
382                 if (t->ftid_bmap)
383                         rte_bitmap_free(t->ftid_bmap);
384
385                 if (t->ftid_bmap_array)
386                         t4_os_free(t->ftid_bmap_array);
387
388                 t4_os_free(t->tid_tab);
389         }
390
391         memset(t, 0, sizeof(struct tid_info));
392 }
393
394 /**
395  * Allocate and initialize the TID tables.  Returns 0 on success.
396  */
397 static int tid_init(struct tid_info *t)
398 {
399         size_t size;
400         unsigned int ftid_bmap_size;
401         unsigned int natids = t->natids;
402         unsigned int max_ftids = t->nftids;
403
404         ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
405         size = t->ntids * sizeof(*t->tid_tab) +
406                 max_ftids * sizeof(*t->ftid_tab) +
407                 natids * sizeof(*t->atid_tab);
408
409         t->tid_tab = t4_os_alloc(size);
410         if (!t->tid_tab)
411                 return -ENOMEM;
412
413         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
414         t->ftid_tab = (struct filter_entry *)&t->tid_tab[t->natids];
415         t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
416         if (!t->ftid_bmap_array) {
417                 tid_free(t);
418                 return -ENOMEM;
419         }
420
421         t4_os_lock_init(&t->atid_lock);
422         t4_os_lock_init(&t->ftid_lock);
423
424         t->afree = NULL;
425         t->atids_in_use = 0;
426         rte_atomic32_init(&t->tids_in_use);
427         rte_atomic32_set(&t->tids_in_use, 0);
428         rte_atomic32_init(&t->conns_in_use);
429         rte_atomic32_set(&t->conns_in_use, 0);
430
431         /* Setup the free list for atid_tab and clear the stid bitmap. */
432         if (natids) {
433                 while (--natids)
434                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
435                 t->afree = t->atid_tab;
436         }
437
438         t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
439                                        ftid_bmap_size);
440         if (!t->ftid_bmap) {
441                 tid_free(t);
442                 return -ENOMEM;
443         }
444
445         return 0;
446 }
447
448 static inline bool is_x_1g_port(const struct link_config *lc)
449 {
450         return (lc->pcaps & FW_PORT_CAP32_SPEED_1G) != 0;
451 }
452
453 static inline bool is_x_10g_port(const struct link_config *lc)
454 {
455         unsigned int speeds, high_speeds;
456
457         speeds = V_FW_PORT_CAP32_SPEED(G_FW_PORT_CAP32_SPEED(lc->pcaps));
458         high_speeds = speeds &
459                       ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
460
461         return high_speeds != 0;
462 }
463
464 inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
465                       unsigned int us, unsigned int cnt,
466                       unsigned int size, unsigned int iqe_size)
467 {
468         q->adapter = adap;
469         cxgb4_set_rspq_intr_params(q, us, cnt);
470         q->iqe_len = iqe_size;
471         q->size = size;
472 }
473
474 int cfg_queue_count(struct rte_eth_dev *eth_dev)
475 {
476         struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
477         struct adapter *adap = pi->adapter;
478         struct sge *s = &adap->sge;
479         unsigned int max_queues = s->max_ethqsets / adap->params.nports;
480
481         if ((eth_dev->data->nb_rx_queues < 1) ||
482             (eth_dev->data->nb_tx_queues < 1))
483                 return -EINVAL;
484
485         if ((eth_dev->data->nb_rx_queues > max_queues) ||
486             (eth_dev->data->nb_tx_queues > max_queues))
487                 return -EINVAL;
488
489         if (eth_dev->data->nb_rx_queues > pi->rss_size)
490                 return -EINVAL;
491
492         /* We must configure RSS, since config has changed*/
493         pi->flags &= ~PORT_RSS_DONE;
494
495         pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
496         pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
497
498         return 0;
499 }
500
501 void cfg_queues(struct rte_eth_dev *eth_dev)
502 {
503         struct rte_config *config = rte_eal_get_configuration();
504         struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private);
505         struct adapter *adap = pi->adapter;
506         struct sge *s = &adap->sge;
507         unsigned int i, nb_ports = 0, qidx = 0;
508         unsigned int q_per_port = 0;
509
510         if (!(adap->flags & CFG_QUEUES)) {
511                 for_each_port(adap, i) {
512                         struct port_info *tpi = adap2pinfo(adap, i);
513
514                         nb_ports += (is_x_10g_port(&tpi->link_cfg)) ||
515                                      is_x_1g_port(&tpi->link_cfg) ? 1 : 0;
516                 }
517
518                 /*
519                  * We default up to # of cores queues per 1G/10G port.
520                  */
521                 if (nb_ports)
522                         q_per_port = (s->max_ethqsets -
523                                      (adap->params.nports - nb_ports)) /
524                                      nb_ports;
525
526                 if (q_per_port > config->lcore_count)
527                         q_per_port = config->lcore_count;
528
529                 for_each_port(adap, i) {
530                         struct port_info *pi = adap2pinfo(adap, i);
531
532                         pi->first_qset = qidx;
533
534                         /* Initially n_rx_qsets == n_tx_qsets */
535                         pi->n_rx_qsets = (is_x_10g_port(&pi->link_cfg) ||
536                                           is_x_1g_port(&pi->link_cfg)) ?
537                                           q_per_port : 1;
538                         pi->n_tx_qsets = pi->n_rx_qsets;
539
540                         if (pi->n_rx_qsets > pi->rss_size)
541                                 pi->n_rx_qsets = pi->rss_size;
542
543                         qidx += pi->n_rx_qsets;
544                 }
545
546                 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
547                         struct sge_eth_rxq *r = &s->ethrxq[i];
548
549                         init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
550                         r->usembufs = 1;
551                         r->fl.size = (r->usembufs ? 1024 : 72);
552                 }
553
554                 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
555                         s->ethtxq[i].q.size = 1024;
556
557                 init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
558                 adap->flags |= CFG_QUEUES;
559         }
560 }
561
562 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
563 {
564         t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
565                                  &pi->stats_base);
566 }
567
568 void cxgbe_stats_reset(struct port_info *pi)
569 {
570         t4_clr_port_stats(pi->adapter, pi->tx_chan);
571 }
572
573 static void setup_memwin(struct adapter *adap)
574 {
575         u32 mem_win0_base;
576
577         /* For T5, only relative offset inside the PCIe BAR is passed */
578         mem_win0_base = MEMWIN0_BASE;
579
580         /*
581          * Set up memory window for accessing adapter memory ranges.  (Read
582          * back MA register to ensure that changes propagate before we attempt
583          * to use the new values.)
584          */
585         t4_write_reg(adap,
586                      PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
587                                          MEMWIN_NIC),
588                      mem_win0_base | V_BIR(0) |
589                      V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
590         t4_read_reg(adap,
591                     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
592                                         MEMWIN_NIC));
593 }
594
595 int init_rss(struct adapter *adap)
596 {
597         unsigned int i;
598
599         if (is_pf4(adap)) {
600                 int err;
601
602                 err = t4_init_rss_mode(adap, adap->mbox);
603                 if (err)
604                         return err;
605         }
606
607         for_each_port(adap, i) {
608                 struct port_info *pi = adap2pinfo(adap, i);
609
610                 pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
611                 if (!pi->rss)
612                         return -ENOMEM;
613
614                 pi->rss_hf = CXGBE_RSS_HF_ALL;
615         }
616         return 0;
617 }
618
619 /**
620  * Dump basic information about the adapter.
621  */
622 void print_adapter_info(struct adapter *adap)
623 {
624         /**
625          * Hardware/Firmware/etc. Version/Revision IDs.
626          */
627         t4_dump_version_info(adap);
628 }
629
630 void print_port_info(struct adapter *adap)
631 {
632         int i;
633         char buf[80];
634         struct rte_pci_addr *loc = &adap->pdev->addr;
635
636         for_each_port(adap, i) {
637                 const struct port_info *pi = adap2pinfo(adap, i);
638                 char *bufp = buf;
639
640                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
641                         bufp += sprintf(bufp, "100M/");
642                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
643                         bufp += sprintf(bufp, "1G/");
644                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
645                         bufp += sprintf(bufp, "10G/");
646                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
647                         bufp += sprintf(bufp, "25G/");
648                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
649                         bufp += sprintf(bufp, "40G/");
650                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
651                         bufp += sprintf(bufp, "50G/");
652                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
653                         bufp += sprintf(bufp, "100G/");
654                 if (bufp != buf)
655                         --bufp;
656                 sprintf(bufp, "BASE-%s",
657                         t4_get_port_type_description(
658                                         (enum fw_port_type)pi->port_type));
659
660                 dev_info(adap,
661                          " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
662                          loc->domain, loc->bus, loc->devid, loc->function,
663                          CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
664                          (adap->flags & USING_MSIX) ? " MSI-X" :
665                          (adap->flags & USING_MSI) ? " MSI" : "");
666         }
667 }
668
669 static int
670 check_devargs_handler(__rte_unused const char *key, const char *value,
671                       __rte_unused void *opaque)
672 {
673         if (strcmp(value, "1"))
674                 return -1;
675
676         return 0;
677 }
678
679 int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key)
680 {
681         struct rte_kvargs *kvlist;
682
683         if (!devargs)
684                 return 0;
685
686         kvlist = rte_kvargs_parse(devargs->args, NULL);
687         if (!kvlist)
688                 return 0;
689
690         if (!rte_kvargs_count(kvlist, key)) {
691                 rte_kvargs_free(kvlist);
692                 return 0;
693         }
694
695         if (rte_kvargs_process(kvlist, key,
696                                check_devargs_handler, NULL) < 0) {
697                 rte_kvargs_free(kvlist);
698                 return 0;
699         }
700         rte_kvargs_free(kvlist);
701
702         return 1;
703 }
704
705 static void configure_vlan_types(struct adapter *adapter)
706 {
707         struct rte_pci_device *pdev = adapter->pdev;
708         int i;
709
710         for_each_port(adapter, i) {
711                 /* OVLAN Type 0x88a8 */
712                 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
713                                  V_OVLAN_MASK(M_OVLAN_MASK) |
714                                  V_OVLAN_ETYPE(M_OVLAN_ETYPE),
715                                  V_OVLAN_MASK(M_OVLAN_MASK) |
716                                  V_OVLAN_ETYPE(0x88a8));
717                 /* OVLAN Type 0x9100 */
718                 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
719                                  V_OVLAN_MASK(M_OVLAN_MASK) |
720                                  V_OVLAN_ETYPE(M_OVLAN_ETYPE),
721                                  V_OVLAN_MASK(M_OVLAN_MASK) |
722                                  V_OVLAN_ETYPE(0x9100));
723                 /* OVLAN Type 0x8100 */
724                 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN2),
725                                  V_OVLAN_MASK(M_OVLAN_MASK) |
726                                  V_OVLAN_ETYPE(M_OVLAN_ETYPE),
727                                  V_OVLAN_MASK(M_OVLAN_MASK) |
728                                  V_OVLAN_ETYPE(0x8100));
729
730                 /* IVLAN 0X8100 */
731                 t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
732                                  V_IVLAN_ETYPE(M_IVLAN_ETYPE),
733                                  V_IVLAN_ETYPE(0x8100));
734
735                 t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
736                                  F_OVLAN_EN0 | F_OVLAN_EN1 |
737                                  F_OVLAN_EN2 | F_IVLAN_EN,
738                                  F_OVLAN_EN0 | F_OVLAN_EN1 |
739                                  F_OVLAN_EN2 | F_IVLAN_EN);
740         }
741
742         if (cxgbe_get_devargs(pdev->device.devargs, CXGBE_DEVARG_KEEP_OVLAN))
743                 t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
744                                        V_RM_OVLAN(1), V_RM_OVLAN(0));
745 }
746
747 static void configure_pcie_ext_tag(struct adapter *adapter)
748 {
749         u16 v;
750         int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
751
752         if (!pos)
753                 return;
754
755         if (pos > 0) {
756                 t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
757                 v |= PCI_EXP_DEVCTL_EXT_TAG;
758                 t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
759                 if (is_t6(adapter->params.chip)) {
760                         t4_set_reg_field(adapter, A_PCIE_CFG2,
761                                          V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
762                                          V_T6_TOTMAXTAG(7));
763                         t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
764                                          V_T6_MINTAG(M_T6_MINTAG),
765                                          V_T6_MINTAG(8));
766                 } else {
767                         t4_set_reg_field(adapter, A_PCIE_CFG2,
768                                          V_TOTMAXTAG(M_TOTMAXTAG),
769                                          V_TOTMAXTAG(3));
770                         t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
771                                          V_MINTAG(M_MINTAG),
772                                          V_MINTAG(8));
773                 }
774         }
775 }
776
777 /* Figure out how many Queue Sets we can support */
778 void configure_max_ethqsets(struct adapter *adapter)
779 {
780         unsigned int ethqsets;
781
782         /*
783          * We need to reserve an Ingress Queue for the Asynchronous Firmware
784          * Event Queue.
785          *
786          * For each Queue Set, we'll need the ability to allocate two Egress
787          * Contexts -- one for the Ingress Queue Free List and one for the TX
788          * Ethernet Queue.
789          */
790         if (is_pf4(adapter)) {
791                 struct pf_resources *pfres = &adapter->params.pfres;
792
793                 ethqsets = pfres->niqflint - 1;
794                 if (pfres->neq < ethqsets * 2)
795                         ethqsets = pfres->neq / 2;
796         } else {
797                 struct vf_resources *vfres = &adapter->params.vfres;
798
799                 ethqsets = vfres->niqflint - 1;
800                 if (vfres->nethctrl != ethqsets)
801                         ethqsets = min(vfres->nethctrl, ethqsets);
802                 if (vfres->neq < ethqsets * 2)
803                         ethqsets = vfres->neq / 2;
804         }
805
806         if (ethqsets > MAX_ETH_QSETS)
807                 ethqsets = MAX_ETH_QSETS;
808         adapter->sge.max_ethqsets = ethqsets;
809 }
810
811 /*
812  * Tweak configuration based on system architecture, etc.  Most of these have
813  * defaults assigned to them by Firmware Configuration Files (if we're using
814  * them) but need to be explicitly set if we're using hard-coded
815  * initialization. So these are essentially common tweaks/settings for
816  * Configuration Files and hard-coded initialization ...
817  */
818 static int adap_init0_tweaks(struct adapter *adapter)
819 {
820         u8 rx_dma_offset;
821
822         /*
823          * Fix up various Host-Dependent Parameters like Page Size, Cache
824          * Line Size, etc.  The firmware default is for a 4KB Page Size and
825          * 64B Cache Line Size ...
826          */
827         t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
828                                     T5_LAST_REV);
829
830         /*
831          * Keep the chip default offset to deliver Ingress packets into our
832          * DMA buffers to zero
833          */
834         rx_dma_offset = 0;
835         t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
836                          V_PKTSHIFT(rx_dma_offset));
837
838         t4_set_reg_field(adapter, A_SGE_FLM_CFG,
839                          V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
840                          V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
841
842         t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
843                          V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
844
845         t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
846                          V_IDMAARBROUNDROBIN(1U));
847
848         /*
849          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
850          * adds the pseudo header itself.
851          */
852         t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
853                                F_CSUM_HAS_PSEUDO_HDR, 0);
854
855         return 0;
856 }
857
858 /*
859  * Attempt to initialize the adapter via a Firmware Configuration File.
860  */
861 static int adap_init0_config(struct adapter *adapter, int reset)
862 {
863         struct fw_caps_config_cmd caps_cmd;
864         unsigned long mtype = 0, maddr = 0;
865         u32 finiver, finicsum, cfcsum;
866         int ret;
867         int config_issued = 0;
868         int cfg_addr;
869         char config_name[20];
870
871         /*
872          * Reset device if necessary.
873          */
874         if (reset) {
875                 ret = t4_fw_reset(adapter, adapter->mbox,
876                                   F_PIORSTMODE | F_PIORST);
877                 if (ret < 0) {
878                         dev_warn(adapter, "Firmware reset failed, error %d\n",
879                                  -ret);
880                         goto bye;
881                 }
882         }
883
884         cfg_addr = t4_flash_cfg_addr(adapter);
885         if (cfg_addr < 0) {
886                 ret = cfg_addr;
887                 dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
888                          -ret);
889                 goto bye;
890         }
891
892         strcpy(config_name, "On Flash");
893         mtype = FW_MEMTYPE_CF_FLASH;
894         maddr = cfg_addr;
895
896         /*
897          * Issue a Capability Configuration command to the firmware to get it
898          * to parse the Configuration File.  We don't use t4_fw_config_file()
899          * because we want the ability to modify various features after we've
900          * processed the configuration file ...
901          */
902         memset(&caps_cmd, 0, sizeof(caps_cmd));
903         caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
904                                            F_FW_CMD_REQUEST | F_FW_CMD_READ);
905         caps_cmd.cfvalid_to_len16 =
906                 cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
907                             V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
908                             V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
909                             FW_LEN16(caps_cmd));
910         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
911                          &caps_cmd);
912         /*
913          * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
914          * Configuration File in FLASH), our last gasp effort is to use the
915          * Firmware Configuration File which is embedded in the firmware.  A
916          * very few early versions of the firmware didn't have one embedded
917          * but we can ignore those.
918          */
919         if (ret == -ENOENT) {
920                 dev_info(adapter, "%s: Going for embedded config in firmware..\n",
921                          __func__);
922
923                 memset(&caps_cmd, 0, sizeof(caps_cmd));
924                 caps_cmd.op_to_write =
925                         cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
926                                     F_FW_CMD_REQUEST | F_FW_CMD_READ);
927                 caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
928                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
929                                  sizeof(caps_cmd), &caps_cmd);
930                 strcpy(config_name, "Firmware Default");
931         }
932
933         config_issued = 1;
934         if (ret < 0)
935                 goto bye;
936
937         finiver = be32_to_cpu(caps_cmd.finiver);
938         finicsum = be32_to_cpu(caps_cmd.finicsum);
939         cfcsum = be32_to_cpu(caps_cmd.cfcsum);
940         if (finicsum != cfcsum)
941                 dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
942                          finicsum, cfcsum);
943
944         /*
945          * If we're a pure NIC driver then disable all offloading facilities.
946          * This will allow the firmware to optimize aspects of the hardware
947          * configuration which will result in improved performance.
948          */
949         caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
950         caps_cmd.toecaps = 0;
951         caps_cmd.iscsicaps = 0;
952         caps_cmd.rdmacaps = 0;
953         caps_cmd.fcoecaps = 0;
954
955         /*
956          * And now tell the firmware to use the configuration we just loaded.
957          */
958         caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
959                                            F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
960         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
961         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
962                          NULL);
963         if (ret < 0) {
964                 dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
965                          -ret);
966                 goto bye;
967         }
968
969         /*
970          * Tweak configuration based on system architecture, etc.
971          */
972         ret = adap_init0_tweaks(adapter);
973         if (ret < 0) {
974                 dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
975                 goto bye;
976         }
977
978         /*
979          * And finally tell the firmware to initialize itself using the
980          * parameters from the Configuration File.
981          */
982         ret = t4_fw_initialize(adapter, adapter->mbox);
983         if (ret < 0) {
984                 dev_warn(adapter, "Initializing Firmware failed, error %d\n",
985                          -ret);
986                 goto bye;
987         }
988
989         /*
990          * Return successfully and note that we're operating with parameters
991          * not supplied by the driver, rather than from hard-wired
992          * initialization constants buried in the driver.
993          */
994         dev_info(adapter,
995                  "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
996                  config_name, finiver, cfcsum);
997
998         return 0;
999
1000         /*
1001          * Something bad happened.  Return the error ...  (If the "error"
1002          * is that there's no Configuration File on the adapter we don't
1003          * want to issue a warning since this is fairly common.)
1004          */
1005 bye:
1006         if (config_issued && ret != -ENOENT)
1007                 dev_warn(adapter, "\"%s\" configuration file error %d\n",
1008                          config_name, -ret);
1009
1010         dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
1011         return ret;
1012 }
1013
1014 static int adap_init0(struct adapter *adap)
1015 {
1016         struct fw_caps_config_cmd caps_cmd;
1017         int ret = 0;
1018         u32 v, port_vec;
1019         enum dev_state state;
1020         u32 params[7], val[7];
1021         int reset = 1;
1022         int mbox = adap->mbox;
1023
1024         /*
1025          * Contact FW, advertising Master capability.
1026          */
1027         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
1028         if (ret < 0) {
1029                 dev_err(adap, "%s: could not connect to FW, error %d\n",
1030                         __func__, -ret);
1031                 goto bye;
1032         }
1033
1034         CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
1035                          adap->mbox, ret);
1036
1037         if (ret == mbox)
1038                 adap->flags |= MASTER_PF;
1039
1040         if (state == DEV_STATE_INIT) {
1041                 /*
1042                  * Force halt and reset FW because a previous instance may have
1043                  * exited abnormally without properly shutting down
1044                  */
1045                 ret = t4_fw_halt(adap, adap->mbox, reset);
1046                 if (ret < 0) {
1047                         dev_err(adap, "Failed to halt. Exit.\n");
1048                         goto bye;
1049                 }
1050
1051                 ret = t4_fw_restart(adap, adap->mbox, reset);
1052                 if (ret < 0) {
1053                         dev_err(adap, "Failed to restart. Exit.\n");
1054                         goto bye;
1055                 }
1056                 state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
1057         }
1058
1059         t4_get_version_info(adap);
1060
1061         ret = t4_get_core_clock(adap, &adap->params.vpd);
1062         if (ret < 0) {
1063                 dev_err(adap, "%s: could not get core clock, error %d\n",
1064                         __func__, -ret);
1065                 goto bye;
1066         }
1067
1068         /*
1069          * If the firmware is initialized already (and we're not forcing a
1070          * master initialization), note that we're living with existing
1071          * adapter parameters.  Otherwise, it's time to try initializing the
1072          * adapter ...
1073          */
1074         if (state == DEV_STATE_INIT) {
1075                 dev_info(adap, "Coming up as %s: Adapter already initialized\n",
1076                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
1077         } else {
1078                 dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
1079
1080                 ret = adap_init0_config(adap, reset);
1081                 if (ret == -ENOENT) {
1082                         dev_err(adap,
1083                                 "No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
1084                         goto bye;
1085                 }
1086         }
1087         if (ret < 0) {
1088                 dev_err(adap, "could not initialize adapter, error %d\n", -ret);
1089                 goto bye;
1090         }
1091
1092         /* Now that we've successfully configured and initialized the adapter
1093          * (or found it already initialized), we can ask the Firmware what
1094          * resources it has provisioned for us.
1095          */
1096         ret = t4_get_pfres(adap);
1097         if (ret) {
1098                 dev_err(adap->pdev_dev,
1099                         "Unable to retrieve resource provisioning info\n");
1100                 goto bye;
1101         }
1102
1103         /* Find out what ports are available to us. */
1104         v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1105             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
1106         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
1107         if (ret < 0) {
1108                 dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
1109                         __func__, ret);
1110                 goto bye;
1111         }
1112
1113         adap->params.nports = hweight32(port_vec);
1114         adap->params.portvec = port_vec;
1115
1116         dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
1117                   adap->params.nports);
1118
1119         /*
1120          * Give the SGE code a chance to pull in anything that it needs ...
1121          * Note that this must be called after we retrieve our VPD parameters
1122          * in order to know how to convert core ticks to seconds, etc.
1123          */
1124         ret = t4_sge_init(adap);
1125         if (ret < 0) {
1126                 dev_err(adap, "t4_sge_init failed with error %d\n",
1127                         -ret);
1128                 goto bye;
1129         }
1130
1131         /*
1132          * Grab some of our basic fundamental operating parameters.
1133          */
1134 #define FW_PARAM_DEV(param) \
1135         (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
1136          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
1137
1138 #define FW_PARAM_PFVF(param) \
1139         (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
1140          V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param) |  \
1141          V_FW_PARAMS_PARAM_Y(0) | \
1142          V_FW_PARAMS_PARAM_Z(0))
1143
1144         params[0] = FW_PARAM_PFVF(L2T_START);
1145         params[1] = FW_PARAM_PFVF(L2T_END);
1146         params[2] = FW_PARAM_PFVF(FILTER_START);
1147         params[3] = FW_PARAM_PFVF(FILTER_END);
1148         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
1149         if (ret < 0)
1150                 goto bye;
1151         adap->l2t_start = val[0];
1152         adap->l2t_end = val[1];
1153         adap->tids.ftid_base = val[2];
1154         adap->tids.nftids = val[3] - val[2] + 1;
1155
1156         params[0] = FW_PARAM_PFVF(CLIP_START);
1157         params[1] = FW_PARAM_PFVF(CLIP_END);
1158         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
1159         if (ret < 0)
1160                 goto bye;
1161         adap->clipt_start = val[0];
1162         adap->clipt_end = val[1];
1163
1164         /*
1165          * Get device capabilities so we can determine what resources we need
1166          * to manage.
1167          */
1168         memset(&caps_cmd, 0, sizeof(caps_cmd));
1169         caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1170                                      F_FW_CMD_REQUEST | F_FW_CMD_READ);
1171         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1172         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1173                          &caps_cmd);
1174         if (ret < 0)
1175                 goto bye;
1176
1177         if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
1178             is_t6(adap->params.chip)) {
1179                 if (init_hash_filter(adap) < 0)
1180                         goto bye;
1181         }
1182
1183         /* See if FW supports FW_FILTER2 work request */
1184         if (is_t4(adap->params.chip)) {
1185                 adap->params.filter2_wr_support = 0;
1186         } else {
1187                 params[0] = FW_PARAM_DEV(FILTER2_WR);
1188                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1189                                       1, params, val);
1190                 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
1191         }
1192
1193         /* query tid-related parameters */
1194         params[0] = FW_PARAM_DEV(NTID);
1195         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
1196                               params, val);
1197         if (ret < 0)
1198                 goto bye;
1199         adap->tids.ntids = val[0];
1200         adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
1201
1202         /* If we're running on newer firmware, let it know that we're
1203          * prepared to deal with encapsulated CPL messages.  Older
1204          * firmware won't understand this and we'll just get
1205          * unencapsulated messages ...
1206          */
1207         params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1208         val[0] = 1;
1209         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1210
1211         /*
1212          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1213          * capability.  Earlier versions of the firmware didn't have the
1214          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1215          * permission to use ULPTX MEMWRITE DSGL.
1216          */
1217         if (is_t4(adap->params.chip)) {
1218                 adap->params.ulptx_memwrite_dsgl = false;
1219         } else {
1220                 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1221                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1222                                       1, params, val);
1223                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1224         }
1225
1226         /*
1227          * The MTU/MSS Table is initialized by now, so load their values.  If
1228          * we're initializing the adapter, then we'll make any modifications
1229          * we want to the MTU/MSS Table and also initialize the congestion
1230          * parameters.
1231          */
1232         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1233         if (state != DEV_STATE_INIT) {
1234                 int i;
1235
1236                 /*
1237                  * The default MTU Table contains values 1492 and 1500.
1238                  * However, for TCP, it's better to have two values which are
1239                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1240                  * This allows us to have a TCP Data Payload which is a
1241                  * multiple of 8 regardless of what combination of TCP Options
1242                  * are in use (always a multiple of 4 bytes) which is
1243                  * important for performance reasons.  For instance, if no
1244                  * options are in use, then we have a 20-byte IP header and a
1245                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
1246                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1247                  * which is not a multiple of 8.  So using an MSS of 1488 in
1248                  * this case results in a TCP Data Payload of 1448 bytes which
1249                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
1250                  * Stamps have been negotiated, then an MTU of 1500 bytes
1251                  * results in a TCP Data Payload of 1448 bytes which, as
1252                  * above, is a multiple of 8 bytes ...
1253                  */
1254                 for (i = 0; i < NMTUS; i++)
1255                         if (adap->params.mtus[i] == 1492) {
1256                                 adap->params.mtus[i] = 1488;
1257                                 break;
1258                         }
1259
1260                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1261                              adap->params.b_wnd);
1262         }
1263         t4_init_sge_params(adap);
1264         t4_init_tp_params(adap);
1265         configure_pcie_ext_tag(adap);
1266         configure_vlan_types(adap);
1267         configure_max_ethqsets(adap);
1268
1269         adap->params.drv_memwin = MEMWIN_NIC;
1270         adap->flags |= FW_OK;
1271         dev_debug(adap, "%s: returning zero..\n", __func__);
1272         return 0;
1273
1274         /*
1275          * Something bad happened.  If a command timed out or failed with EIO
1276          * FW does not operate within its spec or something catastrophic
1277          * happened to HW/FW, stop issuing commands.
1278          */
1279 bye:
1280         if (ret != -ETIMEDOUT && ret != -EIO)
1281                 t4_fw_bye(adap, adap->mbox);
1282         return ret;
1283 }
1284
1285 /**
1286  * t4_os_portmod_changed - handle port module changes
1287  * @adap: the adapter associated with the module change
1288  * @port_id: the port index whose module status has changed
1289  *
1290  * This is the OS-dependent handler for port module changes.  It is
1291  * invoked when a port module is removed or inserted for any OS-specific
1292  * processing.
1293  */
1294 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1295 {
1296         static const char * const mod_str[] = {
1297                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1298         };
1299
1300         const struct port_info *pi = adap2pinfo(adap, port_id);
1301
1302         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
1303                 dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1304         else if (pi->mod_type < ARRAY_SIZE(mod_str))
1305                 dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1306                          mod_str[pi->mod_type]);
1307         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1308                 dev_info(adap, "Port%d: unsupported port module inserted\n",
1309                          pi->port_id);
1310         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1311                 dev_info(adap, "Port%d: unknown port module inserted\n",
1312                          pi->port_id);
1313         else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
1314                 dev_info(adap, "Port%d: transceiver module error\n",
1315                          pi->port_id);
1316         else
1317                 dev_info(adap, "Port%d: unknown module type %d inserted\n",
1318                          pi->port_id, pi->mod_type);
1319 }
1320
1321 inline bool force_linkup(struct adapter *adap)
1322 {
1323         struct rte_pci_device *pdev = adap->pdev;
1324
1325         if (is_pf4(adap))
1326                 return false;   /* force_linkup not required for pf driver*/
1327         if (!cxgbe_get_devargs(pdev->device.devargs,
1328                                CXGBE_DEVARG_FORCE_LINK_UP))
1329                 return false;
1330         return true;
1331 }
1332
1333 /**
1334  * link_start - enable a port
1335  * @dev: the port to enable
1336  *
1337  * Performs the MAC and PHY actions needed to enable a port.
1338  */
1339 int link_start(struct port_info *pi)
1340 {
1341         struct adapter *adapter = pi->adapter;
1342         int ret;
1343         unsigned int mtu;
1344
1345         mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
1346               (ETHER_HDR_LEN + ETHER_CRC_LEN);
1347
1348         /*
1349          * We do not set address filters and promiscuity here, the stack does
1350          * that step explicitly.
1351          */
1352         ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1,
1353                             -1, 1, true);
1354         if (ret == 0) {
1355                 ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
1356                                 (u8 *)&pi->eth_dev->data->mac_addrs[0]);
1357                 if (ret >= 0) {
1358                         pi->xact_addr_filt = ret;
1359                         ret = 0;
1360                 }
1361         }
1362         if (ret == 0 && is_pf4(adapter))
1363                 ret = t4_link_l1cfg(adapter, adapter->mbox, pi->tx_chan,
1364                                     &pi->link_cfg);
1365         if (ret == 0) {
1366                 /*
1367                  * Enabling a Virtual Interface can result in an interrupt
1368                  * during the processing of the VI Enable command and, in some
1369                  * paths, result in an attempt to issue another command in the
1370                  * interrupt context.  Thus, we disable interrupts during the
1371                  * course of the VI Enable command ...
1372                  */
1373                 ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1374                                           true, true, false);
1375         }
1376
1377         if (ret == 0 && force_linkup(adapter))
1378                 pi->eth_dev->data->dev_link.link_status = ETH_LINK_UP;
1379         return ret;
1380 }
1381
1382 /**
1383  * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1384  * @pi: the port
1385  * @rss_hf: Hash configuration to apply
1386  */
1387 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1388 {
1389         struct adapter *adapter = pi->adapter;
1390         const struct sge_eth_rxq *rxq;
1391         u64 flags = 0;
1392         u16 rss;
1393         int err;
1394
1395         /*  Should never be called before setting up sge eth rx queues */
1396         if (!(adapter->flags & FULL_INIT_DONE)) {
1397                 dev_err(adap, "%s No RXQs available on port %d\n",
1398                         __func__, pi->port_id);
1399                 return -EINVAL;
1400         }
1401
1402         /* Don't allow unsupported hash functions */
1403         if (rss_hf & ~CXGBE_RSS_HF_ALL)
1404                 return -EINVAL;
1405
1406         if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
1407                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1408
1409         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1410                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1411
1412         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1413                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1414                          F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1415
1416         if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
1417                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1418
1419         if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
1420                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1421                          F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1422
1423         if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
1424                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1425                          F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1426                          F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1427
1428         rxq = &adapter->sge.ethrxq[pi->first_qset];
1429         rss = rxq[0].rspq.abs_id;
1430
1431         /* If Tunnel All Lookup isn't specified in the global RSS
1432          * Configuration, then we need to specify a default Ingress
1433          * Queue for any ingress packets which aren't hashed.  We'll
1434          * use our first ingress queue ...
1435          */
1436         err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1437                                flags, rss);
1438         return err;
1439 }
1440
1441 /**
1442  * cxgbe_write_rss - write the RSS table for a given port
1443  * @pi: the port
1444  * @queues: array of queue indices for RSS
1445  *
1446  * Sets up the portion of the HW RSS table for the port's VI to distribute
1447  * packets to the Rx queues in @queues.
1448  */
1449 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1450 {
1451         u16 *rss;
1452         int i, err;
1453         struct adapter *adapter = pi->adapter;
1454         const struct sge_eth_rxq *rxq;
1455
1456         /*  Should never be called before setting up sge eth rx queues */
1457         BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1458
1459         rxq = &adapter->sge.ethrxq[pi->first_qset];
1460         rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1461         if (!rss)
1462                 return -ENOMEM;
1463
1464         /* map the queue indices to queue ids */
1465         for (i = 0; i < pi->rss_size; i++, queues++)
1466                 rss[i] = rxq[*queues].rspq.abs_id;
1467
1468         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1469                                   pi->rss_size, rss, pi->rss_size);
1470         rte_free(rss);
1471         return err;
1472 }
1473
1474 /**
1475  * setup_rss - configure RSS
1476  * @adapter: the adapter
1477  *
1478  * Sets up RSS to distribute packets to multiple receive queues.  We
1479  * configure the RSS CPU lookup table to distribute to the number of HW
1480  * receive queues, and the response queue lookup table to narrow that
1481  * down to the response queues actually configured for each port.
1482  * We always configure the RSS mapping for all ports since the mapping
1483  * table has plenty of entries.
1484  */
1485 int setup_rss(struct port_info *pi)
1486 {
1487         int j, err;
1488         struct adapter *adapter = pi->adapter;
1489
1490         dev_debug(adapter, "%s:  pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1491                   __func__, pi->rss_size, pi->n_rx_qsets);
1492
1493         if (!(pi->flags & PORT_RSS_DONE)) {
1494                 if (adapter->flags & FULL_INIT_DONE) {
1495                         /* Fill default values with equal distribution */
1496                         for (j = 0; j < pi->rss_size; j++)
1497                                 pi->rss[j] = j % pi->n_rx_qsets;
1498
1499                         err = cxgbe_write_rss(pi, pi->rss);
1500                         if (err)
1501                                 return err;
1502
1503                         err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1504                         if (err)
1505                                 return err;
1506                         pi->flags |= PORT_RSS_DONE;
1507                 }
1508         }
1509         return 0;
1510 }
1511
1512 /*
1513  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1514  */
1515 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1516 {
1517         /* 0-increment GTS to start the timer and enable interrupts */
1518         t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1519                                           T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1520                      V_SEINTARM(q->intr_params) |
1521                      V_INGRESSQID(q->cntxt_id));
1522 }
1523
1524 void cxgbe_enable_rx_queues(struct port_info *pi)
1525 {
1526         struct adapter *adap = pi->adapter;
1527         struct sge *s = &adap->sge;
1528         unsigned int i;
1529
1530         for (i = 0; i < pi->n_rx_qsets; i++)
1531                 enable_rx(adap, &s->ethrxq[pi->first_qset + i].rspq);
1532 }
1533
1534 /**
1535  * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1536  * @port_type: Firmware Port Type
1537  * @fw_caps: Firmware Port Capabilities
1538  * @speed_caps: Device Info Speed Capabilities
1539  *
1540  * Translate a Firmware Port Capabilities specification to Device Info
1541  * Speed Capabilities.
1542  */
1543 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1544                                   unsigned int fw_caps,
1545                                   u32 *speed_caps)
1546 {
1547 #define SET_SPEED(__speed_name) \
1548         do { \
1549                 *speed_caps |= ETH_LINK_ ## __speed_name; \
1550         } while (0)
1551
1552 #define FW_CAPS_TO_SPEED(__fw_name) \
1553         do { \
1554                 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1555                         SET_SPEED(__fw_name); \
1556         } while (0)
1557
1558         switch (port_type) {
1559         case FW_PORT_TYPE_BT_SGMII:
1560         case FW_PORT_TYPE_BT_XFI:
1561         case FW_PORT_TYPE_BT_XAUI:
1562                 FW_CAPS_TO_SPEED(SPEED_100M);
1563                 FW_CAPS_TO_SPEED(SPEED_1G);
1564                 FW_CAPS_TO_SPEED(SPEED_10G);
1565                 break;
1566
1567         case FW_PORT_TYPE_KX4:
1568         case FW_PORT_TYPE_KX:
1569         case FW_PORT_TYPE_FIBER_XFI:
1570         case FW_PORT_TYPE_FIBER_XAUI:
1571         case FW_PORT_TYPE_SFP:
1572         case FW_PORT_TYPE_QSFP_10G:
1573         case FW_PORT_TYPE_QSA:
1574                 FW_CAPS_TO_SPEED(SPEED_1G);
1575                 FW_CAPS_TO_SPEED(SPEED_10G);
1576                 break;
1577
1578         case FW_PORT_TYPE_KR:
1579                 SET_SPEED(SPEED_10G);
1580                 break;
1581
1582         case FW_PORT_TYPE_BP_AP:
1583         case FW_PORT_TYPE_BP4_AP:
1584                 SET_SPEED(SPEED_1G);
1585                 SET_SPEED(SPEED_10G);
1586                 break;
1587
1588         case FW_PORT_TYPE_BP40_BA:
1589         case FW_PORT_TYPE_QSFP:
1590                 SET_SPEED(SPEED_40G);
1591                 break;
1592
1593         case FW_PORT_TYPE_CR_QSFP:
1594         case FW_PORT_TYPE_SFP28:
1595         case FW_PORT_TYPE_KR_SFP28:
1596                 FW_CAPS_TO_SPEED(SPEED_1G);
1597                 FW_CAPS_TO_SPEED(SPEED_10G);
1598                 FW_CAPS_TO_SPEED(SPEED_25G);
1599                 break;
1600
1601         case FW_PORT_TYPE_CR2_QSFP:
1602                 SET_SPEED(SPEED_50G);
1603                 break;
1604
1605         case FW_PORT_TYPE_KR4_100G:
1606         case FW_PORT_TYPE_CR4_QSFP:
1607                 FW_CAPS_TO_SPEED(SPEED_25G);
1608                 FW_CAPS_TO_SPEED(SPEED_40G);
1609                 FW_CAPS_TO_SPEED(SPEED_50G);
1610                 FW_CAPS_TO_SPEED(SPEED_100G);
1611                 break;
1612
1613         default:
1614                 break;
1615         }
1616
1617 #undef FW_CAPS_TO_SPEED
1618 #undef SET_SPEED
1619 }
1620
1621 /**
1622  * cxgbe_get_speed_caps - Fetch supported speed capabilities
1623  * @pi: Underlying port's info
1624  * @speed_caps: Device Info speed capabilities
1625  *
1626  * Fetch supported speed capabilities of the underlying port.
1627  */
1628 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
1629 {
1630         *speed_caps = 0;
1631
1632         fw_caps_to_speed_caps(pi->port_type, pi->link_cfg.pcaps,
1633                               speed_caps);
1634
1635         if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
1636                 *speed_caps |= ETH_LINK_SPEED_FIXED;
1637 }
1638
1639 /**
1640  * cxgbe_set_link_status - Set device link up or down.
1641  * @pi: Underlying port's info
1642  * @status: 0 - down, 1 - up
1643  *
1644  * Set the device link up or down.
1645  */
1646 int cxgbe_set_link_status(struct port_info *pi, bool status)
1647 {
1648         struct adapter *adapter = pi->adapter;
1649         int err = 0;
1650
1651         err = t4_enable_vi(adapter, adapter->mbox, pi->viid, status, status);
1652         if (err) {
1653                 dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1654                 return err;
1655         }
1656
1657         if (!status)
1658                 t4_reset_link_config(adapter, pi->pidx);
1659
1660         return 0;
1661 }
1662
1663 /**
1664  * cxgb_up - enable the adapter
1665  * @adap: adapter being enabled
1666  *
1667  * Called when the first port is enabled, this function performs the
1668  * actions necessary to make an adapter operational, such as completing
1669  * the initialization of HW modules, and enabling interrupts.
1670  */
1671 int cxgbe_up(struct adapter *adap)
1672 {
1673         enable_rx(adap, &adap->sge.fw_evtq);
1674         t4_sge_tx_monitor_start(adap);
1675         if (is_pf4(adap))
1676                 t4_intr_enable(adap);
1677         adap->flags |= FULL_INIT_DONE;
1678
1679         /* TODO: deadman watchdog ?? */
1680         return 0;
1681 }
1682
1683 /*
1684  * Close the port
1685  */
1686 int cxgbe_down(struct port_info *pi)
1687 {
1688         return cxgbe_set_link_status(pi, false);
1689 }
1690
1691 /*
1692  * Release resources when all the ports have been stopped.
1693  */
1694 void cxgbe_close(struct adapter *adapter)
1695 {
1696         struct port_info *pi;
1697         int i;
1698
1699         if (adapter->flags & FULL_INIT_DONE) {
1700                 tid_free(&adapter->tids);
1701                 t4_cleanup_mpstcam(adapter);
1702                 t4_cleanup_clip_tbl(adapter);
1703                 t4_cleanup_l2t(adapter);
1704                 if (is_pf4(adapter))
1705                         t4_intr_disable(adapter);
1706                 t4_sge_tx_monitor_stop(adapter);
1707                 t4_free_sge_resources(adapter);
1708                 for_each_port(adapter, i) {
1709                         pi = adap2pinfo(adapter, i);
1710                         if (pi->viid != 0)
1711                                 t4_free_vi(adapter, adapter->mbox,
1712                                            adapter->pf, 0, pi->viid);
1713                         rte_eth_dev_release_port(pi->eth_dev);
1714                 }
1715                 adapter->flags &= ~FULL_INIT_DONE;
1716         }
1717
1718         if (is_pf4(adapter) && (adapter->flags & FW_OK))
1719                 t4_fw_bye(adapter, adapter->mbox);
1720 }
1721
1722 int cxgbe_probe(struct adapter *adapter)
1723 {
1724         struct port_info *pi;
1725         int chip;
1726         int func, i;
1727         int err = 0;
1728         u32 whoami;
1729
1730         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
1731         chip = t4_get_chip_type(adapter,
1732                         CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
1733         if (chip < 0)
1734                 return chip;
1735
1736         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
1737                G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
1738
1739         adapter->mbox = func;
1740         adapter->pf = func;
1741
1742         t4_os_lock_init(&adapter->mbox_lock);
1743         TAILQ_INIT(&adapter->mbox_list);
1744         t4_os_lock_init(&adapter->win0_lock);
1745
1746         err = t4_prep_adapter(adapter);
1747         if (err)
1748                 return err;
1749
1750         setup_memwin(adapter);
1751         err = adap_init0(adapter);
1752         if (err) {
1753                 dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
1754                         __func__, err);
1755                 goto out_free;
1756         }
1757
1758         if (!is_t4(adapter->params.chip)) {
1759                 /*
1760                  * The userspace doorbell BAR is split evenly into doorbell
1761                  * regions, each associated with an egress queue.  If this
1762                  * per-queue region is large enough (at least UDBS_SEG_SIZE)
1763                  * then it can be used to submit a tx work request with an
1764                  * implied doorbell.  Enable write combining on the BAR if
1765                  * there is room for such work requests.
1766                  */
1767                 int s_qpp, qpp, num_seg;
1768
1769                 s_qpp = (S_QUEUESPERPAGEPF0 +
1770                         (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
1771                         adapter->pf);
1772                 qpp = 1 << ((t4_read_reg(adapter,
1773                                 A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
1774                                 & M_QUEUESPERPAGEPF0);
1775                 num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
1776                 if (qpp > num_seg)
1777                         dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
1778
1779                 adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
1780                 if (!adapter->bar2) {
1781                         dev_err(adapter, "cannot map device bar2 region\n");
1782                         err = -ENOMEM;
1783                         goto out_free;
1784                 }
1785                 t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
1786                              V_STATMODE(0));
1787         }
1788
1789         for_each_port(adapter, i) {
1790                 const unsigned int numa_node = rte_socket_id();
1791                 char name[RTE_ETH_NAME_MAX_LEN];
1792                 struct rte_eth_dev *eth_dev;
1793
1794                 snprintf(name, sizeof(name), "%s_%d",
1795                          adapter->pdev->device.name, i);
1796
1797                 if (i == 0) {
1798                         /* First port is already allocated by DPDK */
1799                         eth_dev = adapter->eth_dev;
1800                         goto allocate_mac;
1801                 }
1802
1803                 /*
1804                  * now do all data allocation - for eth_dev structure,
1805                  * and internal (private) data for the remaining ports
1806                  */
1807
1808                 /* reserve an ethdev entry */
1809                 eth_dev = rte_eth_dev_allocate(name);
1810                 if (!eth_dev)
1811                         goto out_free;
1812
1813                 eth_dev->data->dev_private =
1814                         rte_zmalloc_socket(name, sizeof(struct port_info),
1815                                            RTE_CACHE_LINE_SIZE, numa_node);
1816                 if (!eth_dev->data->dev_private)
1817                         goto out_free;
1818
1819 allocate_mac:
1820                 pi = (struct port_info *)eth_dev->data->dev_private;
1821                 adapter->port[i] = pi;
1822                 pi->eth_dev = eth_dev;
1823                 pi->adapter = adapter;
1824                 pi->xact_addr_filt = -1;
1825                 pi->port_id = i;
1826                 pi->pidx = i;
1827
1828                 pi->eth_dev->device = &adapter->pdev->device;
1829                 pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
1830                 pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
1831                 pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
1832
1833                 rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
1834
1835                 pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
1836                                                            ETHER_ADDR_LEN, 0);
1837                 if (!pi->eth_dev->data->mac_addrs) {
1838                         dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
1839                                 __func__);
1840                         err = -1;
1841                         goto out_free;
1842                 }
1843
1844                 if (i > 0) {
1845                         /* First port will be notified by upper layer */
1846                         rte_eth_dev_probing_finish(eth_dev);
1847                 }
1848         }
1849
1850         if (adapter->flags & FW_OK) {
1851                 err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
1852                 if (err) {
1853                         dev_err(adapter, "%s: t4_port_init failed with err %d\n",
1854                                 __func__, err);
1855                         goto out_free;
1856                 }
1857         }
1858
1859         cfg_queues(adapter->eth_dev);
1860
1861         print_adapter_info(adapter);
1862         print_port_info(adapter);
1863
1864         adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
1865                                           adapter->clipt_end);
1866         if (!adapter->clipt) {
1867                 /* We tolerate a lack of clip_table, giving up some
1868                  * functionality
1869                  */
1870                 dev_warn(adapter, "could not allocate CLIP. Continuing\n");
1871         }
1872
1873         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
1874         if (!adapter->l2t) {
1875                 /* We tolerate a lack of L2T, giving up some functionality */
1876                 dev_warn(adapter, "could not allocate L2T. Continuing\n");
1877         }
1878
1879         if (tid_init(&adapter->tids) < 0) {
1880                 /* Disable filtering support */
1881                 dev_warn(adapter, "could not allocate TID table, "
1882                          "filter support disabled. Continuing\n");
1883         }
1884
1885         adapter->mpstcam = t4_init_mpstcam(adapter);
1886         if (!adapter->mpstcam)
1887                 dev_warn(adapter, "could not allocate mps tcam table."
1888                          " Continuing\n");
1889
1890         if (is_hashfilter(adapter)) {
1891                 if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
1892                         u32 hash_base, hash_reg;
1893
1894                         hash_reg = A_LE_DB_TID_HASHBASE;
1895                         hash_base = t4_read_reg(adapter, hash_reg);
1896                         adapter->tids.hash_base = hash_base / 4;
1897                 }
1898         } else {
1899                 /* Disable hash filtering support */
1900                 dev_warn(adapter,
1901                          "Maskless filter support disabled. Continuing\n");
1902         }
1903
1904         err = init_rss(adapter);
1905         if (err)
1906                 goto out_free;
1907
1908         return 0;
1909
1910 out_free:
1911         for_each_port(adapter, i) {
1912                 pi = adap2pinfo(adapter, i);
1913                 if (pi->viid != 0)
1914                         t4_free_vi(adapter, adapter->mbox, adapter->pf,
1915                                    0, pi->viid);
1916                 rte_eth_dev_release_port(pi->eth_dev);
1917         }
1918
1919         if (adapter->flags & FW_OK)
1920                 t4_fw_bye(adapter, adapter->mbox);
1921         return -err;
1922 }